1,033
Views
150
CrossRef citations to date
0
Altmetric
Reviews

Effect of vaccine administration modality on immunogenicity and efficacy

, &

References

  • Baxby D. Edward Jenner’s Inquiry; a bicentenary analysis. Vaccine 1999;17(4):301-7
  • Vaccine Recommendations of the ACIP. Available from: www.cdc.gov/vaccines/hcp/acip-recs/index.html
  • Public health then and now :celebrating 50 years of MMWR at CDC. US. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA, 2011
  • Blundell TL, Sibanda BL, Sternberg MJ, Thornton JM. Knowledge-based prediction of protein structures and the design of novel molecules. Nature 1987;326(6111):347-52
  • Richie TL, Saul A. Progress and challenges for malaria vaccines. Nature 2002;415(6872):694-701
  • Scanlan CN, Offer J, Zitzmann N, Dwek RA. Exploiting the defensive sugars of HIV-1 for drug and vaccine design. Nature 2007;446(7139):1038-45
  • Hilleman MR. A simplified vaccinologists’ vaccinology and the pursuit of a vaccine against AIDS. Vaccine 1998;16(8):778-93
  • Ellis RW. The new generation of recombinant viral subunit vaccines. Curr Opin Biotechnol 1996;7(6):646-52
  • Whalen RG, Leclerc C, Deriaud E, et al. DNA-mediated immunization to the hepatitis B surface antigen. Activation and entrainment of the immune response. Ann N Y Acad Sci 1995;772:64-76
  • Boog CJ. Principles of vaccination and possible development strategies for rational design. Immunol Lett 2009;122(2):104-7
  • Ludwig C, Wagner R. Virus-like particles-universal molecular toolboxes. Curr Opin Biotechnol 2007;18(6):537-45
  • Lu S, Grimes SJM, Wang S. Polyvalent AIDS vaccines. Curr HIV Res 2010;8(8):622-9
  • Lu S. Heterologous prime-boost vaccination. Curr Opin Immunol 2009;21(3):346-51
  • Pulendran B. Systems vaccinology: probing humanity’s diverse immune systems with vaccines. Proc Natl Acad Sci USA 2014;111(34):12300-6
  • Pulendran B, Oh JZ, Nakaya HI, et al. Immunity to viruses: learning from successful human vaccines. Immunol Rev 2013;255(1):243-55
  • Nakaya HI, Pulendran B. Systems vaccinology: its promise and challenge for HIV vaccine development. Curr Opin HIV AIDS 2012;7(1):24-31
  • Immunization schedules. Available from: www.cdc.gov/vaccines/schedules/
  • Patel SM, Atmar RL, El SHM, et al. A phase I evaluation of inactivated influenza A/H5N1 vaccine administered by the intradermal or the intramuscular route. Vaccine 2010;28(17):3025-9
  • Park DE, Johnson TS, Nonyane BA, et al. The differential impact of coadministered vaccines, geographic region, vaccine product and other covariates on pneumococcal conjugate vaccine immunogenicity. Pediatr Infect Dis J 2014;33(Suppl 2):S130-9
  • Arguedas A, Soley C, Abdelnour A, et al. Assessment of the safety, tolerability and kinetics of the immune response to A/H1N1v vaccine formulations with and without adjuvant in healthy pediatric subjects from 3 through 17 years of age. Hum Vaccin 2011;7(1):58-66
  • Charest AF, McDougall J, Goldstein MB. A randomized comparison of intradermal and intramuscular vaccination against hepatitis B virus in incident chronic hemodialysis patients. Am J Kidney Dis 2000;36(5):976-82
  • Barraclough KA, Wiggins KJ, Hawley CM, et al. Intradermal versus intramuscular hepatitis B vaccination in hemodialysis patients: a prospective open-label randomized controlled trial in nonresponders to primary vaccination. Am J Kidney Dis 2009;54(1):95-103
  • Schwarz TF, Horacek T, Knuf M, et al. Single dose vaccination with AS03-adjuvanted H5N1 vaccines in a randomized trial induces strong and broad immune responsiveness to booster vaccination in adults. Vaccine 2009;27(45):6284-90
  • Rumke HC, Loch HP, Hoppenbrouwers K, et al. Immunogenicity and safety of a measles-mumps-rubella-varicella vaccine following a 4-week or a 12-month interval between two doses. Vaccine 2011;29(22):3842-9
  • Ledgerwood JE, Zephir K, Hu Z, et al. Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J Infect Dis 2013;208(3):418-22
  • Beran J, Abdel-Messih IA, Raupachova J, et al. A phase III, randomized, open-label study to assess the tolerability and immunogenicity of an H5N1 influenza vaccine administered to healthy adults with a 1-, 2-, 3-, or 6-week interval between first and second doses. Clin Ther 2010;32(13):2186-97
  • Lodolce AE. Shortened interval between tetanus vaccines. Ann Pharmacother 2012;46(6):884-8
  • Ikeno D, Kimachi K, Kudo Y, et al. A prime-boost vaccination of mice with heterologous H5N1 strains. Vaccine 2009;27(23):3121-5
  • Zhang W, Ahmad G, Torben W, Siddiqui AA. Schistosoma mansoni antigen Sm-p80: Prophylactic efficacy of a vaccine formulated in human approved plasmid vector and adjuvant (VR 1020 and alum). Acta Trop 2011;118(2):142-51
  • Wang S, Parker C, Taaffe J, et al. Heterologous HA DNA vaccine prime–inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine 2008;26(29-30):3626-33
  • Wang S, Arthos J, Lawrence JM, et al. Enhanced immunogenicity of gp120 protein when combined with recombinant DNA priming to generate antibodies that neutralize the JR-FL primary isolate of human immunodeficiency virus type 1. J Virol 2005;79(12):7933-7
  • Wang S, Pal R, Mascola JR, et al. Polyvalent HIV-1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology 2006;350(1):34-47
  • Vaine M, Wang S, Hackett A, et al. Antibody responses elicited through homologous or heterologous prime-boost DNA and protein vaccinations differ in functional activity and avidity. Vaccine 2010;28(17):2999-3007
  • Ishizaki H, Song GY, Srivastava T, et al. Heterologous prime/boost immunization with p53-based vaccines combined with toll-like receptor stimulation enhances tumor regression. J Immunother 2010;33(6):609-17
  • Jain S, Patrick AJ, Rosenthal KL. Multiple tandem copies of conserved gp41 epitopes incorporated in gag virus-like particles elicit systemic and mucosal antibodies in an optimized heterologous vector delivery regimen. Vaccine 2010;28(43):7070-80
  • McKay PF, Cope AV, Mann JF, et al. Glucopyranosyl lipid A adjuvant significantly enhances HIV specific T and B cell responses elicited by a DNA-MVA-protein vaccine regimen. PLoS One 2014;9(1):e84707
  • Tomai MA. TLR Agonists as Vaccine Adjuvants. In: Bascghieri S, editor. Innovation in Vaccinology. Springer ScienceBerlin, Germany; 2012. p. 205-28
  • Garland SM. Imiquimod. Curr Opin Infect Dis 2003;16(2):85-9
  • Zhang AJ, Li C, To KK, et al. Toll-like receptor 7 agonist imiquimod in combination with influenza vaccine expedites and augments humoral immune responses against influenza A(H1N1)pdm09 virus infection in BALB/c mice. Clin Vaccine Immunol 2014;21(4):570-9
  • Johnston D, Bystryn JC. Topical imiquimod is a potent adjuvant to a weakly-immunogenic protein prototype vaccine. Vaccine 2006;24(11):1958-65
  • Chuang CM, Monie A, Hung CF, Wu TC. Treatment with imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. J Biomed Sci 2010;17:32
  • Demaria S, Vanpouille-Box C, Formenti SC, Adams S. The TLR7 agonist imiquimod as an adjuvant for radiotherapy-elicited in situ vaccination against breast cancer. Oncoimmunology 2013;2(10):e25997
  • Xiong Z, Ohlfest JR. Topical imiquimod has therapeutic and immunomodulatory effects against intracranial tumors. J Immunother 2011;34(3):264-9
  • Roukens AH, Vossen AC, Boland GJ, et al. Intradermal hepatitis B vaccination in non-responders after topical application of imiquimod (Aldara). Vaccine 2010;28(26):4288-93
  • Firbas C, Boehm T, Buerger V, et al. Immunogenicity and safety of different injection routes and schedules of IC41, a Hepatitis C virus (HCV) peptide vaccine. Vaccine 2010;28(12):2397-407
  • Nierkens S, den Brok MH, Garcia Z, et al. Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells. Cancer Res 2011;71(20):6428-37
  • Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 2009;61(3):195-204
  • Zent CS, Smith BJ, Ballas ZK, et al. Phase I clinical trial of CpG oligonucleotide 7909 (PF-03512676) in patients with previously treated chronic lymphocytic leukemia. Leuk Lymphoma 2012;53(2):211-17
  • Carpentier A, Metellus P, Ursu R, et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol 2010;12(4):401-8
  • Veenstra JJ, Gibson HM, Littrup PJ, et al. Cryotherapy with Concurrent CpG Oligonucleotide Treatment Controls Local Tumor Recurrence and Modulates HER2/neu Immunity. Cancer Res 2014;74(19):5409-20
  • Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine 2014;32(48):6377-89
  • Todoroff J, Lemaire MM, Fillee C, et al. Mucosal and systemic immune responses to Mycobacterium tuberculosis antigen 85A following its co-delivery with CpG, MPLA or LTB to the lungs in mice. PLoS One 2013;8(5):e63344
  • Mansourian M, Badiee A, Jalali SA, et al. Effective induction of anti-tumor immunity using p5 HER-2/neu derived peptide encapsulated in fusogenic DOTAP cationic liposomes co-administrated with CpG-ODN. Immunol Lett 2014;162(1 Pt A):87-93
  • Evans JT, Cluff CW, Johnson DA, et al. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev Vaccines 2003;2(2):219-29
  • Brito LA, Malyala P, O’Hagan DT. Vaccine adjuvant formulations: a pharmaceutical perspective. Semin Immunol 2013;25(2):130-45
  • Tagliabue A, Rappuoli R. Vaccine adjuvants: the dream becomes real. Hum Vaccin 2008;4(5):347-9
  • Gasparini R, Pozzi T, Montomoli E, et al. Increased immunogenicity of the MF59-adjuvanted influenza vaccine compared to a conventional subunit vaccine in elderly subjects. Eur J Epidemiol 2001;17(2):135-40
  • Frey S, Poland G, Percell S, Podda A. Comparison of the safety, tolerability, and immunogenicity of a MF59-adjuvanted influenza vaccine and a non-adjuvanted influenza vaccine in non-elderly adults. Vaccine 2003;21(27-30):4234-7
  • Del Giudice G, Hilbert AK, Bugarini R, et al. An MF59-adjuvanted inactivated influenza vaccine containing A/Panama/1999 (H3N2) induced broader serological protection against heterovariant influenza virus strain A/Fujian/2002 than a subunit and a split influenza vaccine. Vaccine 2006;24(16):3063-5
  • Einstein MH, Levin MJ, Chatterjee A, et al. Comparative humoral and cellular immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine and HPV-6/11/16/18 vaccine in healthy women aged 18-45 years: follow-up through Month 48 in a Phase III randomized study. Hum Vaccin Immunother 2014;10(12):3455-65
  • Hazebrouck S, Przybylski-Nicaise L, Ah-Leung S, et al. Influence of the route of administration on immunomodulatory properties of bovine beta-lactoglobulin-producing Lactobacillus casei. Vaccine 2009;27(42):5800-5
  • Tang DC, Nguyen HH. The Yin-Yang arms of vaccines: disease-fighting power versus tissue-destructive inflammation. Expert Rev Vaccines 2014;13(3):417-27
  • Stevceva L, Ferrari MG. Mucosal adjuvants. Curr Pharm Des 2005;11(6):801-11
  • Vajdy M, Singh M. The role of adjuvants in the development of mucosal vaccines. Expert Opin Biol Ther 2005;5(7):953-65
  • Asanuma H, Hirokawa K, Uchiyama M, et al. Immune responses and protection in different strains of aged mice immunized intranasally with an adjuvant-combined influenza vaccine. Vaccine 2001;19(28-29):3981-9
  • Bumann D, Behre C, Behre K, et al. Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: a clinical trial of immunogenicity in lower airways of human volunteers. Vaccine 2010;28(3):707-13
  • Hickey DK, Aldwell FE, Beagley KW. Oral immunization with a novel lipid-based adjuvant protects against genital Chlamydia infection. Vaccine 2010;28(7):1668-72
  • Kende M, Del GG, Rivera N, Hewetson J. Enhancement of intranasal vaccination in mice with deglycosylated chain A ricin by LTR72, a novel mucosal adjuvant. Vaccine 2006;24(12):2213-21
  • Enioutina EY, Visic D, Daynes RA. The induction of systemic and mucosal immune responses to antigen-adjuvant compositions administered into the skin: alterations in the migratory properties of dendritic cells appears to be important for stimulating mucosal immunity. Vaccine 2000;18(24):2753-67
  • Mann JF, Shakir E, Carter KC, et al. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 2009;27(27):3643-9
  • Joo HM, He Y, Sundararajan A, et al. Quantitative analysis of influenza virus-specific B cell memory generated by different routes of inactivated virus vaccination. Vaccine 2010;28(10):2186-94
  • Gallorini S, Taccone M, Bonci A, et al. Sublingual immunization with a subunit influenza vaccine elicits comparable systemic immune response as intramuscular immunization, but also induces local IgA and TH17 responses. Vaccine 2014;32(20):2382-8
  • Huang J, Mikszta JA, Ferriter MS, et al. Intranasal administration of dry powder anthrax vaccine provides protection against lethal aerosol spore challenge. Hum Vaccin 2007;3(3):90-3
  • Ichinohe T, Ainai A, Tashiro M, et al. PolyI:polyC12U adjuvant-combined intranasal vaccine protects mice against highly pathogenic H5N1 influenza virus variants. Vaccine 2009;27(45):6276-9
  • Roy CJ, Ault A, Sivasubramani SK, et al. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method. Respir Res 2011;12:153
  • Wong-Chew RM, Islas-Romero R, Garcia-Garcia Mde L, et al. Immunogenicity of aerosol measles vaccine given as the primary measles immunization to nine-month-old Mexican children. Vaccine 2006;24(5):683-90
  • Bennett JV, Fernandez de Castro J, Valdespino-Gomez JL, et al. Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: randomized trials in Mexican schoolchildren. Bull World Health Organ 2002;80(10):806-12
  • Choi JH, Schafer SC, Zhang L, et al. A single sublingual dose of an adenovirus-based vaccine protects against lethal Ebola challenge in mice and guinea pigs. Mol Pharm 2012;9(1):156-67
  • Hunter Z, Smyth HD, Durfee P, Chackerian B. Induction of mucosal and systemic antibody responses against the HIV coreceptor CCR5 upon intramuscular immunization and aerosol delivery of a virus-like particle based vaccine. Vaccine 2009;28(2):403-14
  • Kapusta J, Modelska A, Figlerowicz M, et al. A plant-derived edible vaccine against hepatitis B virus. Faseb J 1999;13(13):1796-9
  • Alvarez ML, Cardineau GA. Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol Adv 2010;28(1):184-96
  • Matoba N, Kajiura H, Cherni I, et al. Biochemical and immunological characterization of the plant-derived candidate human immunodeficiency virus type 1 mucosal vaccine CTB-MPR. Plant Biotechnol J 2009;7(2):129-45
  • Liang W, Huang Y, Yang X, et al. Oral immunization of mice with plant-derived fimbrial adhesin FaeG induces systemic and mucosal K88ad enterotoxigenic Escherichia coli-specific immune responses. FEMS Immunol Med Microbiol 2006;46(3):393-9
  • Tirabassi RS, Ace CI, Levchenko T, et al. A mucosal vaccination approach for herpes simplex virus type 2. Vaccine 2011;29(5):1090-8
  • Cho HJ, Kim JY, Lee Y, et al. Enhanced humoral and cellular immune responses after sublingual immunization against human papillomavirus 16 L1 protein with adjuvants. Vaccine 2010;28(14):2598-606
  • Lu YJ, Yadav P, Clements JD, et al. Options for inactivation, adjuvant, and route of topical administration of a killed, unencapsulated pneumococcal whole-cell vaccine. Clin Vaccine Immunol 2010;17(6):1005-12
  • Schellekens H. Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther 2002;24(11):1720-40; discussion 19
  • Schellekens H. Immunogenicity of therapeutic proteins. Nephrol Dial Transplant 2003;18(7):1257-9
  • Ramsay JD, Williams CL, Simko E. Fatal adverse pulmonary reaction in calves after inadvertent intravenous vaccination. Vet Pathol 2005;42(4):492-5
  • Frosner G, Steffen R, Herzog C. Virosomal hepatitis a vaccine: comparing intradermal and subcutaneous with intramuscular administration. J Travel Med 2009;16(6):413-19
  • Davis HL. Novel vaccines and adjuvant systems: the utility of animal models for predicting immunogenicity in humans. Hum Vaccin 2008;4(3):246-50
  • Bonnotte B, Gough M, Phan V, et al. Intradermal injection, as opposed to subcutaneous injection, enhances immunogenicity and suppresses tumorigenicity of tumor cells. Cancer Res 2003;63(9):2145-9
  • Zehrung D, Jarrahian C, Wales A. Intradermal delivery for vaccine dose sparing: overview of current issues. Vaccine 2013;31(34):3392-5
  • Enama ME, Ledgerwood JE, Novik L, et al. Phase I randomized clinical trial of VRC DNA and rAd5 HIV-1 vaccine delivery by intramuscular (i.m.), subcutaneous (s.c.) and intradermal (i.d.) administration (VRC 011). PLoS One 2014;9(3):e91366
  • Ikeno D, Kimachi K, Kino Y, et al. Immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1, NIBRG-14) vaccine administered by intramuscular or subcutaneous injection. Microbiol Immunol 2010;54(2):81-8
  • Mark A, Carlsson RM, Granstrom M. Subcutaneous versus intramuscular injection for booster DT vaccination of adolescents. Vaccine 1999;17(15-16):2067-72
  • Knuf M, Zepp F, Meyer CU, et al. Safety, immunogenicity and immediate pain of intramuscular versus subcutaneous administration of a measles-mumps-rubella-varicella vaccine to children aged 11-21 months. Eur J Pediatr 2010;169(8):925-33
  • Leung AK, Chiu AS, Siu TO. Subcutaneous versus intramuscular administration of Haemophilus influenzae type b vaccine. J R Soc Health 1989;109(2):71-3
  • Malik B, Rath G, Goyal AK. Are the anatomical sites for vaccine administration selected judiciously? Int Immunopharmacol 2014;19(1):17-26
  • Tapiainen T, Cherry JD, Heininger U. Effect of injection site on reactogenicity and immunogenicity of acellular and whole-cell pertussis component diphtheria-tetanus-pertussis vaccines in infants. Vaccine 2005;23(43):5106-12
  • de Lalla F, Rinaldi E, Santoro D, Pravettoni G. Immune response to hepatitis B vaccine given at different injection sites and by different routes: a controlled randomized study. Eur J Epidemiol 1988;4(2):256-8
  • Shaw FEJr, Guess HA, Roets JM, et al. Effect of anatomic injection site, age and smoking on the immune response to hepatitis B vaccination. Vaccine 1989;7(5):425-30
  • Ohlfest JR, Andersen BM, Litterman AJ, et al. Vaccine injection site matters: qualitative and quantitative defects in CD8 T cells primed as a function of proximity to the tumor in a murine glioma model. J Immunol 2013;190(2):613-20
  • Diggle L, Deeks J. Effect of needle length on incidence of local reactions to routine immunisation in infants aged 4 months: randomised controlled trial. BMJ 2000;321(7266):931-3
  • Ipp MM, Gold R, Goldbach M, et al. Adverse reactions to diphtheria, tetanus, pertussis-polio vaccination at 18 months of age: effect of injection site and needle length. Pediatrics 1989;83(5):679-82
  • Jackson LA, Starkovich P, Dunstan M, et al. Prospective assessment of the effect of needle length and injection site on the risk of local reactions to the fifth diphtheria-tetanus-acellular pertussis vaccination. Pediatrics 2008;121(3):e646-52
  • Cook IF, Murtagh J. Needle length required for intramuscular vaccination of infants and toddlers. An ultrasonographic study. Aust Fam Physician 2002;31(3):295-7
  • Donnelly RF, Woolfson AD. Patient safety and beyond: what should we expect from microneedle arrays in the transdermal delivery arena? Ther Deliv 2014;5(6):653-62
  • Pettis RJ, Harvey AJ. Microneedle delivery: clinical studies and emerging medical applications. Ther Deliv 2012;3(3):357-71
  • van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 2012;161(2):645-55
  • Koutsonanos DG, Compans RW, Skountzou I. Targeting the skin for microneedle delivery of influenza vaccine. Adv Exp Med Biol 2013;785:121-32
  • Donnelly RF, Mooney K, Caffarel-Salvador E, et al. Microneedle-mediated minimally invasive patient monitoring. Ther Drug Monit 2014;36(1):10-17
  • Seok HY, Suh H, Baek S, Kim YC. Microneedle applications for DNA vaccine delivery to the skin. Methods Mol Biol 2014;1143:141-58
  • Suh H, Shin J, Kim YC. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res 2014;3(1):42-9
  • McGrath MG, Vucen S, Vrdoljak A, et al. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm 2014;86(2):200-11
  • Wang BZ, Gill HS, He C, et al. Microneedle delivery of an M2e-TLR5 ligand fusion protein to skin confers broadly cross-protective influenza immunity. J Control Release 2014;178:1-7
  • van der Maaden K, Trietsch SJ, Kraan H, et al. Novel hollow microneedle technology for depth-controlled microinjection-mediated dermal vaccination: a study with polio vaccine in rats. Pharm Res 2014;31(7):1846-54
  • Carey JB, Vrdoljak A, O’Mahony C, et al. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route. Sci Rep 2014;4:6154
  • Edens C, Collins ML, Ayers J, et al. Measles vaccination using a microneedle patch. Vaccine 2013;31(34):3403-9
  • Kim SH, Kim KS, Lee SR, et al. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Biochim Biophys Acta 2009;1788(10):2150-9
  • Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, et al. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 2009;27(3):454-9
  • Mikszta JA, Dekker JPR, Harvey NG, et al. Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. Infect Immun 2006;74(12):6806-10
  • Moon S, Wang Y, Edens C, et al. Dose sparing and enhanced immunogenicity of inactivated rotavirus vaccine administered by skin vaccination using a microneedle patch. Vaccine 2013;31(34):3396-402
  • Yin D, Liang W, Xing S, et al. Hepatitis B DNA vaccine-polycation nano-complexes enhancing immune response by percutaneous administration with microneedle. Biol Pharm Bull 2013;36(8):1283-91
  • Norman JJ, Arya JM, McClain MA, et al. Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine 2014;32(16):1856-62
  • Kis EE, Winter G, Myschik J. Devices for intradermal vaccination. Vaccine 2012;30(3):523-38
  • Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev 2006;58(1):68-89
  • Logomasini MA, Stout RR, Marcinkoski R. Jet injection devices for the needle-free administration of compounds, vaccines, and other agents. Int J Pharm Compd 2013;17(4):270-80
  • Liu Y, Kendall MA. Optimization of a jet-propelled particle injection system for the uniform transdermal delivery of drug/vaccine. Biotechnol Bioeng 2007;97(5):1300-8
  • Liu J, Hogan NC, Hunter IW. Intradermal needle-free powdered drug injection by a helium-powered device. Conf Proc IEEE Eng Med Biol Soc 2012;2012:2068-71
  • Millar JD, Roberto RR, Wulff H, et al. Smallpox vaccination by intradermal jet injection. I. Introduction, background and results of pilot studies. Bull World Health Organ 1969;41(6):749-60
  • Millar JD, Morris L, Macedo FA, et al. The introduction of jet injection mass vaccination into the national smallpox eradication program of Brazil. Trop Geogr Med 1971;23(1):89-101
  • O’Hagan DT, Rappuoli R. Novel approaches to vaccine delivery. Pharm Res 2004;21(9):1519-30
  • Williams J, Fox-Leyva L, Christensen C, et al. Hepatitis A vaccine administration: comparison between jet-injector and needle injection. Vaccine 2000;18(18):1939-43
  • Fisch A, Cadilhac P, Vidor E, et al. Immunogenicity and safety of a new inactivated hepatitis A vaccine: a clinical trial with comparison of administration route. Vaccine 1996;14(12):1132-6
  • Jackson LA, Austin G, Chen RT, et al. Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle-free jet injectors. Vaccine 2001;19(32):4703-9
  • Aguiar JC, Hedstrom RC, Rogers WO, et al. Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 2001;20(1-2):275-80
  • Graham BS, Enama ME, Nason MC, et al. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One 2013;8(4):e59340
  • McAllister L, Anderson J, Werth K, et al. Needle-free jet injection for administration of influenza vaccine: a randomised non-inferiority trial. Lancet 2014;384(9944):674-81
  • Wesley RD, Lager KM. Evaluation of a recombinant human adenovirus-5 vaccine administered via needle-free device and intramuscular injection for vaccination of pigs against swine influenza virus. Am J Vet Res 2005;66(11):1943-7
  • Wang S, Zhang C, Zhang L, et al. The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 2008;26(17):2100-10
  • Drape RJ, Macklin MD, Barr LJ, et al. Epidermal DNA vaccine for influenza is immunogenic in humans. Vaccine 2006;24(21):4475-81
  • Roy MJ, Wu MS, Barr LJ, et al. Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 2000;19(7-8):764-78
  • Hogan ME, Kikuta A, Taddio A. A systematic review of measures for reducing injection pain during adult immunization. Vaccine 2010;28(6):1514-21
  • Epstein JE, Gorak EJ, Charoenvit Y, et al. Safety, tolerability, and lack of antibody responses after administration of a PfCSP DNA malaria vaccine via needle or needle-free jet injection, and comparison of intramuscular and combination intramuscular/intradermal routes. Hum Gene Ther 2002;13(13):1551-60
  • Naito S, Maeyama J, Mizukami T, et al. Transcutaneous immunization by merely prolonging the duration of antigen presence on the skin of mice induces a potent antigen-specific antibody response even in the absence of an adjuvant. Vaccine 2007;25(52):8762-70
  • Lee MY, Shin MC, Yang VC. Transcutaneous antigen delivery system. BMB Rep 2013;46(1):17-24
  • Matsuo K, Hirobe S, Okada N, Nakagawa S. Frontiers of transcutaneous vaccination systems: novel technologies and devices for vaccine delivery. Vaccine 2013;31(19):2403-15
  • Mittal A, Raber AS, Lehr CM, Hansen S. Particle based vaccine formulations for transcutaneous immunization. Hum Vaccin Immunother 2013;9(9):1950-5
  • Frolov VG, Seid RCJr, Odutayo O, et al. Transcutaneous delivery and thermostability of a dry trivalent inactivated influenza vaccine patch. Influenza Other Respir Viruses 2008;2(2):53-60
  • Hickey DK, Aldwell FE, Tan ZY, et al. Transcutaneous immunization with novel lipid-based adjuvants induces protection against gastric Helicobacter pylori infection. Vaccine 2009;27(50):6983-90
  • Ledet G, Pamujula S, Walker V, et al. Development and in vitro evaluation of a nanoemulsion for transcutaneous delivery. Drug Dev Ind Pharm 2014;40(3):370-9
  • Seid RCJr, Look JL, Ruiz C, et al. Transcutaneous immunization with Intercell’s vaccine delivery system. Vaccine 2012;30(29):4349-54
  • Sahdev P, Podaralla S, Kaushik RS, Perumal O. Calcium phosphate nanoparticles for transcutaneous vaccine delivery. J Biomed Nanotechnol 2013;9(1):132-41
  • Weiss R, Hessenberger M, Kitzmuller S, et al. Transcutaneous vaccination via laser microporation. J Control Release 2012;162(2):391-9
  • Unga J, Hashida M. Ultrasound induced cancer immunotherapy. Adv Drug Deliv Rev 2014;72:144-53
  • Tezel A, Paliwal S, Shen Z, Mitragotri S. Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine 2005;23(29):3800-7
  • Anandhakumar S, Raichur AM. Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery. Acta Biomater 2013;9(11):8864-74
  • Un K, Kawakami S, Suzuki R, et al. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials 2010;31(30):7813-26
  • Wahl M, Hermodsson S. Intradermal, subcutaneous or intramuscular administration of hepatitis B vaccine: side effects and antibody response. Scand J Infect Dis 1987;19(6):617-21
  • Heijtink RA, Knol RM, Schalm SW. Low-dose (2 micrograms) hepatitis B vaccination in medical students: comparable immunogenicity for intramuscular and intradermal routes. J Med Virol 1989;27(2):151-4
  • Fabrizi F, Dixit V, Magnini M, et al. Meta-analysis: intradermal vs. intramuscular vaccination against hepatitis B virus in patients with chronic kidney disease. Aliment Pharmacol Ther 2006;24(3):497-506
  • Ghabouli MJ, Sabouri AH, Shoeibi N, et al. High seroprotection rate induced by intradermal administration of a recombinant hepatitis B vaccine in young healthy adults: comparison with standard intramuscular vaccination. Eur J Epidemiol 2004;19(9):871-5
  • Rahman F, Dahmen A, Herzog-Hauff S, et al. Cellular and humoral immune responses induced by intradermal or intramuscular vaccination with the major hepatitis B surface antigen. Hepatology 2000;31(2):521-7
  • Nolwenn N, Bisceglia H, Rozieres A, et al. Nine microg intradermal influenza vaccine and 15 microg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults. Hum Vaccin Immunother 2014;10(9
  • Song JY, Cheong HJ, Noh JY, et al. Long-term immunogenicity of the influenza vaccine at reduced intradermal and full intramuscular doses among healthy young adults. Clin Exp Vaccine Res 2013;2(2):115-19
  • Chiu SS, Chan KH, Tu W, et al. Immunogenicity and safety of intradermal versus intramuscular route of influenza immunization in infants less than 6 months of age: a randomized controlled trial. Vaccine 2009;27(35):4834-9
  • Ansaldi F, Valle L, de Florentiis D, et al. Phase 4 randomized trial of intradermal low-antigen-content inactivated influenza vaccine versus standard-dose intramuscular vaccine in HIV-1-infected adults. Hum Vaccin Immunother 2012;8(8):1048-52
  • Kunzi V, Klap JM, Seiberling MK, et al. Immunogenicity and safety of low dose virosomal adjuvanted influenza vaccine administered intradermally compared to intramuscular full dose administration. Vaccine 2009;27(27):3561-7
  • Nelson EA, Lam HS, Choi KC, et al. A pilot randomized study to assess immunogenicity, reactogenicity, safety and tolerability of two human papillomavirus vaccines administered intramuscularly and intradermally to females aged 18-26 years. Vaccine 2013;31(34):3452-60
  • Kulkarni PS, Sapru A, D’Costa PM, et al. Safety and immunogenicity of a new purified vero cell rabies vaccine (PVRV) administered by intramuscular and intradermal routes in healthy volunteers. Vaccine 2013;31(24):2719-22
  • Laurent PE, Bourhy H, Fantino M, et al. Safety and efficacy of novel dermal and epidermal microneedle delivery systems for rabies vaccination in healthy adults. Vaccine 2010;28(36):5850-6
  • Cook IF, Barr I, Hartel G, et al. Reactogenicity and immunogenicity of an inactivated influenza vaccine administered by intramuscular or subcutaneous injection in elderly adults. Vaccine 2006;24(13):2395-402
  • Golekoh MC, Hu S, Norman AM, et al. Comparison of the immunogenicity of intramuscular versus subcutaneous administration of trivalent inactivated influenza vaccine in individuals with neuromuscular diseases. J Child Neurol 2013;28(5):596-601
  • Gillet Y, Habermehl P, Thomas S, et al. Immunogenicity and safety of concomitant administration of a measles, mumps and rubella vaccine (M-M-RvaxPro) and a varicella vaccine (VARIVAX) by intramuscular or subcutaneous routes at separate injection sites: a randomised clinical trial. BMC Med 2009;7:16
  • Ruben FL, Froeschle JE, Meschievitz C, et al. Choosing a route of administration for quadrivalent meningococcal polysaccharide vaccine: intramuscular versus subcutaneous. Clin Infect Dis 2001;32(1):170-2
  • Ozdemir R, Canpolat FE, Yurttutan S, et al. Effect of needle length for response to hepatitis B vaccine in macrosomic neonates: a prospective randomized study. Vaccine 2012;30(21):3155-8
  • Middleman AB, Anding R, Tung C. Effect of needle length when immunizing obese adolescents with hepatitis B vaccine. Pediatrics 2010;125(3):e508-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.