144
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Cryptococcus antigens and immune responses: implications for a vaccine

&
Pages 1261-1272 | Published online: 09 Jan 2014

References

  • Cryptococcus: From Human Pathogen to Model Yeast. Heitman J, Kozel TR, Kwon-Chung KJ, Perfect JR, Casadevall A ( Eds). ASM Press, Washington, DC, USA (2010).
  • Vibhagool A, Sungkanuparph S, Mootsikapun P et al. Discontinuation of secondary prophylaxis for cryptococcal meningitis in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy: a prospective, multicenter, randomized study. Clin. Infect. Dis. 36(10), 1329–1331 (2003).
  • Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23(4), 525–530 (2009).
  • Bozzette SA, Larsen RA, Chiu J et al. A placebo-controlled trial of maintenance therapy with fluconazole after treatment of cryptococcal meningitis in the acquired immunodeficiency syndrome. California Collaborative Treatment Group. N. Engl. J. Med. 324(9), 580–584 (1991).
  • Aberg JA, Price RW, Heeren DM, Bredt B. A pilot study of the discontinuation of antifungal therapy for disseminated cryptococcal disease in patients with acquired immunodeficiency syndrome, following immunologic response to antiretroviral therapy. J. Infect. Dis. 185(8), 1179–1182 (2002).
  • Dromer F, Mathoulin-Pelissier S, Fontanet A, Ronin O, Dupont B, Lortholary O. Epidemiology of HIV-associated cryptococcosis in France (1985–2001): comparison of the pre- and post-HAART eras. AIDS 18(3), 555–562 (2004).
  • Singh N, Perfect JR. Immune reconstitution syndrome associated with opportunistic mycoses. Lancet Infect. Dis. 7(6), 395–401 (2007).
  • Chen SC, Korman TM, Slavin MA et al. Antifungal Therapy and Management of Complications of Cryptococcosis due to Cryptococcus gattii. Clin. Infect. Dis. 57(4), 543–551 (2013).
  • Sungkanuparph S, Filler SG, Chetchotisakd P et al. Cryptococcal immune reconstitution inflammatory syndrome after antiretroviral therapy in AIDS patients with cryptococcal meningitis: a prospective multicenter study. Clin. Infect. Dis. 49(6), 931–934 (2009).
  • Singh N, Lortholary O, Alexander BD et al. An immune reconstitution syndrome-like illness associated with Cryptococcus neoformans infection in organ transplant recipients. Clin. Infect. Dis. 40(12), 1756–1761 (2005).
  • Singh N, Dromer F, Perfect JR, Lortholary O. Cryptococcosis in solid organ transplant recipients: current state of the science. Clin. Infect. Dis. 47(10), 1321–1327 (2008).
  • Husain S, Wagener MM, Singh N. Cryptococcus neoformans infection in organ transplant recipients: variables influencing clinical characteristics and outcome. Emerg. Infect. Dis. 7(3), 375–381 (2001).
  • Pappas PG, Alexander BD, Andes DR et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin. Infect. Dis. 50(8), 1101–1111 (2010).
  • Powderly WG. Cryptococcal meningitis and AIDS. Clin. Infect. Dis. 17(5), 837–842 (1993).
  • Saag MS, Graybill RJ, Larsen RA et al. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin. Infect. Dis. 30(4), 710–718 (2000).
  • Van Der Horst CM, Saag MS, Cloud GA et al. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N. Engl. J. Med. 337(1), 15–21 (1997).
  • Chau TT, Mai NH, Phu NH et al. A prospective descriptive study of cryptococcal meningitis in HIV uninfected patients in Vietnam - high prevalence of Cryptococcus neoformans var grubii in the absence of underlying disease. BMC Infect. Dis. 10, 199 (2010).
  • Chen J, Varma A, Diaz MR, Litvintseva AP, Wollenberg KK, Kwon-Chung KJ. Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg. Infect. Dis. 14(5), 755–762 (2008).
  • Jarvis JN, Harrison TS. Pulmonary cryptococcosis. Semin. Respir. Crit. Care Med. 29(2), 141–150 (2008).
  • Litvintseva AP, Thakur R, Reller LB, Mitchell TG. Prevalence of clinical isolates of Cryptococcus gattii serotype C among patients with AIDS in Sub-Saharan Africa. J. Infect. Dis. 192(5), 888–892 (2005).
  • Hagen F, Colom MF, Swinne D et al. Autochthonous and dormant Cryptococcus gattii infections in Europe. Emerg. Infect. Dis. 18(10), 1618–1624 (2012).
  • Kwon-Chung KJ, Bennett JE. Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am. J. Epidemiol. 120(1), 123–130 (1984).
  • Galanis E, Macdougall L. Epidemiology of Cryptococcus gattii, British Columbia, Canada, 1999–2007. Emerg. Infect. Dis. 16(2), 251–257 (2010).
  • Datta K, Bartlett KH, Marr KA. Cryptococcus gattii: Emergence in Western North America: Exploitation of a Novel Ecological Niche. Interdiscip. Perspect. Infect. Dis. 2009, 176532 (2009).
  • Datta K, Bartlett KH, Baer R et al. Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg. Infect. Dis. 15(8), 1185–1191 (2009).
  • Emergence of Cryptococcus gattii-- Pacific Northwest, 2004–2010. MMWR Morb. Mortal. Wkly Rep. 59(28), 865–868 (2010).
  • Byrnes EJ 3rd, Li W, Lewit Y et al. First reported case of Cryptococcus gattii in the Southeastern USA: implications for travel-associated acquisition of an emerging pathogen. PLoS ONE 4(6), e5851 (2009).
  • Walraven CJ, Gerstein W, Hardison SE et al. Fatal disseminated Cryptococcus gattii infection in New Mexico. PLoS ONE 6(12), e28625 (2011).
  • Mcculloh RJ, Phillips R, Perfect JR, Byrnes EJ 3rd, Heitman J, Dufort E. Cryptococcus gattii genotype VGI infection in New England. Pediatr. Infect. Dis. J. 30(12), 1111–1114 (2011).
  • Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol. Rev. 8(4), 515–548 (1995).
  • Goldman DL, Khine H, Abadi J et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 107(5), E66 (2001).
  • Abadi J, Pirofski L. Antibodies reactive with the cryptococcal capsular polysaccharide glucuronoxylomannan are present in sera from children with and without human immunodeficiency virus infection. J. Infect. Dis. 180(3), 915–919 (1999).
  • Giles SS, Dagenais TR, Botts MR, Keller NP, Hull CM. Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect. Immun. 77(8), 3491–3500 (2009).
  • Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of Cryptococcus neoformans. Infect. Immun. 77(10), 4345–4355 (2009).
  • Callejas A, Ordonez N, Rodriguez MC, Castaneda E. First isolation of Cryptococcus neoformans var. gattii, serotype C, from the environment in Colombia. Med. Mycol. 36(5), 341–344 (1998).
  • Chakrabarti A, Jatana M, Kumar P, Chatha L, Kaushal A, Padhye AA. Isolation of Cryptococcus neoformans var. gattii from Eucalyptus camaldulensis in India. J. Clin. Microbiol. 35(12), 3340–3342 (1997).
  • Pfeiffer TJ, Ellis DH. Environmental isolation of Cryptococcus neoformans var. gattii from Eucalyptus tereticornis. J. Med. Vet. Mycol. 30(5), 407–408 (1992).
  • Kidd SE, Chow Y, Mak S et al. Characterization of environmental sources of the human and animal pathogen Cryptococcus gattii in British Columbia, Canada, and the Pacific Northwest of the United States. Appl. Environ. Microbiol. 73(5), 1433–1443 (2007).
  • Nosanchuk JD, Shoham S, Fries BC, Shapiro DS, Levitz SM, Casadevall A. Evidence of zoonotic transmission of Cryptococcus neoformans from a pet cockatoo to an immunocompromised patient. Ann. Intern. Med. 132(3), 205–208 (2000).
  • Shrestha RK, Stoller JK, Honari G, Procop GW, Gordon SM. Pneumonia due to Cryptococcus neoformans in a patient receiving infliximab: possible zoonotic transmission from a pet cockatiel. Respir. Care 49(6), 606–608 (2004).
  • Spitzer ED, Spitzer SG, Freundlich LF, Casadevall A. Persistence of initial infection in recurrent Cryptococcus neoformans meningitis. Lancet 341(8845), 595–596 (1993).
  • Garcia-Hermoso D, Janbon G, Dromer F. Epidemiological evidence for dormant Cryptococcus neoformans infection. J. Clin. Microbiol. 37(10), 3204–3209 (1999).
  • Staib F, Seibold M, L'age M. Persistence of Cryptococcus neoformans in seminal fluid and urine under itraconazole treatment. The urogenital tract (prostate) as a niche for Cryptococcus neoformans. Mycoses 33(7–8), 369–373 (1990).
  • Ndimbie OK, Dekker A, Martinez AJ, Dixon B. Prostatic sequestration of Cryptococcus neoformans in immunocompromised persons treated for cryptococcal meningoencephalitis. Histol. Histopathol. 9(4), 643–648 (1994).
  • Almeida AM, Matsumoto MT, Baeza LC et al. Molecular typing and antifungal susceptibility of clinical sequential isolates of Cryptococcus neoformans from Sao Paulo State, Brazil. FEMS Yeast. Res. 7(1), 152–164 (2007).
  • Mody CH, Wood CJ, Syme RM, Spurrell JC. The cell wall and membrane of Cryptococcus neoformans possess a mitogen for human T lymphocytes. Infect. Immun. 67(2), 936–941 (1999).
  • Chang CC, Crane M, Zhou J et al. HIV and co-infections. Immunol. Rev. 254(1), 114–142 (2013).
  • Pappas PG. Cryptococcal infections in non-hiv-infected patients. Trans. Am. Clin. Climatol. Assoc. 124, 61–79 (2013).
  • Chayakulkeeree M, Perfect JR. Cryptococcosis. Infect. Dis. Clin. North Am. 20(3), 507–544, v-vi (2006).
  • Wozniak KL, Ravi S, Macias S et al. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis. PLoS ONE 4(9), e6854 (2009).
  • Olszewski MA, Zhang Y, Huffnagle GB. Mechanisms of cryptococcal virulence and persistence. Future Microbiol. 5(8), 1269–1288 (2010).
  • Hole CR, Wormley FL Jr. Vaccine and immunotherapeutic approaches for the prevention of cryptococcosis: lessons learned from animal models. Front. Microbiol. 3, 291 (2012).
  • Hill JO. CD4+ T cells cause multinucleated giant cells to form around Cryptococcus neoformans and confine the yeast within the primary site of infection in the respiratory tract. J. Exp. Med. 175(6), 1685–1695 (1992).
  • Mody CH, Lipscomb MF, Street NE, Toews GB. Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J. Immunol. 144(4), 1472–1477 (1990).
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969 (2008).
  • Muller U, Stenzel W, Kohler G et al. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J. Immunol. 179(8), 5367–5377 (2007).
  • Arora S, Hernandez Y, Erb-Downward JR, Mcdonald RA, Toews GB, Huffnagle GB. Role of IFN-gamma in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J. Immunol. 174(10), 6346–6356 (2005).
  • Osterholzer JJ, Milam JE, Chen GH, Toews GB, Huffnagle GB, Olszewski MA. Role of dendritic cells and alveolar macrophages in regulating early host defense against pulmonary infection with Cryptococcus neoformans. Infect. Immun. 77(9), 3749–3758 (2009).
  • Zhang Y, Wang F, Tompkins KC et al. Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am. J. Pathol. 175(6), 2489–2500 (2009).
  • Wozniak KL, Hardison SE, Kolls JK, Wormley FL. Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS ONE 6(2), e17204 (2011).
  • Hardison SE, Wozniak KL, Kolls JK, Wormley FL Jr. Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection. Infect. Immun. 78(12), 5341–5351 (2010).
  • Hardison SE, Herrera G, Young ML, Hole CR, Wozniak KL, Wormley FL Jr. Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation. J. Immunol. 189(8), 4060–4068 (2012).
  • Wozniak KL, Vyas JM, Levitz SM. In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis. Infect. Immun. 74(7), 3817–3824 (2006).
  • Lewis KL, Reizis B. Dendritic cells: arbiters of immunity and immunological tolerance. Cold Spring Harb. Perspect. Biol. 4(8), a007401 (2012).
  • Geijtenbeek TB, Den Dunnen J, Gringhuis SI. Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiol. 4(7), 879–890 (2009).
  • Colonna M, Pulendran B, Iwasaki A. Dendritic cells at the host-pathogen interface. Nat. Immunol. 7(2), 117–120 (2006).
  • Jain AV, Zhang Y, Fields WB et al. Th2 but not Th1 immune bias results in altered lung functions in a murine model of pulmonary Cryptococcus neoformans infection. Infect. Immun. 77(12), 5389–5399 (2009).
  • Osterholzer JJ, Curtis JL, Polak T et al. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J. Immunol. 181(1), 610–620 (2008).
  • Huang C, Nong SH, Mansour MK, Specht CA, Levitz SM. Purification and characterization of a second immunoreactive mannoprotein from Cryptococcus neoformans that stimulates T-Cell responses. Infect. Immun. 70(10), 5485–5493 (2002).
  • Huffnagle GB, Lipscomb MF, Lovchik JA, Hoag KA, Street NE. The role of CD4+ and CD8+ T cells in the protective inflammatory response to a pulmonary cryptococcal infection. J. Leukoc. Biol. 55(1), 35–42 (1994).
  • Wozniak KL, Young ML, Wormley FL Jr. Protective immunity against experimental pulmonary cryptococcosis in T cell-depleted mice. Clin. Vaccine Immunol. 18(5), 717–723 (2011).
  • Wormley FL Jr, Perfect JR, Steele C, Cox GM. Protection against cryptococcosis by using a murine gamma interferon-producing Cryptococcus neoformans strain. Infect. Immun. 75(3), 1453–1462 (2007).
  • Iseki M, Anzo M, Yamashita N, Matsuo N. Hyper-IgM immunodeficiency with disseminated cryptococcosis. Acta Paediatr. 83(7), 780–782 (1994).
  • Neto Rda J, Guimaraes MC, Moya MJ, Oliveira FR, Louzada PL Jr, Martinez R. [Hypogammaglobulinemia as risk factor for Cryptococcus neoformans infection: report of 2 cases]. Rev. Soc. Bras. Med. Trop. 33(6), 603–608 (2000).
  • Antachopoulos C, Walsh TJ, Roilides E. Fungal infections in primary immunodeficiencies. Eur. J. Pediatr. 166(11), 1099–1117 (2007).
  • Gupta S, Ellis M, Cesario T, Ruhling M, Vayuvegula B. Disseminated cryptococcal infection in a patient with hypogammaglobulinemia and normal T cell functions. Am. J. Med. 82(1), 129–131 (1987).
  • Mukherjee S, Lee SC, Casadevall A. Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. Infect. Immun. 63(2), 573–579 (1995).
  • Bolanos B, Mitchell TG. Phagocytosis of Cryptococcus neoformans by rat alveolar macrophages. J. Med. Vet. Mycol. 27(4), 203–217 (1989).
  • Subramaniam KS, Datta K, Quintero E, Manix C, Marks MS, Pirofski LA. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans. J. Immunol. 184(10), 5755–5767 (2010).
  • Miller MF, Mitchell TG, Storkus WJ, Dawson JR. Human natural killer cells do not inhibit growth of Cryptococcus neoformans in the absence of antibody. Infect. Immun. 58(3), 639–645 (1990).
  • Diamond RD. Antibody-dependent killing of Cryptococcus neoformans by human peripheral blood mononuclear cells. Nature 247(437), 148–150 (1974).
  • Murphy JW, Mcdaniel DO. In vitro reactivity of natural killer (NK) cells against Cryptococcus neoformans. J. Immunol. 128(4), 1577–1583 (1982).
  • Dromer F, Charreire J, Contrepois A, Carbon C, Yeni P. Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect. Immun. 55(3), 749–752 (1987).
  • Goldman DL, Lee SC, Casadevall A. Tissue localization of Cryptococcus neoformans glucuronoxylomannan in the presence and absence of specific antibody. Infect. Immun. 63(9), 3448–3453 (1995).
  • Mukherjee J, Scharff MD, Casadevall A. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect. Immun. 60(11), 4534–4541 (1992).
  • Mukherjee S, Lee S, Mukherjee J, Scharff MD, Casadevall A. Monoclonal antibodies to Cryptococcus neoformans capsular polysaccharide modify the course of intravenous infection in mice. Infect. Immun. 62(3), 1079–1088 (1994).
  • Mukherjee J, Pirofski LA, Scharff MD, Casadevall A. Antibody-mediated protection in mice with lethal intracerebral Cryptococcus neoformans infection. Proc. Natl Acad. Sci. USA 90(8), 3636–3640 (1993).
  • Feldmesser M, Mednick A, Casadevall A. Antibody-mediated protection in murine Cryptococcus neoformans infection is associated with pleotrophic effects on cytokine and leukocyte responses. Infect. Immun. 70(3), 1571–1580 (2002).
  • Subramaniam KS, Datta K, Marks MS, Pirofski LA. Improved survival of mice deficient in secretory immunoglobulin M following systemic infection with Cryptococcus neoformans. Infect. Immun. 78(1), 441–452 (2010).
  • Mukherjee J, Nussbaum G, Scharff MD, Casadevall A. Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J. Exp. Med. 181(1), 405–409 (1995).
  • Yuan RR, Spira G, Oh J, Paizi M, Casadevall A, Scharff MD. Isotype switching increases efficacy of antibody protection against Cryptococcus neoformans infection in mice. Infect. Immun. 66(3), 1057–1062 (1998).
  • Casadevall A. Antibody immunity and invasive fungal infections. Infect. Immun. 63(11), 4211–4218 (1995).
  • Nussbaum G, Yuan R, Casadevall A, Scharff MD. Immunoglobulin G3 blocking antibodies to the fungal pathogen Cryptococcus neoformans. J. Exp. Med. 183(4), 1905–1909 (1996).
  • Yuan R, Casadevall A, Spira G, Scharff MD. Isotype switching from IgG3 to IgG1 converts a nonprotective murine antibody to Cryptococcus neoformans into a protective antibody. J. Immunol. 154(4), 1810–1816 (1995).
  • Taborda CP, Casadevall A. Immunoglobulin M efficacy against Cryptococcus neoformans: mechanism, dose dependence, and prozone-like effects in passive protection experiments. J. Immunol. 166(3), 2100–2107 (2001).
  • Taborda CP, Rivera J, Zaragoza O, Casadevall A. More is not necessarily better: prozone-like effects in passive immunization with IgG. J. Immunol. 170(7), 3621–3630 (2003).
  • Zaragoza O, Alvarez M, Telzak A, Rivera J, Casadevall A. The relative susceptibility of mouse strains to pulmonary Cryptococcus neoformans infection is associated with pleiotropic differences in the immune response. Infect. Immun. 75(6), 2729–2739 (2007).
  • Rivera J, Casadevall A. Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J. Immunol. 174(12), 8017–8026 (2005).
  • Yuan RR, Casadevall A, Oh J, Scharff MD. T cells cooperate with passive antibody to modify Cryptococcus neoformans infection in mice. Proc. Natl Acad. Sci. USA 94(6), 2483–2488 (1997).
  • Beenhouwer DO, Shapiro S, Feldmesser M, Casadevall A, Scharff MD. Both Th1 and Th2 cytokines affect the ability of monoclonal antibodies to protect mice against Cryptococcus neoformans. Infect. Immun. 69(10), 6445–6455 (2001).
  • Beenhouwer DO, Yoo EM, Lai CW, Rocha MA, Morrison SL. Human immunoglobulin G2 (IgG2) and IgG4, but not IgG1 or IgG3, protect mice against Cryptococcus neoformans infection. Infect. Immun. 75(3), 1424–1435 (2007).
  • Mcclelland EE, Nicola AM, Prados-Rosales R, Casadevall A. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J. Clin. Invest. 120(4), 1355–1361 (2010).
  • Brena S, Cabezas-Olcoz J, Moragues MD et al. Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans. Antimicrob. Agents Chemother. 55(7), 3156–3163 (2011).
  • Casadevall A, Pirofski LA. Antibody-mediated protection through cross-reactivity introduces a fungal heresy into immunological dogma. Infect. Immun. 75(11), 5074–5078 (2007).
  • Martinez LR, Casadevall A. Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect. Immun. 73(10), 6350–6362 (2005).
  • Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A. The capsule of the fungal pathogen Cryptococcus neoformans. Adv. Appl. Microbiol. 68, 133–216 (2009).
  • Mclean GR, Torres M, Elguezabal N, Nakouzi A, Casadevall A. Isotype can affect the fine specificity of an antibody for a polysaccharide antigen. J. Immunol. 169(3), 1379–1386 (2002).
  • Goldblatt D. Conjugate vaccines. Clin. Exp. Immunol. 119(1), 1–3 (2000).
  • Chow SK, Casadevall A. Evaluation of Cryptococcus neoformans galactoxylomannan-protein conjugate as vaccine candidate against murine cryptococcosis. Vaccine 29(10), 1891–1898 (2011).
  • Devi SJ, Schneerson R, Egan W et al. Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and immunogenicity. Infect. Immun. 59(10), 3700–3707 (1991).
  • Casadevall A, Mukherjee J, Devi SJ, Schneerson R, Robbins JB, Scharff MD. Antibodies elicited by a Cryptococcus neoformans-tetanus toxoid conjugate vaccine have the same specificity as those elicited in infection. J. Infect. Dis. 165(6), 1086–1093 (1992).
  • Zhong Z, Pirofski LA. Opsonization of Cryptococcus neoformans by human anticryptococcal glucuronoxylomannan antibodies. Infect. Immun. 64(9), 3446–3450 (1996).
  • Zhong Z, Pirofski LA. Antifungal activity of a human antiglucuronoxylomannan antibody. Clin. Diagn. Lab. Immunol. 5(1), 58–64 (1998).
  • Devi SJ. Preclinical efficacy of a glucuronoxylomannan-tetanus toxoid conjugate vaccine of Cryptococcus neoformans in a murine model. Vaccine 14(9), 841–844 (1996).
  • Nussbaum G, Anandasabapathy S, Mukherjee J, Fan M, Casadevall A, Scharff MD. Molecular and idiotypic analyses of the antibody response to Cryptococcus neoformans glucuronoxylomannan-protein conjugate vaccine in autoimmune and nonautoimmune mice. Infect. Immun. 67(9), 4469–4476 (1999).
  • Fleuridor R, Zhong Z, Pirofski L. A human IgM monoclonal antibody prolongs survival of mice with lethal cryptococcosis. J. Infect. Dis. 178(4), 1213–1216 (1998).
  • Rivera J, Mukherjee J, Weiss LM, Casadevall A. Antibody efficacy in murine pulmonary Cryptococcus neoformans infection: a role for nitric oxide. J. Immunol. 168(7), 3419–3427 (2002).
  • Zhang H, Zhong Z, Pirofski LA. Peptide epitopes recognized by a human anti-cryptococcal glucuronoxylomannan antibody. Infect. Immun. 65(4), 1158–1164 (1997).
  • Fleuridor R, Lees A, Pirofski L. A cryptococcal capsular polysaccharide mimotope prolongs the survival of mice with Cryptococcus neoformans infection. J. Immunol. 166(2), 1087–1096 (2001).
  • Datta K, Lees A, Pirofski LA. Therapeutic efficacy of a conjugate vaccine containing a peptide mimotope of cryptococcal capsular polysaccharide glucuronoxylomannan. Clin. Vaccine Immunol. 15(8), 1176–1187 (2008).
  • Maitta RW, Datta K, Pirofski LA. Efficacy of immune sera from human immunoglobulin transgenic mice immunized with a peptide mimotope of Cryptococcus neoformans glucuronoxylomannan. Vaccine 22(29–30), 4062–4068 (2004).
  • May RJ, Beenhouwer DO, Scharff MD. Antibodies to keyhole limpet hemocyanin cross-react with an epitope on the polysaccharide capsule of Cryptococcus neoformans and other carbohydrates: implications for vaccine development. J. Immunol. 171(9), 4905–4912 (2003).
  • Casadevall A, Cleare W, Feldmesser M et al. Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob. Agents Chemother. 42(6), 1437–1446 (1998).
  • Larsen RA, Pappas PG, Perfect J et al. Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis. Antimicrob. Agents Chemother. 49(3), 952–958 (2005).
  • Westin Kwon K, Lendvai N, Morrison S, Trinh KR, Casadevall A. Biological activity of a mouse-human chimeric immunoglobulin G2 antibody to Cryptococcus neoformans polysaccharide. Clin. Diagn. Lab. Immunol. 9(1), 201–204 (2002).
  • Bryan RA, Jiang Z, Howell RC et al. Radioimmunotherapy is more effective than antifungal treatment in experimental cryptococcal infection. J. Infect. Dis. 202(4), 633–637 (2010).
  • Dadachova E, Nakouzi A, Bryan RA, Casadevall A. Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection. Proc. Natl Acad. Sci. USA 100(19), 10942–10947 (2003).
  • Rosas AL, Nosanchuk JD, Casadevall A. Passive immunization with melanin-binding monoclonal antibodies prolongs survival of mice with lethal Cryptococcus neoformans infection. Infect. Immun. 69(5), 3410–3412 (2001).
  • Rachini A, Pietrella D, Lupo P et al. An anti-beta-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo. Infect. Immun. 75(11), 5085–5094 (2007).
  • Nooney L, Matthews RC, Burnie JP. Evaluation of Mycograb, amphotericin B, caspofungin, and fluconazole in combination against Cryptococcus neoformans by checkerboard and time-kill methodologies. Diagn. Microbiol. Infect. Dis. 51(1), 19–29 (2005).
  • Rodrigues ML, Shi L, Barreto-Bergter E et al. Monoclonal antibody to fungal glucosylceramide protects mice against lethal Cryptococcus neoformans infection. Clin. Vaccine Immunol. 14(10), 1372–1376 (2007).
  • Torosantucci A, Bromuro C, Chiani P et al. A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. 202(5), 597–606 (2005).
  • Matthews RC, Rigg G, Hodgetts S et al. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob. Agents Chemother. 47(7), 2208–2216 (2003).
  • Pachl J, Svoboda P, Jacobs F et al. A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin. Infect. Dis. 42(10), 1404–1413 (2006).
  • Murphy JW, Schafer F, Casadevall A, Adesina A. Antigen-induced protective and nonprotective cell-mediated immune components against Cryptococcus neoformans. Infect. Immun. 66(6), 2632–2639 (1998).
  • Yauch LE, Lam JS, Levitz SM. Direct inhibition of T-cell responses by the Cryptococcus capsular polysaccharide glucuronoxylomannan. PLoS Pathog. 2(11), e120 (2006).
  • Murphy JW, Mosley RL, Cherniak R, Reyes GH, Kozel TR, Reiss E. Serological, electrophoretic, and biological properties of Cryptococcus neoformans antigens. Infect. Immun. 56(2), 424–431 (1988).
  • Hoy JF, Murphy JW, Miller GG. T cell response to soluble cryptococcal antigens after recovery from cryptococcal infection. J. Infect. Dis. 159(1), 116–119 (1989).
  • Levitz SM, North EA. Lymphoproliferation and cytokine profiles in human peripheral blood mononuclear cells stimulated by Cryptococcus neoformans. J. Med. Vet. Mycol. 35(4), 229–236 (1997).
  • Pitzurra L, Perito S, Baldelli F, Bistoni F, Vecchiarelli A. Humoral response against Cryptococcus neoformans mannoprotein antigens in HIV-infected patients. Clin. Exp. Immunol. 133(1), 91–96 (2003).
  • Levitz SM, Specht CA. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast. Res. 6(4), 513–524 (2006).
  • Levitz SM, Nong S, Mansour MK, Huang C, Specht CA. Molecular characterization of a mannoprotein with homology to chitin deacetylases that stimulates T cell responses to Cryptococcus neoformans. Proc. Natl Acad. Sci. USA 98(18), 10422–10427 (2001).
  • Specht CA, Nong S, Dan JM, Lee CK, Levitz SM. Contribution of glycosylation to T cell responses stimulated by recombinant Cryptococcus neoformans mannoprotein. J. Infect. Dis. 196(5), 796–800 (2007).
  • Biondo C, Messina L, Bombaci M et al. Characterization of two novel cryptococcal mannoproteins recognized by immune sera. Infect. Immun. 73(11), 7348–7355 (2005).
  • Pietrella D, Corbucci C, Perito S, Bistoni G, Vecchiarelli A. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation. Infect. Immun. 73(2), 820–827 (2005).
  • Dan JM, Wang JP, Lee CK, Levitz SM. Cooperative stimulation of dendritic cells by Cryptococcus neoformans mannoproteins and CpG oligodeoxynucleotides. PLoS ONE 3(4), e2046 (2008).
  • Coenjaerts FE, Walenkamp AM, Mwinzi PN et al. Potent inhibition of neutrophil migration by cryptococcal mannoprotein-4-induced desensitization. J. Immunol. 167(7), 3988–3995 (2001).
  • Mansour MK, Yauch LE, Rottman JB, Levitz SM. Protective efficacy of antigenic fractions in mouse models of cryptococcosis. Infect. Immun. 72(3), 1746–1754 (2004).
  • Eigenheer RA, Jin Lee Y, Blumwald E, Phinney BS, Gelli A. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast. Res. 7(4), 499–510 (2007).
  • Li Pira G, Ivaldi F, Moretti P, Manca F. High throughput T epitope mapping and vaccine development. J. Biomed. Biotechnol. 2010, 325720 (2010).
  • Pietrella D, Mazzolla R, Lupo P et al. Mannoprotein from Cryptococcus neoformans promotes T-helper type 1 anticandidal responses in mice. Infect. Immun. 70(12), 6621–6627 (2002).
  • Mandel MA, Grace GG, Orsborn KI et al. The Cryptococcus neoformans gene DHA1 encodes an antigen that elicits a delayed-type hypersensitivity reaction in immune mice. Infect. Immun. 68(11), 6196–6201 (2000).
  • Biondo C, Beninati C, Delfino D et al. Identification and cloning of a cryptococcal deacetylase that produces protective immune responses. Infect. Immun. 70(5), 2383–2391 (2002).
  • Biondo C, Beninati C, Bombaci M et al. Induction of T helper type 1 responses by a polysaccharide deacetylase from Cryptococcus neoformans. Infect. Immun. 71(9), 5412–5417 (2003).
  • Huang H, Ostroff GR, Lee CK, Specht CA, Levitz SM. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles. MBio 1(3), pii: e00164–10 (2010).
  • Huang H, Ostroff GR, Lee CK et al. Relative contributions of dectin-1 and complement to immune responses to particulate beta-glucans. J. Immunol. 189(1), 312–317 (2012).
  • Hurtgen BJ, Hung CY, Ostroff GR, Levitz SM, Cole GT. Construction and evaluation of a novel recombinant T cell epitope-based vaccine against Coccidioidomycosis. Infect. Immun. 80(11), 3960–3974 (2012).
  • Kakeya H, Udono H, Maesaki S et al. Heat shock protein 70 (hsp70) as a major target of the antibody response in patients with pulmonary cryptococcosis. Clin. Exp. Immunol. 115(3), 485–490 (1999).
  • Kakeya H, Udono H, Ikuno N et al. A 77-kilodalton protein of Cryptococcus neoformans, a member of the heat shock protein 70 family, is a major antigen detected in the sera of mice with pulmonary cryptococcosis. Infect. Immun. 65(5), 1653–1658 (1997).
  • Young M, Macias S, Thomas D, Wormley FL Jr. A proteomic-based approach for the identification of immunodominant Cryptococcus neoformans proteins. Proteomics 9(9), 2578–2588 (2009).
  • Robbins N, Uppuluri P, Nett J et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 7(9), e1002257 (2011).
  • Cowen LE. Hsp90 orchestrates stress response signaling governing fungal drug resistance. PLoS Pathog. 5(8), e1000471 (2009).
  • Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 5(7), e1000532 (2009).
  • Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309(5744), 2185–2189 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.