1,332
Views
113
CrossRef citations to date
0
Altmetric
Reviews

Oral delivery of nanoparticle-based vaccines

, &

References

  • Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011;4(6):603-11
  • Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol 2008;1(1):11-22
  • Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 2012;12(8):592-605
  • Pavot V, Rochereau N, Genin C, et al. New insights in mucosal vaccine development. Vaccine 2012;30(2):142-54
  • Bergqvist P, Stensson A, Hazanov L, et al. Re-utilization of germinal centers in multiple Peyer’s patches results in highly synchronized, oligoclonal, and affinity-matured gut IgA responses. Mucosal Immunol 2013;6(1):122-35
  • Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol 2012;5(3):232-9
  • Premanand B, Prabakaran M, Kiener TK, Kwang J. Recombinant baculovirus associated with bilosomes as an oral vaccine candidate against HEV71 infection in mice. PLoS One 2013;8(2):e55536
  • Saletti G, Çuburu N, Yang JS, et al. Enzyme-linked immunospot assays for direct ex vivo measurement of vaccine-induced human humoral immune responses in blood. Nat Protoc 2013;8(6):1073-87
  • Kunisawa J, Kurashima Y, Kiyono H. Gut-associated lymphoid tissues for the development of oral vaccines. Adv Drug Deliv Rev 2012;64(6):523-30
  • Brayden DJ, Jepson MA, Baird AW. Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 2005;10(17):1145-57
  • Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 2011;108(Suppl 1):4659-65
  • Mabbott NA, Donaldson DS, Ohno H, et al. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 2013;6(4):666-77
  • des Rieux A, Pourcelle V, Cani PD, et al. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliv Rev 2013;65(6):833-44
  • Pal I, Ramsey JD. The role of the lymphatic system in vaccine trafficking and immune response. Adv Drug Deliv Rev 2011;63(10-11):909-22
  • Schulz O, Pabst O. Antigen sampling in the small intestine. Trends Immunol 2013;34(4):155-61
  • Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 2008;52(1):2-12
  • Jiang T, Singh B, Li HS, et al. Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials 2014;35(7):2365-73
  • Reineke JJ, Cho DY, Dingle YT, et al. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres. Proc Natl Acad Sci USA 2013;110(34):13803-8
  • Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog 2010;6(11):e1001147
  • Kobayashi A, Donaldson DS, Erridge C, et al. The functional maturation of M cells is dramatically reduced in the Peyer’s patches of aged mice. Mucosal Immunol 2013;6(5):1027-37
  • Varol C, Zigmond E, Jung S. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat Rev Immunol 2010;10(6):415-26
  • Mohamadzadeh M, Durmaz E, Zadeh M, et al. Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiol 2010;5(8):1289-96
  • McDole JR, Wheeler LW, McDonald KG, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 2012;483(7389):345-9
  • Devriendt B, De Geest BG, Cox E. Designing oral vaccines targeting intestinal dendritic cells. Expert Opin Drug Deliv 2011;8(4):467-83
  • Pridgen EM, Alexis F, Kuo TT, et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med 2013;5(213):213ra167
  • Awaad A, Nakamura M, Ishimura K. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomedicine 2012;8(5):627-36
  • Chang SY, Ko HJ, Kweon MN. Mucosal dendritic cells shape mucosal immunity. Exp Mol Med 2014;46(3):e84
  • Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 2003;3(4):331-41
  • Nayak B, Panda AK, Ray P, Ray AR. Formulation, characterization and evaluation of rotavirus encapsulated PLA and PLGA particles for oral vaccination. J Microencapsul 2009;26(2):154-65
  • Garinot M, Fievez V, Pourcelle V, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 2007;120(3):195-204
  • Wang T, Jiang H, Zhao Q, et al. Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: effect of silica architecture on immunological properties. Int J Pharm 2012;436(1-2):351-8
  • Gutierro I, Hernandez RM, Igartua M, et al. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 2002;21(1-2):67-77
  • Azmi F, Ahmad Fuaad AA, Skwarczynski M, Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. HumVaccin Immunother 2013;10:3
  • Simerska P, Moyle PM, Olive C, Toth I. Oral vaccine delivery. new strategies and technologies. Curr Drug Deliv 2009;6(4):347-58
  • Liu TY, Hussein WM, Jia Z, et al. Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 2013;14(8):2798-806
  • Skwarczynski M, Toth I. Peptide-based subunit nanovaccines. Curr Drug Deliv 2011;8(3):282-9
  • Skwarczynski M, Zaman M, Urbani CN, et al. Polyacrylate dendrimer nanoparticles: a self-adjuvanting vaccine delivery system. Angew Chem Int Ed Engl 2010;49(33):5742-5
  • Xiang SD, Wilson K, Day S, et al. Methods of effective conjugation of antigens to nanoparticles as non-inflammatory vaccine carriers. Methods 2013;60(3):232-41
  • Ahmad Fuaad AA, Jia Z, Zaman M, et al. Polymer-peptide hybrids as a highly immunogenic single-dose nanovaccine. Nanomedicine (Lond) 2014;9(1):35-43
  • Ghaffar KA, Giddam AK, Zaman M, et al. Liposomes as nanovaccine delivery systems. Curr Top Med Chem 2014;14(9):1194-208
  • Haensler J. Liposomal adjuvants: preparation and formulation with antigens. Methods Mol Biol 2010;626:73-90
  • Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine (Lond) 2012;7(12):1877-93
  • Zho F, Neutra MR. Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci Rep 2002;22(2):355-69
  • Parmentier J, Thomas N, Mullertz A, et al. Exploring the fate of liposomes in the intestine by dynamic in vitro lipolysis. Int J Pharm 2012;437(1-2):253-63
  • Lee SC, Lee KE, Kim JJ, Lim SH. The effect of cholesterol in the liposome bilayer on the stabilization of incorporated Retinol. J Liposome Res 2005;15(3-4):157-66
  • Shukla A, Khatri K, Gupta PN, et al. Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes). J Pharm Pharm Sci 2008;11(1):59-66
  • Niu M, Lu Y, Hovgaard L, Wu W. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int J Nanomedicine 2011;6:1155-66
  • Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target 2013;21(3):291-9
  • Shukla A, Singh B, Katare OP. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br J Pharmacol 2011;164(2b):820-7
  • Shukla A, Katare OP, Singh B, Vyas SP. M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int J Pharm 2010;385(1-2):47-52
  • Mann JF, Shakir E, Carter KC, et al. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 2009;27(27):3643-9
  • Patel GB, Sprott GD. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit Rev Biotechnol 1999;19(4):317-57
  • Krishnan L, Sprott GD. Archaeosome adjuvants: immunological capabilities and mechanism(s) of action. Vaccine 2008;26(17):2043-55
  • Krishnan L, Dicaire CJ, Patel GB, Sprott GD. Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect Immun 2000;68(1):54-63
  • Omri A, Agnew BJ, Patel GB. Short-term repeated-dose toxicity profile of archaeosomes administered to mice via intravenous and oral routes. Int J Toxicol 2003;22(1):9-23
  • Sprott GD, Yeung A, Dicaire CJ, et al. Synthetic archaeosome vaccines containing triglycosylarchaeols can provide additive and long-lasting immune responses that are enhanced by archaetidylserine. Archaea 2012;2012:513231
  • Li Z, Zhang L, Sun W, et al. Archaeosomes with encapsulated antigens for oral vaccine delivery. Vaccine 2011;29(32):5260-6
  • Li X, Chen D, Le C, et al. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake. Int J Nanomedicine 2011;6:3151-62
  • Jain S, Harde H, Indulkar A, Agrawal AK. Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration. Nanomedicine 2014;10(2):431-40
  • Marasini N, Yan YD, Poudel BK, et al. Development and optimization of self-nanoemulsifying drug delivery system with enhanced bioavailability by Box-Behnken design and desirability function. J Pharm Sci 2012;101(12):4584-96
  • Bielinska AU, Janczak KW, Landers JJ, et al. Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect Immun 2007;75(8):4020-9
  • Wong PT, Wang SH, Ciotti S, et al. Formulation and characterization of nanoemulsion intranasal adjuvants: effects of surfactant composition on mucoadhesion and immunogenicity. Mol Pharm 2014;11(2):531-44
  • Ge W, Li Y, Li ZS, et al. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following peroral administration route. Cancer Immunol Immunother 2009;58(2):201-8
  • Wei L, Marasini N, Li G, et al. Development of ligustrazine-loaded lipid emulsion: formulation optimization, characterization and biodistribution. Int J Pharm 2012;437(1-2):203-12
  • Ge W, Hu PZ, Huang Y, et al. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes. Oncol Rep 2009;22(4):915-20
  • O’Hagan DT, Ott GS, Nest GV, et al. The history of MF59((R)) adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines 2013;12(1):13-30
  • Pellegrini M, Nicolay U, Lindert K, et al. MF59-adjuvanted versus non-adjuvanted influenza vaccines: integrated analysis from a large safety database. Vaccine 2009;27(49):6959-65
  • Shahiwala A, Amiji MM. Enhanced mucosal and systemic immune response with squalane oil-containing multiple emulsions upon intranasal and oral administration in mice. J Drug Target 2008;16(4):302-10
  • Sjolander A, Cox JC, Barr IG. ISCOMs: an adjuvant with multiple functions. J Leukoc Biol 1998;64(6):713-23
  • Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine 2009;27(12):1787-96
  • Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine 2009;27(33):4388-401
  • Badiee A, Heravi Shargh V, Khamesipour A, Jaafari MR. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends. Vaccine 2013;31(5):735-49
  • Lemere CA. Developing novel immunogens for a safe and effective Alzheimer’s disease vaccine. Prog Brain Res 2009;175:83-93
  • Takahashi H, Takeshita T, Morein B, et al. Induction of CD8+ cytotoxic T cells by immunization with purified HIV-1 envelope protein in ISCOMs. Nature 1990;344(6269):873-5
  • Mowat AM, Maloy KJ, Donachie AM. Immune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens. Immunology 1993;80(4):527-34
  • Fox CB, Kramer RM, Barnes VL, et al. Working together: interactions between vaccine antigens and adjuvants. Ther Adv Vaccines 2013;1(1):7-20
  • Copland MJ, Rades T, Davies NM, Baird MA. Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 2005;83(2):97-105
  • Furrie E, Smith RE, Turner MW, et al. Induction of local innate immune responses and modulation of antigen uptake as mechanisms underlying the mucosal adjuvant properties of immune stimulating complexes (ISCOMS). Vaccine 2002;20(17-18):2254-62
  • Eliasson DG, Helgeby A, Schon K, et al. A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus. Vaccine 2011;29(23):3951-61
  • Mowat AM, Donachie AM, Jagewall S, et al. CTA1-DD-immune stimulating complexes: a novel, rationally designed combined mucosal vaccine adjuvant effective with nanogram doses of antigen. J Immunol 2001;167(6):3398-405
  • Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOM-based vaccines: the second decade. Immunol Cell Biol. 2005;83(2):119-28
  • Mohamedi SA, Heath AW, Jennings R. A comparison of oral and parenteral routes for therapeutic vaccination with HSV-2 ISCOMs in mice; cytokine profiles, antibody responses and protection. Antiviral Res 2001;49(2):83-99
  • Centers for Disease Control and Prevention. FDA licensure of bivalent human papillomavirus vaccine (HPV2, Cervarix) for use in females and updated HPV vaccination recommendations from the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 2010;59(20):626-9
  • Monie A, Hung CF, Wu TC. Preventive and therapeutic HPV vaccines. Curr Opin Investig Drugs 2007;8(12):1038-50
  • Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol 2013;53(1):92-107
  • Buonaguro L, Tornesello ML, Buonaguro FM. Virus-like particles as particulate vaccines. Curr HIV Res 2010;8(4):299-309
  • Middelberg AP, Rivera-Hernandez T, Wibowo N, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine 2011;29(41):7154-62
  • Thompson CM, Petiot E, Lennaertz A, et al. Analytical technologies for influenza virus-like particle candidate vaccines: challenges and emerging approaches. Virol J 2013;10:141
  • Pease LF 3rd, Lipin DI, Tsai DH, et al. Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy. Biotechnol Bioeng 2009;102(3):845-55
  • Jariyapong P, Xing L, van Houten NE, et al. Chimeric hepatitis E virus-like particle as a carrier for oral-delivery. Vaccine 2013;31(2):417-24
  • Shuttleworth G, Eckery DC, Awram P. Oral and intraperitoneal immunization with rotavirus 2/6 virus-like particles stimulates a systemic and mucosal immune response in mice. Arch Virol 2005;150(2):341-9
  • Tacket CO, Sztein MB, Losonsky GA, et al. Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin Immunol 2003;108(3):241-7
  • Zhai Y, Zhong Z, Zariffard M, et al. Bovine papillomavirus-like particles presenting conserved epitopes from membrane-proximal external region of HIV-1 gp41 induced mucosal and systemic antibodies. Vaccine 2013;31(46):5422-9
  • Huang Y, Fayad R, Smock A, et al. Induction of mucosal and systemic immune responses against human carcinoembryonic antigen by an oral vaccine. Cancer Res 2005;65(15):6990-9
  • Takamura S, Niikura M, Li TC, et al. DNA vaccine-encapsulated virus-like particles derived from an orally transmissible virus stimulate mucosal and systemic immune responses by oral administration. Gene Ther 2004;11(7):628-35
  • Jariyapong P, Chotwiwatthanakun C, Somrit M, et al. Encapsulation and delivery of plasmid DNA by virus-like nanoparticles engineered from Macrobrachium rosenbergii nodavirus. Virus Res 2014;179:140-6
  • Bolhassani A, Javanzad S, Saleh T, et al. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2013;10(2):321-32
  • Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol 2013;13(8):592-605
  • Wang T, Zou M, Jiang H, et al. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci 2011;44(5):653-9
  • Primard C, Rochereau N, Luciani E, et al. Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 2010;31(23):6060-8
  • Jain AK, Goyal AK, Gupta PN, et al. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis. B J Control Rel 2009;136(2):161-9
  • Jain AK, Goyal AK, Mishra N, et al. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm 2010;387(1-2):253-62
  • Makadia HK, Siegel SJ. Poly Lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011;3(3):1377-97
  • Sarti F, Perera G, Hintzen F, et al. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 2011;32(16):4052-7
  • Reineke J, Cho DY, Dingle YL, et al. Can bioadhesive nanoparticles allow for more effective particle uptake from the small intestine? J Control Release 2013;170(3):477-84
  • Salman HH, Irache JM, Gamazo C. Immunoadjuvant capacity of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine 2009;27(35):4784-90
  • Prokop A, Kozlov E, Newman GW, Newman MJ. Water-based nanoparticulate polymeric system for protein delivery: permeability control and vaccine application. Biotechnol Bioeng 2002;78(4):459-66
  • Quan JS, Jiang HL, Kim EM, et al. pH-sensitive and mucoadhesive thiolated Eudragit-coated chitosan microspheres. Int J Pharm 2008;359(1-2):205-10
  • Zhu Q, Talton J, Zhang G, et al. Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat Med 2012;18(8):1291-6
  • Oliveira CR, Rezende CM, Silva MR, et al. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis. PLoS Negl Trop Dis 2012;6(11):e1894
  • Liu Z, Lv D, Liu S, et al. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS One 2013;8(4):e60190
  • Yoo MK, Kang SK, Choi JH, et al. Targeted delivery of chitosan nanoparticles to Peyer’s patch using M cell-homing peptide selected by phage display technique. Biomaterials 2010;31(30):7738-47
  • Mi FL, Wu YY, Lin YH, et al. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem 2008;19(6):1248-55
  • Jabbal-Gill I, Watts P, Smith A. Chitosan-based delivery systems for mucosal vaccines. Expert Opin Drug Deliv 2012;9(9):1051-67
  • Démoulins T, Bassi I, Thomann-Harwood L, et al. Alginate-coated chitosan nanogel capacity to modulate the effect of TLR ligands on blood dendritic cells. Nanomedicine 2013;9(6):806-17
  • Barhate G, Gautam M, Gairola S, et al. Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: stability and immunoefficiency studies. Int J Pharm 2013;441(1-2):636-42
  • Chen YS, Hung YC, Lin WH, Huang GS. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 2010;21(19):195101
  • Jans H, Jans K, Lagae L, et al. Poly(acrylic acid)-stabilized colloidal gold nanoparticles: synthesis and properties. Nanotechnology 2010;21(45):455702
  • Lin AY, Almeida JP, Bear A, et al. Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS One 2013;8(5):e63550
  • Parry AL, Clemson NA, Ellis J, et al. ’Multicopy multivalent’ glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines. J Am Chem Soc 2013;135(25):9362-5
  • Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013;7(5):3926-38
  • Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond) 2014;9(2):237-51
  • Zhang L, Widera G, Bleecher S, et al. Accelerated immune response to DNA vaccines. DNA Cell Biol 2003;22(12):815-22
  • Gerdts V, Littel-van den Hurk Sv, Griebel PJ, Babiuk LA. Use of animal models in the development of human vaccines. Future Microbiol 2007;2(6):667-75
  • Bhuiyan TR, Choudhury FK, Khanam F, et al. Evaluation of immune responses to an oral typhoid vaccine, Ty21a, in children from 2 to 5 years of age in Bangladesh. Vaccine 2014;32(9):1055-60
  • Borde A, Larsson A, Holmgren J, Nygren E. Preparation and evaluation of a freeze-dried oral killed cholera vaccine formulation. Eur J Pharm Biopharm 2011;79(3):508-18
  • Nakagomi T, Nakagomi O. A critical review on a globally-licensed, live, orally-administrable, monovalent human rotavirus vaccine: Rotarix. Expert Opin Biol Ther 2009;9(8):1073-86

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.