1,133
Views
53
CrossRef citations to date
0
Altmetric
SPECIAL FOCUS: RNA Vaccines - Review

The ReNAissanCe of mRNA-based cancer therapy

, , , , , , & show all

References

  • Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn 2008;10(1):13-27
  • Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science 2013;339(6127):1546-58
  • Coulie PG, Somville M, Lehmann F, et al. Precursor frequency analysis of human cytolytic T lymphocytes directed against autologous melanoma cells. Int J Cancer 1992;50(2):289-97
  • Korangy F, Ormandy LA, Bleck JS, et al. Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin Cancer Res 2004;10(13):4332-41
  • Germeau C, Ma W, Schiavetti F, et al. High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med 2005;201(2):241-8
  • Hanagiri T, van Baren N, Neyns B, et al. Analysis of a rare melanoma patient with a spontaneous CTL response to a MAGE-A3 peptide presented by HLA-A1. Cancer Immunol Immunother 2006;55(2):178-84
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5(4):296-306
  • Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science 2013;342(6165):1432-3
  • Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012;30:1-22
  • Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996;184(2):465-72
  • Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002;109(3):409-17
  • Morse MA, Nair SK, Mosca PJ, et al. Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest 2003;21(3):341-9
  • Van Tendeloo VF, Ponsaerts P, Lardon F, et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001;98(1):49-56
  • Tuyaerts S, Noppe SM, Corthals J, et al. Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods 2002;264(1-2):135-51
  • Tuyaerts S, Aerts JL, Corthals J, et al. Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 2007;56(10):1513-37
  • Van Tendeloo VF, Van de Velde A, Van Driessche A, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA 2010;107(31):13824-9
  • Van Lint S, Wilgenhof S, Heirman C, et al. Optimized dendritic cell based immunotherapy for melanoma: the TriMix-formula. Cancer Immunol Immunother 2014;63(9):959-67
  • Suso EM, Dueland S, Rasmussen A-M, et al. hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer Immunol Immunother 2011;60(6):809-18
  • Van Nuffel AM, Benteyn D, Wilgenhof S, et al. Dendritic cells loaded with mRNA encoding full-length tumor antigens prime CD4+ and CD8+ T cells in melanoma patients. Mol Ther 2012;20(5):1063-74
  • Van Nuffel AM, Tuyaerts S, Benteyn D, et al. Epitope and HLA-type independent monitoring of antigen-specific T-cells after treatment with dendritic cells presenting full-length tumor antigens. J Immunol Methods 2012;377(1-2):23-36
  • Benteyn D, Heirman C, Bonehill A, et al. mRNA-based dendritic cell vaccines. Expert Rev Vaccines 2014;14(2):1-16
  • Conry RM, LoBuglio AF, Wright M, et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 1995;55(7):1397-400
  • Van Lint S, Heirman C, Thielemans K, Breckpot K. mRNA: from a chemical blueprint for protein production to an off-the-shelf therapeutic. Hum Vaccin Immunother 2013;9(2):265-74
  • Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953;171(4356):737-8
  • Pascolo S. Messenger RNA-based vaccines. Expert Opin Biol Ther 2004;4(8):1285-94
  • Benteyn D, Anguille S, Van Lint S, et al. Design of an optimized Wilms’ tumor 1 (WT1) mRNA construct for enhanced WT1 expression and improved immunogenicity in vitro and in vivo. Mol Ther Nucleic Acids 2013;2:e134
  • Bonehill A, Heirman C, Tuyaerts S, et al. Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 2004;172(11):6649-57
  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247(4949 Pt 1):1465-8
  • Probst J, Weide B, Scheel B, et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther 2007;14(15):1175-80
  • Schlake T, Thess A, Fotin-Mleczek M, Kallen K-J. Developing mRNA-vaccine technologies. RNA Biol 2012;9(11):1319-30
  • Holtkamp S, Kreiter S, Selmi A, et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006;108(13):4009-17
  • Pascolo S. Vaccination with messenger RNA (mRNA). Handb Exp Pharmacol 2008;183:221-35
  • Kuhn AN, Beiβert T, Simon P, et al. mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther 2012;12(5):347-61
  • Martinon F, Krishnan S, Lenzen G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993;23(7):1719-22
  • Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 2000;30(1):1-7
  • Scheel B, Teufel R, Probst J, et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 2005;35(5):1557-66
  • Hess PR, Boczkowski D, Nair SK, et al. Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol Immunother 2006;55(6):672-83
  • Rejman J, Tavernier G, Bavarsad N, et al. mRNA transfection of cervical carcinoma and mesenchymal stem cells mediated by cationic carriers. J Control Release 2010;147(3):385-91
  • Tavernier G, Andries O, Demeester J, et al. mRNA as gene therapeutic: how to control protein expression. J Control Release 2011;150(3):238-47
  • Shatkin AJ. mRNA cap binding proteins: essential factors for initiating translation. Cell 1985;40(2):223-4
  • Calero G, Wilson KF, Ly T, et al. Structural basis of m7GpppG binding to the nuclear cap-binding protein complex. Nat Struct Biol 2002;9(12):912-17
  • Lewis JD, Gunderson SI, Mattaj IW. The influence of 5’ and 3’ end structures on pre-mRNA metabolism. J Cell Sci Suppl 1995;19:13-19
  • Wickens M, Anderson P, Jackson RJ. Life and death in the cytoplasm: messages from the 3’ end. Curr Opin Genet Dev 1997;7(2):220-32
  • Neugebauer KM. On the importance of being co-transcriptional. J Cell Sci 2002;115(Pt 20):3865-71
  • Calvo O, Manley JL. Strange bedfellows: polyadenylation factors at the promoter. Genes Dev 2003;17(11):1321-7
  • Proudfoot N. New perspectives on connecting messenger RNA 3’ end formation to transcription. Curr Opin Cell Biol 2004;16(3):272-8
  • Morales J, Russell JE, Liebhaber SA. Destabilization of human alpha-globin mRNA by translation anti-termination is controlled during erythroid differentiation and is paralleled by phased shortening of the poly(A) tail. J Biol Chem 1997;272(10):6607-13
  • Wang Z, Day N, Trifillis P, Kiledjian M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol 1999;19(7):4552-60
  • Kozak M, Shatkin AJ. Identification of features in 5’ terminal fragments from reovirus mRNA which are important for ribosome binding. Cell 1978;13(1):201-12
  • Kozak M. How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 1978;15(4):1109-23
  • Fath S, Bauer AP, Liss M, et al. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 2011;6(3):e17596
  • Ward NJ, Buckley SMK, Waddington SN, et al. Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood 2011;117(3):798-807
  • Brawerman G. The Role of the poly(A) sequence in mammalian messenger RNA. CRC Crit Rev Biochem 1981;10(1):1-38
  • Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA Poly(A) tail size - does this protein make my tail look big? Semin Cell Dev Biol 2014. [Epub ahead of print]
  • Stepinski J, Waddell C, Stolarski R, et al. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA 2001;7(10):1486-95
  • Grudzien-Nogalska E, Jemielity J, Kowalska J, et al. Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 2007;13(10):1745-55
  • Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005;23(2):165-75
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001;413(6857):732-8
  • Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004;303(5663):1526-9
  • Hornung V, Barchet W, Schlee M, Hartmann G. RNA recognition via TLR7 and TLR8. Handb Exp Pharmacol 2008(183):71-86
  • Kreiter S, Selmi A, Diken M, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 2010;70(22):9031-40
  • Van Lint S, Goyvaerts C, Maenhout S, et al. Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 2012;72(7):1661-71
  • Pollard C, Rejman J, De Haes W, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther 2013;21(1):251-9
  • Fotin-Mleczek M, Duchardt KM, Lorenz C, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 2011;34(1):1-15
  • Van Lint S, Thielemans K, Breckpot K. mRNA: delivering an antitumor message? Immunotherapy 2011;3(5):605-7
  • Pollard C, De Koker S, Saelens X, et al. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol Med 2013;19(12):705-13
  • Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 2011;39(21):e142
  • Karikó K, Muramatsu H, Keller JM, Weissman D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 2012;20(5):948-53
  • Gonçalves C, Berchel M, Gosselin M-P, et al. Lipopolyplexes comprising imidazole/imidazolium lipophosphoramidate, histidinylated polyethyleneimine and siRNA as efficient formulation for siRNA transfection. Int J Pharm 2014;460(1-2):264-72
  • Perche F, Benvegnu T, Berchel M, et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 2011;7(4):445-53
  • Streilein JW. Lymphocyte traffic, T-cell malignancies and the skin. J Invest Dermatol 1978;71(3):167-71
  • Sticchi L, Alberti M, Alicino C, Crovari P. The intradermal vaccination: past experiences and current perspectives. J Prev Med Hyg 2010;51(1):7-14
  • Granstein RD, Ding W, Ozawa H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Invest Dermatol 2000;114(4):632-6
  • Carralot J-P, Probst J, Hoerr I, et al. Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 2004;61(18):2418-24
  • Fotin-Mleczek M, Zanzinger K, Heidenreich R, et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J Gene Med 2012;14(6):428-39
  • Bedoui S, Whitney PG, Waithman J, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 2009;10(5):488-95
  • Le Borgne M, Etchart N, Goubier A, et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 2006;24(2):191-201
  • Allan RS, Waithman J, Bedoui S, et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 2006;25(1):153-62
  • Senti G, Johansen P, Kündig TM. Intralymphatic immunotherapy. Curr Opin Allergy Clin Immunol 2009;9(6):537-43
  • Sigel MB, Sinha YN, VanderLaan WP. Production of antibodies by inoculation into lymph nodes. Methods Enzymol 1983;93:3-12
  • Nilsson BO, Svalander PC, Larsson A. Immunization of mice and rabbits by intrasplenic deposition of nanogram quantities of protein attached to Sepharose beads or nitrocellulose paper strips. J Immunol Methods 1987;99(1):67-75
  • Maloy KJ, Erdmann I, Basch V, et al. Intralymphatic immunization enhances DNA vaccination. Proc Natl Acad Sci USA 2001;98(6):3299-303
  • Johansen P, Häffner AC, Koch F, et al. Direct intralymphatic injection of peptide vaccines enhances immunogenicity. Eur J Immunol 2005;35(2):568-74
  • Von Beust BR, Johansen P, Smith KA, et al. Improving the therapeutic index of CpG oligodeoxynucleotides by intralymphatic administration. Eur J Immunol 2005;35(6):1869-76
  • Martínez-Gómez JM, Johansen P, Erdmann I, et al. Intralymphatic injections as a new administration route for allergen-specific immunotherapy. Int Arch Allergy Immunol 2009;150(1):59-65
  • Senti G, Prinz Vavricka BM, Erdmann I, et al. Intralymphatic allergen administration renders specific immunotherapy faster and safer: a randomized controlled trial. Proc Natl Acad Sci USA 2008;105(46):17908-12
  • Weber J, Boswell W, Smith J, et al. Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J Immunother 1997;31(2):215-23
  • Tagawa ST, Lee P, Snively J, et al. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer 2003;98(1):144-54
  • Grover A, Kim GJ, Lizée G, et al. Intralymphatic dendritic cell vaccination induces tumor antigen-specific, skin-homing T lymphocytes. Clin Cancer Res 2006;12(19):5801-8
  • Lesterhuis WJ, de Vries IJ, Schreibelt G, et al. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 2011;17(17):5725-35
  • Aarntzen EH, Schreibelt G, Bol K, et al. Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 2012;18(19):5460-70
  • Tel J, Aarntzen EH, Baba T, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res 2013;73(3):1063-75
  • Diken M, Kreiter S, Selmi A, et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 2011;18(7):702-8
  • Kallen K-J, Heidenreich R, Schnee M, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum Vaccin Immunother 2013;9(10):2263-76
  • Scheel B, Braedel S, Probst J, et al. Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol 2004;34(2):537-47
  • Diebold SS, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004;303(5663):1529-31
  • Kreiter S, Diken M, Selmi A, et al. FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res 2011;71(19):6132-42
  • Scheel B, Aulwurm S, Probst J, et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol 2006;36(10):2807-16
  • Kusmartsev S, Gabrilovich DI. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 2002;51(6):293-8
  • Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10(9):942-9
  • Pinzon-Charry A, Maxwell T, López JA. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 2005;83(5):451-61
  • Bonehill A, Tuyaerts S, Van Nuffel AMT, et al. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 2008;16(6):1170-80
  • Van Lint S, Renmans D, Benteyn D, et al. Therapeutic efficacy of intratumoral delivery of CD40L, CD70 and active TLR4 mRNA: a preclinical validation. J Natl Cancer Inst 2014; under revision
  • Hildner K, Edelson BT, Purtha WE, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322(5904):1097-100
  • Van Der Jeught K, Tjok Joe P, Bialkowski L, et al. Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget 1993;362(6422):755-8
  • Iwasaki A, Stiernholm BJ, Chan AK, et al. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 1997;158(10):4591-601
  • Warren TL, Weiner GJ. Uses of granulocyte-macrophage colony-stimulating factor in vaccine development. Curr Opin Hematol 2000;7(3):168-73
  • Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993;90(8):3539-43
  • Tao MH, Levy R. Idiotype/granulocytemacrophage colony-stimulating factor fusion protein as a vaccine for B-cell lymphoma. Nature 1993;362(6422):755-8
  • Matthews W, Jordan CT, Wiegand GW, et al. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 1991;65(7):1143-52
  • Fong L, Hou Y, Rivas A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 2001;98(15):8809-14
  • Gregory SH, Sagnimeni AJ, Zurowski NB, Thomson AW. Flt3 ligand pretreatment promotes protective immunity to Listeria monocytogenes. Cytokine 2001;13(4):202-8
  • Parajuli P, Pisarev V, Sublet J, et al. Immunization with wild-type p53 gene sequences coadministered with Flt3 ligand induces an antigen-specific type 1 T-cell response. Cancer Res 2001;61(22):8227-34
  • Merad M, Sugie T, Engleman EG, Fong L. In vivo manipulation of dendritic cells to induce therapeutic immunity. Blood 2002;99(5):1676-82
  • Jefford M, Schnurr M, Toy T, et al. Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood 2003;102(5):1753-63
  • Pulendran B, Smith JL, Jenkins M, et al. Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. J Exp Med 1998;188(11):2075-82
  • Parajuli P, Mosley RL, Pisarev V, et al. Flt3 ligand and granulocyte-macrophage colony-stimulating factor preferentially expand and stimulate different dendritic and T-cell subsets. Exp Hematol 2001;29(10):1185-93
  • Weide B, Carralot J-P, Reese A, et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 2008;31(2):180-8
  • Weide B, Pascolo S, Scheel B, et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 2009;32(5):498-507
  • Rittig SM, Haentschel M, Weimer KJ, et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2011;19(5):990-9
  • Sebastion M, Von Boehmer L, Zippelius A, et al. Messenger RNA vaccination and B cell responses in NSCLC patients. J Clin oncol. 2012 30(Suppl):abstract 2573
  • Kubler H, Maurer T, Stenzl A, et al. Final analysis of a phase I/IIa study with CV9103, an intradermally administered prostate cancer immunotherapy based on self-adjuvanted mRNA. J Clin Oncol 2011;29(Suppl):abstract 4535

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.