702
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Developing therapeutic vaccines against Alzheimer’s disease

&
Pages 401-415 | Received 12 Oct 2015, Accepted 16 Nov 2015, Published online: 11 Dec 2015

References

  • Association As. Alzheimer’ Association Report. Alzheimers Demen. 2015;11:332–384.
  • Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer’s disease neuropathologic changes with cognitive status: a review of the literature. Jnen. 2012;71:362–381.
  • Ashe KH, Aguzzi A. Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion. 2013;7(1):55–59.
  • Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol. 2011;70(4):532–540.
  • Jaunmuktane Z, Mead S, Ellis M, et al. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature. 2015;525(7568):247–250.
  • Guerreiro R, Hardy J. Genetics of Alzheimer’s disease. Neurotherapeutics. 2014;11(4):432–437.
  • Wingo TS, Lah JJ, Levey AI, et al. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol. 2012;69(1):59–64.
  • Karch CM, Cruchaga C, Goate AM. Alzheimer’s disease genetics: from the bench to the clinic. Neuron. 2014;83(1):11–26.
  • Bertram L, Tanzi RE. The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci. 2012;107:79–100.
  • Kim DH, Yeo SH, Park JM, et al. Genetic markers for diagnosis and pathogenesis of Alzheimer’s disease. Gene. 2014;545(2):185–193.
  • Di Marco LY, Marzo A, Munoz-Ruiz M, et al. Modifiable lifestyle factors in dementia: a systematic review of longitudinal observational cohort studies. J Alzheimers Dis. 2014;42(1):119–135.
  • Beydoun MA, Beydoun HA, Gamaldo AA, et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC. Public Health. 2014;14:643.
  • Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51.
  • Kanekiyo T, Xu H, Bu G. ApoE and A in Alzheimer’s disease: accidental encounters or partners?. Neuron. 2014;81(4):740–754.
  • Potter H, Wisniewski T. Apolipoprotein E: essential catalyst of the Alzheimer amyloid cascade. Int J Alz Dis. 2012;2012:489428.
  • Hickman SE, El KJ. TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem Pharmacol. 2014;88(4):495–498.
  • Boutajangout A, Wisniewski T. The innate immune system in Alzheimer’s disease. Int J Cell Biol. 2013;2013:e576383.
  • Tarasoff J, Carare R, Osorio R, et al. Clearance systems in the brain and Alzheimer’s disease. Nat Neurol Rev. 2015;11(8):457–470.
  • Morrone CD, Liu M, Black SE, et al. Interaction between therapeutic interventions for Alzheimer’s disease and physiological Aβ clearance mechanisms. Front Aging Neurosci. 2015;7:64.
  • Holtzman DM, Mandelkow E, Selkoe DJ. Alzheimer disease in 2020. Cold Spring Harb Perspect Med. 2012;2(11):a011585.
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–356.
  • Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18(6):794–799.
  • Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci. 2015;18(6):800–806.
  • Solomon B, Koppel R, Frankel D, et al. Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci USA. 1997;94(8):4109–4112.
  • Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer disease-like pathology in the PDAPP mice. Nature. 1999;400:173–177.
  • Lemere CA. Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegener. 2013;8(1):36.
  • Sigurdsson EM, Scholtzova H, Mehta P, et al. Immunization with a non-toxic/non-fibrillar amyloid-beta homologous peptide reduces Alzheimer’s disease associated pathology in transgenic mice. Am J Pathol. 2001;159:439–447.
  • Morgan D, Diamond DM, Gottschall PE, et al. Ab peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature. 2000;408:982–985.
  • Janus C, Pearson J, McLaurin J, et al. Ab peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature. 2000;408:979–982.
  • Sigurdsson EM, Knudsen EL, Asuni A, et al. An attenuated immune response is sufficient to enhance cognition in an Alzheimer’s disease mouse model immunized with amyloid-b derivatives. J Neurosci. 2004;24:6277–6282.
  • Asuni A, Boutajangout A, Scholtzova H, et al. Ab derivative vaccination in alum adjuvant prevents amyloid deposition and does not cause brain microhemorrhages in Alzheimer’s model mice. Eur J Neurosci. 2006;24:2530–2542.
  • Bayer AJ, Bullock R, Jones RW, et al. Evaluation of the safety and immunogenicity of synthetic Ab42 (AN1792) in patients with AD. Neurol. 2005;64:94–101.
  • Pride M, Seubert P, Grundman M, et al. Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis. 2008;5(34):194–196.
  • Wisniewski T, Frangione B. Immunological and anti-chaperone therapeutic approaches for Alzheimer’s disease. Brain Pathol. 2005;15:72–77.
  • Boche D, Nicoll JA. The role of the immune system in clearance of Ab from the brain. Brain Pathol. 2008;18(2):267–278.
  • Bombois S, Maurage CA, Gompel M, et al. Absence of beta-amyloid deposits after immunization in Alzheimer disease with Lewy body dementia. Arch Neurol. 2007;64(4):583–587.
  • Ferrer I, Boada RM, Sanchez Guerra ML, et al. Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol. 2004;14:11–20.
  • Masliah E, Hansen L, Adame A, et al. Ab vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurol. 2005;64:129–131.
  • Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med. 2005;9:448–452.
  • Nicoll JA, Barton E, Boche D, et al. Abeta species removal after abeta42 immunization. J Neuropathol Exp Neurol. 2006;65(11):1040–1048.
  • Sadowski M, Wisniewski T. Disease modifying approaches for Alzheimer’s pathology. Curr Pharmaceutic Des. 2007;13(19):1943–1954.
  • Gilman S, Koller M, Black RS, et al. Clinical effects of Ab immunization (AN1792) in patients with AD in an interrupted trial. Neurol. 2005;64:1553–1562.
  • Hock C, Konietzko U, Straffer JR, et al. Antibodies against b-amyloid slow cognitive decline in Alzheimer’s disease. Neuron. 2003;38:547–554.
  • Ryan JM, Grundman M. Anti-amyloid-beta immunotherapy in Alzheimer’s disease: ACC-001 clinical trials are ongoing. J Alzheimers. 2009;17(2):243.
  • Schneeberger A, Mandler M, Otawa O, et al. Development of AFFITOPE vaccines for Alzheimer’s disease (AD)–from concept to clinical testing. J Nutr Health Aging. 2009;13(3):264–267.
  • Winblad B, Andreasen N, Minthon L, et al. Safety, tolerability, and antibody response of active Abeta immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 2012;11(7):597–604.
  • Wisniewski T. Active immunotherapy for Alzheimer’s disease. Lancet Neurol. 2012;11(7):571–572.
  • Wiessner C, Wiederhold KH, Tissot AC, et al. The second-generation active Abeta immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci. 2011;31(25):9323–9331.
  • Farlow MR, Andreasen N, Riviere ME, et al. Long-term treatment with active Abeta immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):23.
  • Graf A, Riviere ME, Caputo A, et al. Active Abeta immunotherapy CAD106 pahse II dose-adjuvant finding study: safety and CNS biomarkers. Alz Dementia. 2014;10:274.
  • Muhs A, Hickman DT, Pihlgren M, et al. Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci U S. 2007;104(23):9810–9815.
  • Hickman DT, Lopez-Deber MP, Ndao DM, et al. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J Biol Chem. 2011;286(16):13966–13976.
  • Saido TC, Iwatsubo T, Mann DM, et al. Dominant and differential deposition of distinct beta-amyloid peptide species, Ab N3(pE), in senile plaques. Neuron. 1995;14(2):457–466.
  • Frost JL, Le KX, Cynis H, et al. Pyroglutamate-3 amyloid-beta deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. Am J Pathol. 2013;183(2):369–381.
  • DeMattos RB, Lu J, Tang Y, et al. A plaque-specific antibody clears existing beta-amyloid plaques in Alzheimer’s disease mice. Neuron. 2012;76(5):908–920.
  • Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6(8):916–919.
  • DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2001;98(15):8850–8855.
  • Wisniewski T, Goni F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron. 2015;85:1162–1176.
  • Agadjanyan MG, Petrovsky N, Ghochikyan A. A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer’s disease. Alzheimers Dement. 2015;11(10):1246–1259.
  • Sevigny J, Chiao P, Williams L, et al. Aducanumab (BIIB037), an anti-amyloid beta monoclonal antibody, in patients with prodromal or mild Alzheimer’s disease: interim report of a randomized, double-blind, placebo-controlled, phase 1B study. Alz Dementia. 2015;11:4484.
  • Sevigny J, Chiao P, Williams L, et al. Randomized, double-blind, phase 1B study of BIIB037, an anti-amyloid beta monoclonal antibody, in patients with prodromal or mild Alzheimer’s disease. Neurodegener Dis. 2015;15(suppl 1):311.
  • Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322–333.
  • Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):311–321.
  • Bard F, Barbour R, Cannon C, et al. Epitope and isotype specificities of antibodies to beta -amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci U S. 2003;100(4):2023–2028.
  • Salloway S, Sperling R, Gilman S, et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology. 2009;73(24):2061–2070.
  • Farlow MR, Brosch JR. Immunotherapy for Alzheimer’s disease. Neurol Clin. 2013;31(3):869–878.
  • Rinne JO, Brooks DJ, Rossor MN, et al. (11)C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9(4):363–372.
  • Sperling R, Salloway S, Brooks DJ, et al. Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 2012;11(3):241–249.
  • Liu E, Schmidt ME, Margolin R, et al. Amyloid-beta 11C-PiB-PET imaging results from 2 randomized bapineuzumab phase 3 AD trials. Neurology. 2015;85(8):692–700.
  • Dodart JC, Bales KR, Gannon KS, et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci. 2002;5(5):452–457.
  • DeMattos RB, Bales KR, Cummins DJ, et al. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science. 2002;295(5563):2264–2267.
  • Farlow M, Arnold SE, Van Dyck CH, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 2012;8(4):261–271.
  • Lindberg H, Hard T, Lofblom J, et al. A truncated and dimeric format of an Affibody library on bacteria enables FACS-mediated isolation of amyloid-beta aggregation inhibitors with subnanomolar affinity. Biotechnol J. 2015 Jul 14. doi:10.1002/biot.201500131 [Epub ahead of print].
  • De Genst E, Muyldermans S. Development of a high affinity Affibody-derived protein against amyloid beta-peptide for future Alzheimer’s disease therapy. Biotechnol J. 2015 Sep 10. doi:10.1002/biot.201500405 [Epub ahead of print].
  • Siemers ER, Sundell KL, Carlson C, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement. 2015 Aug 1. pii: S1552-5260(15)02148-2. doi:10.1016/j.jalz.2015.06.1893 [Epub ahead of print].
  • Bohrmann B, Baumann K, Benz J, et al. Gantenerumab: a novel human anti-Abeta antibody demonstrates sustained cerebral amyloid-beta binding and elicits cell-mediated removal of human amyloid-beta. J Alzheimers. 2012;28(1):49–69.
  • Ostrowitzki S, Deptula D, Thurfjell L, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 2011;69:198–207.
  • Adolfsson O, Pihlgren M, Toni N, et al. An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci. 2012;32(28):9677–9689.
  • Morris JC. Mild cognitive impairment is early-stage Alzheimer disease: time to revise diagnostic criteria. Arch Neurol. 2006;63(1):15–16.
  • Puzzo D, Privitera L, Leznik E, et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci. 2008;28(53):14537–14545.
  • Giuffrida ML, Caraci F, Pignataro B, et al. Beta-amyloid monomers are neuroprotective. J Neurosci. 2009;29(34):10582–10587.
  • Soscia SJ, Kirby JE, Washicosky KJ, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010;5(3):e9505.
  • Yoshiyama Y, Lee VM, Trojanowski JQ. Therapeutic strategies for tau mediated neurodegeneration. J Neurol Neurosurg Psychiatry. 2013;84(7):784–795.
  • Sigurdsson EM. Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers. 2008;15(2):157–168.
  • Noble W, Garwood CJ, Hanger DP. Minocycline as a potential therapeutic agent in neurodegenerative disorders characterised by protein misfolding. Prion. 2009;3:2.
  • Kayed R, Jackson GR. Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Curr Opin Immunol. 2009;21(3):359–363.
  • Boutajangout A, Wisniewski T. Tau-based therapeutic approaches for Alzheimer’s disease - a mini-review. Gerontology. 2014;60:381–385.
  • Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3 Pt 1):631–639.
  • Bancher C, Braak H, Fischer P, et al. Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients. Neurosci Lett. 1993;162(12):179–182.
  • Terry RD. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropath Exp Neurol. 1996;55(10):1023–1025.
  • Braak H, Del TK. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 2011;121(2):171–181.
  • Elobeid A, Soininen H, Alafuzoff I. Hyperphosphorylated tau in young and middle-aged subjects. Acta Neuropathol. 2012;123(1):97–104.
  • Jack CR Jr., Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–216.
  • Clavaguera F, Bolmont T, Crowther RA, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11(7):909–913.
  • Clavaguera F, Grueninger F, Tolnay M. Intercellular transfer of tau aggregates and spreading of tau pathology: implications for therapeutic strategies. Neuropharmacology. 2014;76 Pt A:9–15.
  • Liu L, Drouet V, Wu JW, et al. Trans-synaptic spread of tau pathology in vivo. PLoS ONE. 2012;7(2):e31302.
  • Dujardin S, Lecolle K, Caillierez R, et al. Neuron-to-neuron wild-type tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol Commun. 2014;2:14.
  • Asuni AA, Boutajangout A, Quartermain D, et al. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci. 2007;27(34):9115–9129.
  • Boutajangout A, Ingadottir J, Davies P, et al. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011;118(4):658–667.
  • Chai X, Wu S, Murray TK, et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem. 2011;286(39):34457–34467.
  • Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med. 2015;21(6):394–402.
  • Kontsekova E, Zilka N, Kovacech B, et al. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther. 2014;6(4):44.
  • Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein tau, assessed in tau.P301L mice that model tauopathy. PLoS One. 2013;8(8):e72301.
  • Wisniewski HM, Wegiel J, Wang KC, et al. Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer’s disease. Acta Neuropathol. 1992;84(2):117–127.
  • Frackowiak J, Wisniewski HM, Wegiel J, et al. Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce beta-amyloid fibrils. Acta Neuropathol. 1992;84(3):225–233.
  • Wisniewski HM, Wegiel J. The role of microglia in amyloid fibril formation. Neuropathol Appl Neurobiol. 1994;20(2):192–194.
  • Yaghmoor F, Noorsaeed A, Alsaggaf S, et al. The role of TREM2 in Alzheimer’s disease and other neurological disorders. J Alz Dis Parkinsonism. 2014;4(5):160.
  • Zhang B, Gaiteri C, Bodea LG, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153(3):707–720.
  • Fiala M, Lin J, Ringman J, et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers. 2005;7(3):221–232.
  • Majumdar A, Cruz D, Asamoah N, et al. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell. 2007;18(4):1490–1496.
  • Lai AY, McLaurin J. Clearance of amyloid-beta peptides by microglia and macrophages: the issue of what, when and where. Future Neurol. 2012;7(2):165–176.
  • Streit WJ, Xue QS. Human CNS immune senescence and neurodegeneration. Curr Opin Immunol. 2014;29C:93–96.
  • Lee DC, Rizer J, Hunt JB, et al. Review: experimental manipulations of microglia in mouse models of Alzheimer’s pathology: activation reduces amyloid but hastens tau pathology. Neuropathol Appl Neurobiol. 2013;39(1):69–85.
  • Lampron A, Elali A, Rivest S. Innate immunity in the CNS: redefining the relationship between the CNS and its environment. Neuron. 2013;78(2):214–232.
  • Schwartz M, Kipnis J, Rivest S, et al. How do immune cells support and shape the brain in health, disease, and aging?. J Neurosci. 2013;33(45):17587–17596.
  • Tahara K, Kim HD, Jin JJ, et al. Role of toll-like receptor signalling in Abeta uptake and clearance. Brain. 2006;129(Pt 11):3006–3019.
  • Jin JJ, Kim HD, Maxwell JA, et al. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation. 2008;5:23.
  • Reed-Geaghan EG, Savage JC, Hise AG, et al. CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci. 2009;29(38):11982–11992.
  • Michaud JP, Halle M, Lampron A, et al. Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci U S. 2013;110(5):1941–1946.
  • Scholtzova H, Kascsak RJ, Bates KA, et al. Induction of Toll-like receptor 9 signaling as a method for ameliorating Alzheimer’s disease related pathology. J Neurosci. 2009;29(6):1846–1854.
  • Scholtzova H, Chianchiano P, Pan J, et al. Toll-like receptor 9 stimulation for reduction of amyloid b and tau Alzheimer’s disease related pathology. Acta Neuropathol Commun. 2014;2:101.
  • Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61(3):195–204.
  • Scholtzova H, Williams L, Nehete P, et al. Innate immunity stimulation via TLR9 in a non-human primate model of sporadic cerebral amyloid angiopathy. Alz Dementia. 2013;9(4):508.
  • Chung E, Ji Y, Sun Y, et al. Anti-PrPC monoclonal antibody infusion as a novel treatment for Ab oligomer cognitive cognitive deficits. BMC Neurosci. 2010;11:130.
  • Barry AE, Klyubin I, Mc Donald JM, et al. Alzheimer’s disease brain-derived amyloid-beta-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci. 2011;31(20):7259–7263.
  • Lee EB, Leng LZ, Zhang B, et al. Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem. 2006;281(7):4292–4299.
  • Moretto N, Bolchi A, Rivetti C, et al. Conformation-sensitive antibodies against Alzheimer amyloid-beta by immunization with a thioredoxin-constrained B-cell epitope peptide. J Biol Chem. 2007;282(15):11436–11445.
  • Wisniewski T, Prelli F, Scholtzova H, et al. Immunotherapy targeting abnormal protein conformation. Alz Dementia. 2009;5(4, Suppl. 1):113.
  • Goni F, Prelli F, Ji Y, et al. Immunomodulation targeting abnormal protein conformation reduces pathology in a mouse model of Alzheimer’s disease. PLoS One. 2010;5(10):e13391.
  • Goni F, Herline K, Peyser D, et al. Immunomodulation targeting both Ab and tau pathological conformers ameliorates Alzheimer’s disease pathology in TgSwDI and 3xTg mouse models. J Neuroinflammation. 2013;10(1):150.
  • Vidal R, Frangione B, Rostagno A, et al. A stop-codon mutation in the BRI gene associated with familial British dementia. Nature. 1999;399(6738):776–781.
  • Rostagno A, Tomidokoro Y, Lashley T, et al. Chromosome 13 dementias. Cell Mol Life Sci. 2005;62(16):1814–1825.
  • Herline K, Goni F, Drummond E, et al. Characterization of a novel monoclonal antibody targeting pathological proteins in Alzheimer’s disease. Jnen. 2015;74(6):625625.
  • Holmes C, Boche D, Wilkinson D, et al. Long term effects of Ab42 immunization in Alzheimer’s disease: immune response, plaque removal and clinical function. Lancet. 2008;372:216–223.
  • Wisniewski T, Goni F. Immunotherapy for Alzheimer’s disease. Biochem Pharmacol. 2014;88:499–507.
  • Crary JF, Trojanowski JQ, Schneider JA, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128(6):755–766.
  • Jellinger KA, Alafuzoff I, Attems J, et al. PART, a distinct tauopathy, different from classical sporadic Alzheimer disease. Acta Neuropathol. 2015;129:757–762.
  • Jansen WJ, Ossenkoppele R, Visser PJ, et al. Alzheimer disease risk–reply. Jama. 2015;314(11):1177–1178.
  • Walker L, McAleese KE, Thomas AJ, et al. Neuropathologically mixed Alzheimer’s and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol. 2015;129(5):729–748.
  • Josephs KA, Whitwell JL, Weigand SD, et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. 2014;127(6):811–824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.