477
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Candida antigens and immune responses: implications for a vaccine

, , , &

References

  • Marcos-Arias C, Eraso E, Madariaga L, et al. Phospholipase and proteinase activities of Candida isolates from denture wearers. Mycoses 2011;54:e10-16
  • Vecchiarelli A, Pericolini E, Gabrielli E, Pietrella D. New approaches in the development of a vaccine for mucosal candidiasis: progress and challenges. Front Microbiol 2012;3:294
  • Iannitti RG, Carvalho A, Romani L. From memory to antifungal vaccine design. Trends Immunol 2012;33:467-74
  • Diekema D, Arbefeville S, Boyken L, et al. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis 2012;73:45-8
  • Quindós G. Epidemiology of candidaemia and invasive candidiasis. A changing face. Rev Iberoam Micol 2014;31:42-8
  • Bates S, Hall RA, Cheetham J, et al. Role of the Candida albicans MNN1 gene family in cell wall structure and virulence. BMC Res Notes 2013;6:294
  • Kamai Y, Kubota M, Hosokawa T, et al. Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infect Immun 2002;70:5256-8
  • Sheppard DC, Yeaman MR, Welch WH, et al. Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 2004;279(29):30480-9
  • Richard M, Ibata-Ombetta S, Dromer F, et al. Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages. Mol Microbiol 2002;44:841-53
  • Nobile CJ, Nett JE, Andes DR, Mitchell AP. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 2006;5:1604-10
  • Fu Y, Luo G, Spellberg BJ, et al. Gene overexpression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryot Cell 2008;7:483-92
  • Shibata N, Kobayashi H, Suzuki S. Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Jpn Acad Ser B Phys Biol Sci 2012;88(6):250-65
  • LeibundGut-Landmann S, Wüthrich M, Hohl TM. Immunity to fungi. Curr Opin Immunol 2012;24(4):449-58
  • Omaetxebarria MJ, Moragues MD, Elguezabal N, et al. Antifungal and antitumor activities of a monoclonal antibody directed against a stress mannoprotein of Candida albicans. Curr Mol Med 2005;5:393-401
  • Casadevall A, Pirofski LA. Antibody-mediated protection through cross-reactivity introduces a fungal heresy into immunological dogma. Infect Immun 2007;75:5074-8
  • Brena S, Cabezas-Olcoz J, Moragues MD, et al. Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans. Antimicrob Agents Chemother 2011;55:3156-63
  • Wang SJ. The "real world" barriers and solutions to Candida vaccine patent prosecutions: an analysis of U.S. Patent and Trademark Office actions on related applications. Hum Vaccin Immunother 2012;8:1443-9
  • Cassone A, Casadevall A. Recent progress in vaccines against fungal diseases. Curr Opin Microbiol 2012;15:427-33
  • Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome. Trends Microbiol 2013;21:334-41
  • Iliev ID, Underhill DM. Striking a balance: fungal commensalism versus pathogenesis. Curr Opin Microbiol 2013;16:366-73
  • Ferwerda G, Netea MG, Joosten LA, et al. The role of Toll-like receptors and C-type lectins for vaccination against Candida albicans. Vaccine 2010;28:614-22
  • Heilmann CJ, Sorgo AG, Klis FM. News from the fungal front: wall proteome dynamics and host-pathogen interplay. PLoS Pathog 2012;8(122):e1003050
  • Chauhan A, Swaleha Z, Ahmad N, et al. Escheriosome mediated cytosolic delivery of Candida albicans cytosolic proteins induces enhanced cytotoxic T lymphocyte response and protective immunity. Vaccine 2011;29:5424-33
  • Raska M, Belakova J, Horynova M, et al. Systemic and mucosal immunization with Candida albicans hsp90 elicits hsp90-specific humoral response in vaginal mucosa which is further enhanced during experimental vaginal candidiasis. Med Mycol 2008;46:411-20
  • Cassone A. Fungal vaccines: real progress from real challenges. Lancet Infect Dis 2008;8:114-24
  • Bromuro C, Romano M, Chiani P, et al. Beta-glucan-CRM197 conjugates as candidates antifungal vaccines. Vaccine 2010;28:2615-23
  • Seubert A, Calabro S, Santini L, et al. Adjuvanticity of the oil-in-water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88. Proc Natl Acad Sci USA 2011;108:11169-74
  • Xin H, Cartmell J, Bailey JJ, et al. Self-adjuvanting glycopeptide conjugate vaccine against disseminated candidiasis. PLoS One 2012;7:e35106
  • Schmidt CS, White CJ, Ibrahim AS, et al. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 2012;30:7594-600
  • Ranta K, Nieminen K, Ekholm FS, et al. Evaluation of immunostimulatory activities of synthetic mannose-containing structures mimicking the β-(1→2)-linked cell wall mannans of Candida albicans. Clin Vaccine Immunol 2012;19:1889-93
  • Lipinski T, Wu X, Sadowska J, et al. A β-mannan trisaccharide conjugate vaccine aids clearance of Candida albicans in immunocompromised rabbits. Vaccine 2012;30:6263-9
  • Bundle DR, Nycholat C, Costello C, et al. Design of a Candida albicans disaccharide conjugate vaccine by reverse engineering a protective monoclonal antibody. ACS Chem Biol 2012;7:1754-63
  • Dang AT, Johnson MA, Bundle DR. Synthesis of a Candida albicans tetrasaccharide spanning the beta1,2-mannan phosphodiester alpha-mannan junction. Org Biomol Chem 2012;10:8348-60
  • Paulovičová L, Paulovičová E, Karelin AA, et al. Immune cell response to Candida cell wall mannan derived branched α-oligomannoside conjugates in mice. J Microbiol Immunol Infect 2014. [Epub ahead of print]
  • Paulovičová E, Paulovičová L, Pilišiová R, et al. Synthetically prepared glycooligosaccharides mimicking Candida albicans cell wall glycan antigens – novel tools to study host–pathogen interactions. FEMS Yeast Res 2013;13:659-73
  • Han Y, Rhew KY. Comparison of two Candida mannan vaccines: the role of complement in protection against disseminated candidiasis. Arch Pharm Res 2012;35:2021-7
  • Han Y, Rhew KY. Ginsenoside Rd induces protective anti-Candida albicans antibody through immunological adjuvant activity. Int Immunopharmacol 2013;17:651-7
  • Torosantucci A, Chiani P, Bromuro C, et al. Protection by anti-beta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS One 2009;4:e5392
  • Pietrella D, Rachini A, Torosantucci A, et al. A beta-glucan-conjugate vaccine and anti-beta-glucan antibodies are effective against murine vaginal candidiasis as assessed by a novel in vivo imaging technique. Vaccine 2010;28:1717-25
  • Li WJ, Long K, Dong HL, Gao XM. Adjuvanticity of a recombinant calreticulin fragment in assisting anti-beta-glucan IgG responses in T cell-deficient mice. Clin Vaccine Immunol 2013;20:582-9
  • Lipinski T, Luu T, Kitov PI, et al. A structurally diversified linker enhances the immune response to a small carbohydrate hapten. Glycoconj J 2011;28:149-64
  • Lipinski T, Fitieh A, St Pierre J, et al. Enhanced immunogenicity of a tricomponent mannan tetanus toxoid conjugate vaccine targeted to dendritic cells via Dectin-1 by incorporating β-Glucan. J Immunol 2013;190:4116-28
  • Liu M, Clemons KV, Bigos M, et al. Immune responses induced by heat killed Saccharomyces cerevisiae: a vaccine against fungal infection. Vaccine 2011;29:1745-53
  • Liu M, Clemons KV, Johansen ME, et al. Saccharomyces as a vaccine against systemic candidiasis. Immunol Invest 2012;41(8):847-55
  • Rementería A, Abaitua F, García-Tobalina R, et al. Resistance to candidiasis and macrophage activity in chitin treated mice. FEMS Immunol Med Microbiol 1997;19:223-30
  • Gorzelanny C, Pöppelmann B, Pappelbaum K, et al. Human macrophage activation triggered by chitotriosidase-mediated chitin and chitosan degradation. Biomaterials 2010;31(33):8556-63
  • Ozdemir C, Yazi D, Aydogan M, et al. Treatment with chitin microparticles is protective against lung histopathology in a murine asthma model. Clin Exp Allergy 2006;36(7):960-8
  • Cywes-Bentley C, Skurnik D, Zaidi T, et al. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci USA 2013;110(24):E2209-18
  • Kelly-Quintos C, Cavacini LA, Posner MR, et al. Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly- N-acetylglucosamine. Infect Immun 2006;74(5):2742-50
  • Zhao X, Pujol C, Soll DR, Hoyer LL. Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology 2003;149:2947-60
  • Zhao X, Oh SH, Cheng G, et al. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 2004;150:2415-28
  • Coleman DA, Oh SH, Zhao X, et al. Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J Microbiol Methods 2009;78:71-8
  • Cleary IA, Reinhard SM, Miller CL, et al. Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis. Microbiology 2011;157:1806-15
  • Ibrahim AS, Spellberg BJ, Avenissian V, et al. Vaccination with recombinant N-terminal domain of Als1p improves survival during murine disseminated candidiasis by enhancing cell-mediated, not humoral, immunity. Infect Immun 2005;73:999-1005
  • Spellberg BJ, Ibrahim AS, Avenissian V, et al. The anti-Candida albicans vaccine composed of the recombinant N terminus of Als1p reduces fungal burden and improves survival in both immunocompetent and immunocompromised mice. Infect Immun 2005;73:6191-3
  • Spellberg BJ, Ibrahim AS, Avanesian V, et al. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis 2006;194(2):256-60
  • Novadigm. Available from: www.novadigm.net/
  • Ibrahim AS, Luo G, Gebremariam T, et al. NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine 2013;31(47):5549-56
  • NDV-3 clinical trial. Available from: www.clinicaltrials.gov/ct2/show/NCT01926028?term=NDV-3+%22Candida%22&rank=3
  • Gropp K, Schild L, Schindler S, et al. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol 2009;47:465-75
  • Lermann U, Morschhäuser J. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology 2008;154:3281-95
  • Naglik JR, Moyes D, Makwana J, et al. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 2008;154:3266-80
  • Correia A, Lermann U, Teixeira L, et al. Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect Immun 2010;78:4839-49
  • Rahman D, Mistry M, Thavaraj S, et al. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect 2007;9:615-22
  • Pevion. Available from: www.pevion.com
  • Sandini S, La Valle R, Deaglio S, et al. A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine. FEMS Immunol Med Microbiol 2011;62:215-24
  • De Bernardis F, Amacker M, Arancia S, et al. A virosomal vaccine against candidal vaginitis: immunogenicity, efficacy and safety profile in animal models. Vaccine 2012;30:4490-8
  • PEV7 clinical trial. Available from: www.clinicaltrials.gov/ct2/show/NCT01067131?term=PEV7+%22Candida%22&rank=1
  • Matthews RC, Burnie JP. Human recombinant antibody to HSP90: a natural partner in combination therapy. Curr Mol Med 2005;5:403-11
  • Raska M, Belakova J, Wudattu NK, et al. Comparison of protective effect of protein and DNA vaccines hsp90 in murine model of systemic candidiasis. Folia Microbiol 2005;50:77-82
  • Mašek J, Bartheldyova E, Turanek-Knotigova P, et al. Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: preparation, structural study and immune response towards rHsp90. J Control Release 2011;151:193-201
  • Pachl J, Svoboda P, Jacobs F, et al. A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 2006;42:1404-13
  • Louie A, Stein DS, Zack JZ, et al. Dose range evaluation of mycograb C28Y variant, a human recombinant antibody fragment to heat shock protein 90, in combination with amphotericin B-desoxycholate for treatment of murine systemic candidiasis. Antimicrob Agents Chemother 2011;55:3295-304
  • Li WG, Hu XC, Zhang X, et al. Immunisation with the glycolytic enzyme enolase confers effective protection against Candida albicans infection in mice. Vaccine 2011;29:5526-33
  • Shibasaki S, Aoki W, Nomura T, et al. An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog Dis 2013;69(3):262-8
  • Luo G, Ibrahim AS, Spellberg B, et al. Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis 2010;201:1718-28
  • Luo G, Ibrahim AS, French SW, et al. Active and passive immunization with rHyr1p-N protects mice against hematogenously disseminated candidiasis. PLoS ONE 2011;6(10):e25909
  • Ponniah G, Rollenhagen C, Bahn YS, et al. State of differentiation defines buccal epithelial cell affinity for crosslinking to Candida albicans Hwp1. J Oral Pathol Med 2007;36:456-67
  • Martin R, Albrecht-Eckardt D, Brunke S, et al. A core filamentation response network in Candida albicans is restricted to eight genes. PLoS One 2013;8:e58613
  • Staab JF, Datta K, Rhee P. Niche-specific requirement for Hyphal Wall Protein 1 in Virulence of Candida albicans. PLoS One 2013;8(11):e80842
  • Xin H, Dziadek S, Bundle DR, Cutler JE. Synthetic glycopeptide vaccines combining beta-mannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci USA 2008;105:13526-31
  • Edwards JE Jr. Fungal cell wall vaccines: an update. J Med Microbiol 2012;61:895-903
  • Nabel JG. Designing tomorrow vaccines. N Engl J Med 2013;368:551-60
  • Shibasaki S, Aoki W, Nomura T, et al. Evaluation of Mdh1 protein as an antigenic candidate for a vaccine against candidiasis. Biocontrol Sci 2014;19(1):51-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.