305
Views
26
CrossRef citations to date
0
Altmetric
Special Focus: Vaccine Adjuvants - Review

Adjuvants containing natural and synthetic Toll-like receptor 4 ligands

&
Pages 793-807 | Published online: 09 Jan 2014

References

  • Wack A, Rappuoli R. Vaccinology at the beginning of the 21st century. Curr. Opin. Immunol. 17(4), 411–418 (2005).
  • Alving CR, Peachman KK, Rao M, Reed SG. Adjuvants for human vaccines. Curr. Opin. Immunol. 24(3), 310–315 (2012).
  • Bertholet S, Ireton GC, Ordway DJ et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci. Transl. Med. 2(53), 53ra74 (2010).
  • Coler RN, Baldwin SL, Shaverdian N et al. A synthetic adjuvant to enhance and expand immune responses to influenza vaccines. PLoS ONE 5(10), e13677 (2010).
  • Johnson AG, Gains S, Landy M. Studies on the O antigen of Salmonella ryphosa V. Enhancement of antibody response to protein antigens by purified lipopolysaccharide. J. Exp. Med. 103(2), 225–246 (1956).
  • Kotani S, Takada H, Takahashi I et al. Immunobiological activities of synthetic lipid A analogs with low endotoxicity. Infect. Immun. 54(3), 673–682 (1986).
  • Kotani S, Takada H, Tsujimoto M et al. Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli re-mutant. Infect. Immun. 49(1), 225–237 (1985).
  • Needham BD, Carroll SM, Giles DK, Georgiou G, Whiteley M, Trent MS. Modulating the innate immune response by combinatorial engineering of endotoxin. Proc. Natl Acad. Sci. USA 110(4), 1464–1469 (2013).
  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).
  • Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 449(7164), 819–826 (2007).
  • Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem. J. 420(1), 1–16 (2009).
  • Song DH, Lee JO. Sensing of microbial molecular patterns by Toll-like receptors. Immunol. Rev. 250(1), 216–229 (2012).
  • Beutler BA. TLRs and innate immunity. Blood 113(7), 1399–1407 (2009).
  • Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6(15), 1382–1387 (2004).
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640), 394–397 (1997).
  • Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396), 2085–2088 (1998).
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6), 973–983 (1996).
  • Matsushima N, Tanaka T, Enkhbayar P et al. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate Toll-like receptors. BMC Genomics 8, 124 (2007).
  • Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21(4), 317–337 (2009).
  • Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol. 9(4), 361–368 (2008).
  • Jin MS, Kim SE, Heo JY et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6), 1071–1082 (2007).
  • Liu L, Botos I, Wang Y et al. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320(5874), 379–381 (2008).
  • Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242), 1191–1195 (2009).
  • Dasari P, Nicholson IC, Hodge G, Dandie GW, Zola H. Expression of Toll-like receptors on B lymphocytes. Cell. Immunol. 236(1–2), 140–145 (2005).
  • Gribar SC, Richardson WM, Sodhi CP, Hackam DJ. No longer an innocent bystander: epithelial Toll-like receptor signaling in the development of mucosal inflammation. Mol. Med. 14(9–10), 645–659 (2008).
  • Bulut Y, Michelsen KS, Hayrapetian L et al. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 280(22), 20961–20967 (2005).
  • O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7(5), 353–364 (2007).
  • O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol. Rev. 61(2), 177–197 (2009).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 124(4), 783–801 (2006).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 4(7), 499–511 (2004).
  • Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9(8), 535–542 (2009).
  • Steinman RM, Pope M. Exploiting dendritic cells to improve vaccine efficacy. J. Clin. Invest. 109(12), 1519–1526 (2002).
  • Coler RN, Bertholet S, Moutaftsi M et al. Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS ONE 6(1), e16333 (2011).
  • Krummen M, Balkow S, Shen L et al. Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy. J. Leukoc. Biol. 88(1), 189–199 (2010).
  • Shen H, Tesar BM, Walker WE, Goldstein DR. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J. Immunol. 181(3), 1849–1858 (2008).
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6(8), 769–776 (2005).
  • Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).
  • Galanos C, Lüderitz O, Rietschel ET et al. Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur. J. Biochem. 148(1), 1–5 (1985).
  • Miyake K. Roles for accessory molecules in microbial recognition by Toll-like receptors. J. Endotoxin Res. 12(4), 195–204 (2006).
  • Nagai Y, Akashi S, Nagafuku M et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3(7), 667–672 (2002).
  • Kobayashi M, Saitoh S, Tanimura N et al. Regulatory roles for MD-2 and TLR4 in ligand-induced receptor clustering. J. Immunol. 176(10), 6211–6218 (2006).
  • Rietschel ET, Kirikae T, Schade FU et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8(2), 217–225 (1994).
  • Kumazawa Y, Matsuura M, Homma JY, Nakatsuru Y, Kiso M, Hasegawa A. B cell activation and adjuvant activities of chemically synthesized analogues of the nonreducing sugar moiety of lipid A. Eur. J. Immunol. 15(2), 199–201 (1985).
  • Raetz CR. Biochemistry of endotoxins. Annu. Rev. Biochem. 59, 129–170 (1990).
  • Alexander C, Rietschel ET. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7(3), 167–202 (2001).
  • Hajjar AM, Ernst RK, Tsai JH, Wilson CB, Miller SI. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3(4), 354–359 (2002).
  • Kusumoto S, Fukase K, Fukase Y et al. Structural basis for endotoxic and antagonistic activities: investigation with novel synthetic lipid A analogs. J. Endotoxin Res. 9(6), 361–366 (2003).
  • Hajjar AM, Ernst RK, Fortuno ES 3rd et al. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica. PLoS Pathog. 8(10), e1002963 (2012).
  • Johnson DA, Keegan DS, Sowell CG et al. 3-O-Desacyl monophosphoryl lipid A derivatives: synthesis and immunostimulant activities. J. Med. Chem. 42(22), 4640–4649 (1999).
  • Stöver AG, Da Silva Correia J, Evans JT et al. Structure-activity relationship of synthetic Toll-like receptor 4 agonists. J. Biol. Chem. 279(6), 4440–4449 (2004).
  • Cekic C, Casella CR, Eaves CA, Matsuzawa A, Ichijo H, Mitchell TC. Selective activation of the p38 MAPK pathway by synthetic monophosphoryl lipid A. J. Biol. Chem. 284(46), 31982–31991 (2009).
  • Seydel U, Schromm AB, Brade L et al. Physicochemical characterization of carboxymethyl lipid A derivatives in relation to biological activity. FEBS J. 272(2), 327–340 (2005).
  • Ulmer AJ, Heine H, Feist W et al. Biological activity of synthetic phosphonooxyethyl analogs of lipid A and lipid A partial structures. Infect. Immun. 60(8), 3309–3314 (1992).
  • Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316(5831), 1628–1632 (2007).
  • Bowen WS, Minns LA, Johnson DA, Mitchell TC, Hutton MM, Evans JT. Selective TRIF-dependent signaling by a synthetic Toll-like receptor 4 agonist. Sci. Signal. 5(211), ra13 (2012).
  • Cekic C, Casella CR, Sag D et al. MyD88-dependent SHIP1 regulates proinflammatory signaling pathways in dendritic cells after monophosphoryl lipid A stimulation of TLR4. J. Immunol. 186(7), 3858–3865 (2011).
  • Kim HM, Park BS, Kim JI et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130(5), 906–917 (2007).
  • Ohto U, Fukase K, Miyake K, Satow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316(5831), 1632–1634 (2007).
  • Choe J, Kelker MS, Wilson IA. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309(5734), 581–585 (2005).
  • Kang JY, Nan X, Jin MS et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31(6), 873–884 (2009).
  • Ohto U, Fukase K, Miyake K, Shimizu T. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc. Natl Acad. Sci. USA 109(19), 7421–7426 (2012).
  • Ribi E, Parker R, Strain S et al. Peptides as requirement for immunotherapy of the guinea-pig line 10 tumor with endotoxins. Cancer Immunol. Immunother. 12, 91–96 (1979).
  • Myers K, Truchot A, Ward J, Hudson Y, Ulrich J. A critical determinant of lipid A endotoxic activity. In: Cellular and Molecular Aspects of Endotoxin Reactions. Nowotny A, Spitzler J, Ziegler E (Eds). Elsevier, Amsterdam, The Netherlands, 145–156 (1990).
  • Ulrich J, Myers K. Monophosphoryl lipid A as an adjuvant. In: Vaccine Design: The Subunit and Adjuvant Approach. Powell M, Newman M (Eds). Plenum Press, New York, NY, USA, 495–524 (1995).
  • Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell. Mol. Life Sci. 65(20), 3231–3240 (2008).
  • Elliott GT, McLeod RA, Perez J, Von Eschen KB. Interim results of a Phase II multicenter clinical trial evaluating the activity of a therapeutic allogeneic melanoma vaccine (theraccine) in the treatment of disseminated malignant melanoma. Semin. Surg. Oncol. 9(3), 264–272 (1993).
  • Mitchell MS, Harel W, Kempf RA et al. Active-specific immunotherapy for melanoma. J. Clin. Oncol. 8(5), 856–869 (1990).
  • Evans JT, Cluff CW, Johnson DA, Lacy MJ, Persing DH, Baldridge JR. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev. Vaccines 2(2), 219–229 (2003).
  • Wheeler CM, Castellsagué X, Garland SM et al.; HPV PATRICIA Study Group. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 13(1), 100–110 (2012).
  • Didierlaurent AM, Morel S, Lockman L et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 183(10), 6186–6197 (2009).
  • Abdulla S, Salim N, Machera F et al. Randomized, controlled trial of the long term safety, immunogenicity and efficacy of RTS,S/AS02(D) malaria vaccine in infants living in a malaria-endemic region. Malar. J. 12, 11 (2013).
  • Agnandji ST, Lell B, Fernandes JF et al. A Phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N. Engl. J. Med. 367(24), 2284–2295 (2012).
  • Johnson AG. Molecular adjuvants and immunomodulators: new approaches to immunization. Clin. Microbiol. Rev. 7(3), 277–289 (1994).
  • Galanos C, Lüderitz O, Freudenberg M et al. Biological activity of synthetic heptaacyl lipid A representing a component of Salmonella minnesota R595 lipid A. Eur. J. Biochem. 160(1), 55–59 (1986).
  • Jiang ZH, Budzynski WA, Qiu D, Yalamati D, Koganty RR. Monophosphoryl lipid A analogues with varying 3-O-substitution: synthesis and potent adjuvant activity. Carbohydr. Res. 342(6), 784–796 (2007).
  • Jiang ZH, Bach MV, Budzynski WA, Krantz MJ, Koganty RR, Longenecker BM. Lipid A structures containing novel lipid moieties: synthesis and adjuvant properties. Bioorg. Med. Chem. Lett. 12(16), 2193–2196 (2002).
  • Martin OR, Zhou W, Wu X et al. Synthesis and immunobiological activity of an original series of acyclic lipid a mimics based on a pseudodipeptide backbone. J. Med. Chem. 49(20), 6000–6014 (2006).
  • Ishizaka ST, Hawkins LD. E6020: a synthetic Toll-like receptor 4 agonist as a vaccine adjuvant. Expert Rev. Vaccines 6(5), 773–784 (2007).
  • Morefield GL, Hawkins LD, Ishizaka ST, Kissner TL, Ulrich RG. Synthetic Toll-like receptor 4 agonist enhances vaccine efficacy in an experimental model of toxic shock syndrome. Clin. Vaccine Immunol. 14(11), 1499–1504 (2007).
  • Baldwin SL, Bertholet S, Reese VA, Ching LK, Reed SG, Coler RN. The importance of adjuvant formulation in the development of a tuberculosis vaccine. J. Immunol. 188(5), 2189–2197 (2012).
  • Wiley SR, Raman VS, Desbien A et al. Targeting TLRs expands the antibody repertoire in response to a malaria vaccine. Sci. Transl. Med. 3(93), 93ra69 (2011).
  • Mueller M, Lindner B, Kusumoto S, Fukase K, Schromm AB, Seydel U. Aggregates are the biologically active units of endotoxin. J. Biol. Chem. 279(25), 26307–26313 (2004).
  • Anderson RC, Fox CB, Dutill TS et al. Physicochemical characterization and biological activity of synthetic TLR4 agonist formulations. Colloids Surf. B. Biointerfaces 75(1), 123–132 (2010).
  • Baldridge JR, Crane RT. Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods 19(1), 103–107 (1999).
  • Childers NK, Miller KL, Tong G et al. Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect. Immun. 68(10), 5509–5516 (2000).
  • Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol. 30(1), 23–32 (2009).
  • Hui GS, Hashimoto CN. Adjuvant formulations possess differing efficacy in the potentiation of antibody and cell mediated responses to a human malaria vaccine under selective immune genes knockout environment. Int. Immunopharmacol. 8(7), 1012–1022 (2008).
  • Clements CJ, Griffiths E. The global impact of vaccines containing aluminium adjuvants. Vaccine 20(Suppl. 3), S24–S33 (2002).
  • Hem SL, Hogenesch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev. Vaccines 6(5), 685–698 (2007).
  • Alving CR, Matyas GR. Design and selection of vaccine adjuvants: principles and practice. In: The Grand Challenge for the Future: Vaccines for Poverty-Related Diseases from Bench to Field. Kaufmann SHE, Lambert PH (Eds). Birkhauser Verlag, Basel, Switzerland, 99–118 (2005).
  • Zhu D, Huang S, Gebregeorgis E et al. Development of a direct alhydrogel formulation immunoassay (DAFIA). J. Immunol. Methods 344(1), 73–78 (2009).
  • Alving CR, Rao M. Lipid A and liposomes containing lipid A as antigens and adjuvants. Vaccine 26(24), 3036–3045 (2008).
  • Tollemar J, Klingspor L, Ringdén O. Liposomal amphotericin B (AmBisome) for fungal infections in immunocompromised adults and children. Clin. Microbiol. Infect. 7(Suppl. 2), 68–79 (2001).
  • Matyas GR, Wassef NM, Rao M, Alving CR. Induction and detection of antibodies to squalene. J. Immunol. Methods 245(1–2), 1–14 (2000).
  • Fries LF, Gordon DM, Richards RL et al. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc. Natl Acad. Sci. USA 89(1), 358–362 (1992).
  • Richards RL, Rao M, Wassef NM, Glenn GM, Rothwell SW, Alving CR. Liposomes containing lipid A serve as an adjuvant for induction of antibody and cytotoxic T-cell responses against RTS,S malaria antigen. Infect. Immun. 66(6), 2859–2865 (1998).
  • Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 30(13), 2256–2272 (2012).
  • Fox CB, Friede M, Reed SG, Ireton GC. Synthetic and natural TLR4 agonists as safe and effective vaccine adjuvants. Subcell. Biochem. 53, 303–321 (2010).
  • Baudner BC, Ronconi V, Casini D et al. MF59 emulsion is an effective delivery system for a synthetic TLR4 agonist (E6020). Pharm. Res. 26(6), 1477–1485 (2009).
  • Pichyangkul S, Gettayacamin M, Miller RS et al. Pre-clinical evaluation of the malaria vaccine candidate P. falciparum MSP1(42) formulated with novel adjuvants or with alum. Vaccine 22(29–30), 3831–3840 (2004).
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 33(4), 492–503 (2010).
  • Baldwin SL, Shaverdian N, Goto Y et al. Enhanced humoral and Type 1 cellular immune responses with Fluzone adjuvanted with a synthetic TLR4 agonist formulated in an emulsion. Vaccine 27(43), 5956–5963 (2009).
  • Windish HP, Duthie MS, Misquith A et al. Protection of mice from Mycobacterium tuberculosis by ID87/GLA-SE, a novel tuberculosis subunit vaccine candidate. Vaccine 29(44), 7842–7848 (2011).
  • Bertholet S, Goto Y, Carter L et al. Optimized subunit vaccine protects against experimental leishmaniasis. Vaccine 27(50), 7036–7045 (2009).
  • Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG. Leish-111f, a recombinant polyprotein vaccine that protects against visceral leishmaniasis by elicitation of CD4+ T cells. Infect. Immun. 75(9), 4648–4654 (2007).
  • Coler RN, Skeiky YA, Bernards K et al. Immunization with a polyprotein vaccine consisting of the T-cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infect. Immun. 70(8), 4215–4225 (2002).
  • Skeiky YA, Alderson MR, Ovendale PJ et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J. Immunol. 172(12), 7618–7628 (2004).
  • Reed S, Lobet Y. Tuberculosis vaccine development; from mouse to man. Microbes Infect. 7(5–6), 922–931 (2005).
  • Reed SG, Coler RN, Dalemans W et al. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in Cynomolgus monkeys. Proc. Natl Acad. Sci. USA 106(7), 2301–2306 (2009).
  • Skeiky YA, Alderson MR, Ovendale PJ et al. Protection of mice and guinea pigs against tuberculosis induced by immunization with a single Mycobacterium tuberculosis recombinant antigen, MTB41. Vaccine 23(30), 3937–3945 (2005).
  • Vélez ID, Gilchrist K, Martínez S et al. Safety and immunogenicity of a defined vaccine for the prevention of cutaneous leishmaniasis. Vaccine 28(2), 329–337 (2009).
  • Carpenter S, O’Neill LA. Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem. J. 422(1), 1–10 (2009).

Patent

  • Crane RT. Aqueous immunologic adjuvant compositions of monophosphoryl lipid A. US Patent 6,491,919 B2 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.