270
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Current efforts and future prospects in the development of live mycobacteria as vaccines

, , , &

References

  • Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012;76:66-112
  • Sponsor announcement - Bergey’s manual of systematics of archaea and bacteria (BMSAB). Available from: http://www.bacterio.net/mycobacterium.html
  • Rodriguez-Campos S, Smith NH, Boniotti MB, Aranaz A. Overview and phylogeny of Mycobacterium tuberculosis complex organisms: Implications for diagnostics and legislation of bovine tuberculosis. Res Vet Sci 2014;97 Suppl:S5-S19
  • Bange FC, Collins FM, Jacobs WRJr. Survival of mice infected with Mycobacterium smegmatis containing large DNA fragments from Mycobacterium tuberculosis. Tuber Lung Dis 1999;79:171-80
  • Sakula A. BCG: who were Calmette and Guerin? Thorax 1983;38:806-12
  • Zhang W, Zhang Y, Zheng H, et al. Genome sequencing and analysis of BCG vaccine strains. PLoS One 2013;8:e71243
  • Brosch R, Gordon SV, Pym A, et al. Comparative genomics of the mycobacteria. Int J Med Microbiol 2000;290:143-52
  • Joung SM, Ryoo S. BCG vaccine in Korea. Clin Exp Vaccine Res 2013;2:83-91
  • Mostowy S, Cleto C, Sherman DR, Behr MA. The mycobacterium tuberculosis complex transcriptome of attenuation. Tuberculosis (Edinb) 2004;84:197-204
  • Guinn KM, Hickey MJ, Mathur SK, et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 2004;51:359-70
  • Casanova JL, Jouanguy E, Lamhamedi S, et al. Immunological conditions of children with BCG disseminated infection. Lancet 1995;346:581
  • Brosch R, Gordon SV, Garnier T, et al. Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci USA 2007;104:5596-601
  • Copin R, Coscolla M, Efstathiadis E, et al. Impact of in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Vaccine 2014;32:5998-6004
  • Agger EM, Andersen P. A novel TB vaccine; towards a strategy based on our understanding of BCG failure. Vaccine 2002;21:7-14
  • Ehrt S, Rhee K, Schnappinger D. Mycobacterial genes essential for the pathogen’s survival in the host. Immunol Rev 2015;264:319-26
  • Forrellad MA, Klepp LI, Gioffre A, et al. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2013;4:3-66
  • Dye C, Watt CJ, Bleed DM, et al. Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. JAMA 2005;293:2767-75
  • Schluger NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med 1998;157:679-91
  • Rohde K, Yates RM, Purdy GE, Russell DG. Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 2007;219:37-54
  • Russell DG, VanderVen BC, Lee W, et al. Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 2010;8:68-76
  • Gordon AH, Hart PD, Young MR. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 1980;286:79-80
  • Goren MB, Brokl O, Schaefer WB. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycocerosate and the attenuation indicator lipid. Infect Immun 1974;9:150-8
  • Grode L, Seiler P, Baumann S, et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 2005;115:2472-9
  • Edwards KM, Cynamon MH, Voladri RK, et al. Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am J Respir Crit Care Med 2001;164:2213-19
  • Baena A, Porcelli SA. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens 2009;74:189-204
  • Deretic V. Autophagy in tuberculosis. Cold Spring Harb Perspect Med 2014;4:a018481
  • Porcelli SA, Jacobs WRJr. Tuberculosis: unsealing the apoptotic envelope. Nat Immunol 2008;9:1101-2
  • Boer MC, van Meijgaarden KE, Joosten SA, Ottenhoff TH. CD8+ regulatory T cells, and not CD4+ T cells, dominate suppressive phenotype and function after in vitro live Mycobacterium bovis-BCG activation of human cells. PLoS ONE 2014;9:e94192
  • Semple PL, Binder AB, Davids M, et al. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am J Respir Crit Care Med 2013;187:1249-58
  • Blomgran R, Desvignes L, Briken V, Ernst JD. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 2012;11:81-90
  • Kaufmann SH, Cotton MF, Eisele B, et al. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 2014;13:619-30
  • Kaufmann SH, Gengenbacher M. Recombinant live vaccine candidates against tuberculosis. Curr Opin Biotechnol 2012;23:900-7
  • Whole mycobacteria cell vaccines for tuberculosis summary G. Developing whole mycobacteria cell vaccines for tuberculosis: Workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014. Vaccine 2015;33:3047-55
  • Hoft DF, Blazevic A, Abate G, et al. A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J Infect Dis 2008;198:1491-501
  • Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA 2000;97:13853-8
  • Ohara N, Kitaura H, Hotokezaka H, et al. Characterization of the gene encoding the MPB51, one of the major secreted protein antigens of Mycobacterium bovis BCG, and identification of the secreted protein closely related to the fibronectin binding 85 complex. Scand J Immunol 1995;41:433-42
  • Wiker HG, Harboe M. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev 1992;56:648-61
  • Kuo CJ, Bell H, Hsieh CL, et al. Novel mycobacteria antigen 85 complex binding motif on fibronectin. J Biol Chem 2012;287:1892-902
  • Naito M, Ohara N, Matsumoto S, Yamada T. The novel fibronectin-binding motif and key residues of mycobacteria. J Biol Chem 1998;273:2905-9
  • Kuo CJ, Ptak CP, Hsieh CL, et al. Elastin, a novel extracellular matrix protein adhering to mycobacterial antigen 85 complex. J Biol Chem 2013;288:3886-96
  • Belisle JT, Vissa VD, Sievert T, et al. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 1997;276:1420-2
  • Huygen K. The Immunodominant T-Cell Epitopes of the Mycolyl-Transferases of the Antigen 85 Complex of M. tuberculosis. Front Immunol 2014;5:321
  • Jagannath C, Lindsey DR, Dhandayuthapani S, et al. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 2009;15:267-76
  • Horwitz MA, Harth G. A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun 2003;71:1672-9
  • Tullius MV, Harth G, Maslesa-Galic S, et al. A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect Immun 2008;76:5200-14
  • Ramachandra L, Noss E, Boom WH, Harding CV. Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide-major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J Exp Med 2001;194:1421-32
  • Desel C, Dorhoi A, Bandermann S, et al. Recombinant BCG DeltaureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis 2011;204:1573-84
  • Grode L, Ganoza CA, Brohm C, et al. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine 2013;31:1340-8
  • Study to evaluate safety and immunogenicity of vpm1002 in comparison with BCG in newborn infants in South Africa. Availablefrom https://clinicaltrials.gov/ct2/show/NCT01479972
  • . World Health Organization. Global Tuberculosis Report 2014, WHO, 2014
  • Begnini KR, Buss JH, Collares T, Seixas FK. Recombinant Mycobacterium bovis BCG for immunotherapy in nonmuscle invasive bladder cancer. Appl Microbiol Biotechnol 2015;99:3741-54
  • VPM1002BC in recurrent non-muscle invasive bladder cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02371447
  • Sun R, Skeiky YA, Izzo A, et al. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine 2009;27:4412-23
  • Kupferschmidt K. Infectious disease. Taking a new shot at a TB vaccine. Science 2011;334:1488-90
  • Arbues A, Aguilo JI, Gonzalo-Asensio J, et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 2013;31:4867-73
  • Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, et al. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 2008;3:e3496
  • Camacho LR, Ensergueix D, Perez E, et al. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 1999;34:257-67
  • Infante E, Aguilar LD, Gicquel B, Pando RH. Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant. Clin Exp Immunol 2005;141:21-8
  • Dose-escalation study to evaluate the safety and immunogenicity of MTBVAC vaccine in comparison with bcg vaccine. Available from: https://clinicaltrials.gov/ct2/show/NCT02013245
  • Solans L, Uranga S, Aguilo N, et al. Hyper-attenuated MTBVAC erp mutant protects against tuberculosis in mice. Vaccine 2014;32:5192-7
  • Berthet FX, Lagranderie M, Gounon P, et al. Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 1998;282:759-62
  • McAdam RA, Weisbrod TR, Martin J, et al. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun 1995;l63:1004-12
  • Hondalus MK, Bardarov S, Russell R, et al. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect Immun 2000;68:2888-98
  • Sambandamurthy VK, Wang X, Chen B, et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 2002;8:1171-4
  • Larsen MH, Biermann K, Chen B, et al. Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in non-human primates. Vaccine 2009;27:4709-17
  • Pavelka MSJr, Chen B, Kelley CL, et al. Vaccine efficacy of a lysine auxotroph of Mycobacterium tuberculosis. Infect Immun 2003;71:4190-2
  • Sambandamurthy VK, Derrick SC, Jalapathy KV, et al. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect Immun 2005;73:1196-203
  • Sampson SL, Mansfield KG, Carville A, et al. Extended safety and efficacy studies of a live attenuated double leucine and pantothenate auxotroph of Mycobacterium tuberculosis as a vaccine candidate. Vaccine 2011;29:4839-47
  • Hinchey J, Jeon BY, Alley H, et al. Lysine auxotrophy combined with deletion of the SecA2 gene results in a safe and highly immunogenic candidate live attenuated vaccine for tuberculosis. PLoS One 2011;6:e15857
  • Jain P, Hsu T, Arai M, et al. Specialized transduction designed for precise high-throughput unmarked deletions in Mycobacterium tuberculosis. MBio 2014;5:e01245-14
  • Ranganathan UD, Larsen MH, Kim J, et al. Recombinant pro-apoptotic Mycobacterium tuberculosis generates CD8+ T cell responses against human immunodeficiency virus type 1 Env and M. tuberculosis in neonatal mice. Vaccine 2009;28:152-61
  • Reece ST, Nasser-Eddine A, Dietrich J, et al. Improved long-term protection against Mycobacterium tuberculosis Beijing/W in mice after intra-dermal inoculation of recombinant BCG expressing latency associated antigens. Vaccine 2011;29:8740-4
  • Schuck SD, Mueller H, Kunitz F, et al. Identification of T-cell antigens specific for latent mycobacterium tuberculosis infection. PLoS ONE 2009;4:e5590
  • Wang C, Fu R, Chen Z, et al. Immunogenicity and protective efficacy of a novel recombinant BCG strain overexpressing antigens Ag85A and Ag85B. Clin Dev Immunol 2012;2012:563838
  • da Costa AC, Nogueira SV, Kipnis A, et al. Innovations on an Old Vaccine. Scope of BCG Strains and Strategies to Improve Long-Lasting Memory. Front Immunol 2014;5:152
  • Fratti RA, Chua J, Deretic V. Cellubrevin alterations and Mycobacterium tuberculosis phagosome maturation arrest. J Biol Chem 2002;277:17320-6
  • Master SS, Rampini SK, Davis AS, et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 2008;3:224-32
  • Johansen P, Fettelschoss A, Amstutz B, et al. Relief from Zmp1-mediated arrest of phagosome maturation is associated with facilitated presentation and enhanced immunogenicity of mycobacterial antigens. Clin Vaccine Immunol 2011;18:907-13
  • Khatri B, Whelan A, Clifford D, et al. BCG Deltazmp1 vaccine induces enhanced antigen specific immune responses in cattle. Vaccine 2014;32:779-84
  • Sander P, Clark S, Petrera A, et al. Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis. Vaccine 2015;33:1353-9
  • Stewart GR, Patel J, Robertson BD, et al. Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog 2005;1:269-78
  • Hernandez Pando R, Aguilar LD, Smith I, Manganelli R. Immunogenicity and protection induced by a Mycobacterium tuberculosis sigE mutant in a BALB/c mouse model of progressive pulmonary tuberculosis. Infect Immun 2010;78:3168-76
  • Casonato S, Provvedi R, Dainese E, et al. Mycobacterium tuberculosis requires the ECF sigma factor SigE to arrest phagosome maturation. PLoS One 2014;9:e108893
  • Fratti RA, Backer JM, Gruenberg J, et al. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 2001;154:631-44
  • Armitige LY, Jagannath C, Wanger AR, Norris SJ. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 2000;68:767-78
  • Copenhaver RH, Sepulveda E, Armitige LY, et al. A mutant of Mycobacterium tuberculosis H37Rv that lacks expression of antigen 85A is attenuated in mice but retains vaccinogenic potential. Infect Immun 2004;72:7084-95
  • Katti MK, Dai G, Armitige LY, et al. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol 2008;10:1286-303
  • Saikolappan S, Estrella J, Sasindran SJ, et al. The fbpA/sapM double knock out strain of Mycobacterium tuberculosis is highly attenuated and immunogenic in macrophages. PLoS One 2012;7:e36198
  • Brodin P, Poquet Y, Levillain F, et al. High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog 2010;6:e1001100
  • Arbues A, Lugo-Villarino G, Neyrolles O, et al. Playing hide-and-seek with host macrophages through the use of mycobacterial cell envelope phthiocerol dimycocerosates and phenolic glycolipids. Front Cell Infect Microbiol 2014;4:173
  • Cambier CJ, Takaki KK, Larson RP, et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 2014;505:218-22
  • Miller JL, Velmurugan K, Cowan MJ, Briken V. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog 2010;6:e1000864
  • Velmurugan K, Chen B, Miller JL, et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 2007;3:e110
  • Braunstein M, Espinosa BJ, Chan J, et al. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 2003;48:453-64
  • Hinchey J, Lee S, Jeon BY, et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 2007;117:2279-88
  • Antonsson B, Montessuit S, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 2001;276:11615-23
  • Li G, Liu G, Song N, et al. A novel recombinant BCG-expressing pro-apoptotic protein BAX enhances Th1 protective immune responses in mice. Mol Immunol 2015;66:346-56
  • Saiga H, Nieuwenhuizen N, Gengenbacher M, et al. The Recombinant BCG DeltaureC::hly Vaccine Targets the AIM2 Inflammasome to Induce Autophagy and Inflammation. J Infect Dis 2015;211:1831-41
  • Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol 2011;4:252-60
  • Giacomini E, Iona E, Ferroni L, et al. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 2001;166:7033-41
  • Ma X. TNF-alpha and IL-12: a balancing act in macrophage functioning. Microbes Infect 2001;3:121-9
  • Richer MJ, Pewe LL, Hancox LS, et al. Inflammatory IL-15 is required for optimal memory T cell responses. J Clin Invest 2015
  • Dao DN, Sweeney K, Hsu T, et al. Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production. PLoS Pathog 2008;4:e1000081
  • Kolibab K, Derrick SC, Jacobs WR, Morris SL. Characterization of an intracellular ATP assay for evaluating the viability of live attenuated mycobacterial vaccine preparations. J Microbiol Methods 2012;90:245-9
  • Derrick SC, Dao D, Yang A, et al. Formulation of a mmaA4 gene deletion mutant of Mycobacterium bovis BCG in cationic liposomes significantly enhances protection against tuberculosis. PLoS One 2012;7:e32959
  • Tang C, Yamada H, Shibata K, et al. Efficacy of recombinant bacille Calmette-Guerin vaccine secreting interleukin-15/antigen 85B fusion protein in providing protection against Mycobacterium tuberculosis. J Infect Dis 2008;197:1263-74
  • Lazarevic V, Yankura DJ, DiVito SJ, Flynn JL. Induction of Mycobacterium tuberculosis-specific primary and secondary T-cell responses in interleukin-15-deficient mice. Infect Immun 2005;73:2910-22
  • Toe JG, Pellegrini M, Mak TW. Promoting immunity during chronic infection--the therapeutic potential of common gamma-chain cytokines. Mol Immunol 2013;56:38-47
  • Venkataswamy MM, Ng TW, Kharkwal SS, et al. Improving Mycobacterium bovis bacillus Calmette-Guerin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells. PLoS One 2014;9:e108383
  • Leung B, Harris HW. NKT cells in sepsis. Clin Dev Immunol 2010;2010
  • Parekh VV, Wilson MT, Olivares-Villagomez D, et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 2005;115:2572-83
  • Sullivan BA, Kronenberg M. Activation or anergy: NKT cells are stunned by alpha-galactosylceramide. J Clin Invest 2005;115:2328-9
  • Singh M, Quispe-Tintaya W, Chandra D, et al. Direct incorporation of the NKT-cell activator alpha-galactosylceramide into a recombinant Listeria monocytogenes improves breast cancer vaccine efficacy. Br J Cancer 2014;111:1945-54
  • Venkataswamy MM, Baena A, Goldberg MF, et al. Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 2009;183:1644-56
  • Yu JS, Peacock JW, Vanleeuwen S, et al. Generation of mucosal anti-human immunodeficiency virus type 1 T-cell responses by recombinant Mycobacterium smegmatis. Clin Vaccine Immunol 2006;13:1204-11
  • Junqueira-Kipnis AP, de Oliveira FM, Trentini MM, et al. Prime-boost with Mycobacterium smegmatis recombinant vaccine improves protection in mice infected with Mycobacterium tuberculosis. PLoS One 2013;8:e78639
  • Maura RB, Férnandez S, Reyes G, et al. Evaluation of the potential of Mycobacterium smegmatis as vaccine candidate against tuberculosis by in silico and in vivo studies. Vacci Monitor 2010;19:20-6
  • Rodriguez L, Tirado Y, Reyes F, et al. Proteoliposomes from Mycobacterium smegmatis induce immune cross-reactivity against Mycobacterium tuberculosis antigens in mice. Vaccine 2011;29:6236-41
  • Taylor N, Bahunde F, Thompson A, et al. Enhanced priming of adaptive immunity by Mycobacterium smegmatis mutants with high-level protein secretion. Clin Vaccine Immunol 2012;19:1416-25
  • Sweeney KA, Dao DN, Goldberg MF, et al. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med 2011;17:1261-8
  • Hart BE, Asrican R, Lim SY, et al. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant BCG Vectors. Clin Vaccine Immunol 2015
  • Getahun H, Gunneberg C, Granich R, Nunn P. HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis 2010;50(Suppl 3):S201-7
  • Leung NJ, Aldovini A, Young R, et al. The kinetics of specific immune responses in rhesus monkeys inoculated with live recombinant BCG expressing SIV Gag, Pol, Env, and Nef proteins. Virology 2000;268:94-103
  • Jensen K, Ranganathan UD, Van Rompay KK, et al. A recombinant attenuated Mycobacterium tuberculosis vaccine strain is safe in immunosuppressed simian immunodeficiency virus-infected infant macaques. Clin Vaccine Immunol 2012;19:1170-81
  • Nurul AA, Norazmi MN. Immunogenicity and in vitro protective efficacy of recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa merozoite surface protein-1 (MSP-1(19)) antigen of Plasmodium falciparum. Parasitol Res 2011;108:887-97
  • Teo WH, Nurul AA, Norazmi MN. Immunogenicity of recombinant BCG-based vaccine expressing the 22 kDa of serine repeat antigen (SE22) of Plasmodium falciparum. Trop Biomed 2012;29:239-53
  • Zheng C, Xie P, Chen Y. Recombinant Mycobacterium bovis BCG producing the circumsporozoite protein of Plasmodium falciparum FCC-1/HN strain induces strong immune responses in BALB/c mice. Parasitol Int 2002;51:1-7
  • Uthaipibull C, Aufiero B, Syed SE, et al. Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum. J Mol Biol 2001;307:1381-94
  • Herr HW, Morales A. History of bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J Urol 2008;179:53-6
  • Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 1976;116:180-3
  • Babjuk M, Burger M, Zigeuner R, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol 2013;64:639-53
  • Hall MC, Chang SS, Dalbagni G, et al. Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1, and Tis): 2007. J Urol 2007;178:2314-30
  • Huang G, Redelman-Sidi G, Rosen N, et al. Inhibition of mycobacterial infection by the tumor suppressor PTEN. J Biol Chem 2012;287:23196-202
  • Durek C, Brandau S, Ulmer AJ, et al. Bacillus-Calmette-Guerin (BCG) and 3D tumors: an in vitro model for the study of adhesion and invasion. J Urol 1999;162:600-5
  • Ratliff TL, Gillen D, Catalona WJ. Requirement of a thymus dependent immune response for BCG-mediated antitumor activity. J Urol 1987;137:155-8
  • Brandau S, Riemensberger J, Jacobsen M, et al. NK cells are essential for effective BCG immunotherapy. Int J Cancer 2001;92:697-702
  • Roy A, Eisenhut M, Harris RJ, et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 2014;349:g4643
  • Zodpey SP, Shrikhande SN. The geographic location (latitude) of studies evaluating protective effect of BCG vaccine and it’s efficacy/effectiveness against tuberculosis. Indian J Public Health 2007;51:205-10
  • Comas I, Chakravartti J, Small PM, et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 2010;42:498-503

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.