418
Views
19
CrossRef citations to date
0
Altmetric
Review

Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches

, &
Pages 1163-1181 | Received 14 Jan 2016, Accepted 22 Mar 2016, Published online: 20 Apr 2016

References

  • Wiersinga WJ, De Vos AF, de Beer R, et al. Inflammation patterns induced by different Burkholderia species in mice. Cell Microbiol. 2008;10(1):81–87.
  • Coenye T, Vandamme P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol. 2003;5(9):719–729.
  • Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev. 2005;18(2):383–416.
  • Silva EB, Dow SW. Development of Burkholderia mallei and pseudomallei vaccines. Front Cell Infect Microbiol. 2013;3:10.
  • Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med. 2012;367(11):1035–1044.
  • Allwood EM, Devenish RJ, Prescott M, et al. Strategies for intracellular survival of Burkholderia pseudomallei. Front Microbiol. 2011;2:170.
  • Arjcharoen S, Wikraiphat C, Pudla M, et al. Fate of a Burkholderia pseudomallei lipopolysaccharide mutant in the mouse macrophage cell line RAW 264.7: possible role for the O-antigenic polysaccharide moiety of lipopolysaccharide in internalization and intracellular survival. Infect Immun. 2007;75(9):4298–4304.
  • Utaisincharoen P, Anuntagool N, Limposuwan K, et al. Involvement of beta interferon in enhancing inducible nitric oxide synthase production and antimicrobial activity of Burkholderia pseudomallei-infected macrophages. Infect Immun. 2003;71(6):3053–3057.
  • Baral P, Utaisincharoen P. Involvement of signal regulatory protein alpha, a negative regulator of Toll-like receptor signaling, in impairing the MyD88-independent pathway and intracellular killing of Burkholderia pseudomallei-infected mouse macrophages. Infect Immun. 2012;80(12):4223–4231.
  • Gilling DH, Luna VA, Pflugradt C. The identification and differentiation between Burkholderia mallei and Burkholderia pseudomallei using one gene pyrosequencing. Int Scholarly Res Notices. 2014;2014:1–10.
  • Brett PJ, Burtnick MN, Su H, et al. iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages. Cell Microbiol. 2008;10(2):487–498.
  • Lu R, Popov V, Patel J, et al. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII) and macrophages. Front Cell Infect Microbiol. 2012;2:165.
  • Dvorak GD, Spickler AR. Glanders. J Am Vet Med Assoc. 2008;233(4):570–577.
  • Khan I, Wieler LH, Melzer F, et al. Glanders in animals: a review on epidemiology, clinical presentation, diagnosis and countermeasures. Transbound Emerg Dis. 2013;60(3):204–221.
  • Mota RA, Da Fonseca Oliveira AA, da Silva AM, et al. Glanders in donkeys (Equus Asinus) in the state of pernambuco, Brazil: A case report. Brazilian J Microbiol: [publication of the Brazilian Society for Microbiology]. 2010;41(1):146–149.
  • Elschner MC, Klaus CU, Liebler-Tenorio E, et al. Burkholderia mallei infection in a horse imported from Brazil. Equine Vet Educ. 2009;21(3):147–150.
  • OIE Glanders, Germany. http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=17092OIE world Organisation for Animal Health. OIE, Jan 30, 2015. Web. Jan 14, 2016.
  • Memisevic V, Zavaljevski N, Pieper R, et al. Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics: MCP. 2013;12(11):3036–3051.
  • Memisevic V, Zavaljevski N, Rajagopala SV, et al. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms. PLoS Comput Biol. 2015;11(3):e1004088.
  • Chin CY, Monack DM, Nathan S. Genome wide transcriptome profiling of a murine acute melioidosis model reveals new insights into how Burkholderia pseudomallei overcomes host innate immunity. BMC Genomics. 2010;11:672.
  • Koh GC, Schreiber MF, Bautista R, et al. Host responses to melioidosis and tuberculosis are both dominated by interferon-mediated signaling. Plos One. 2013;8(1):e54961.
  • Baral P, Utaisincharoen P. Sterile-alpha- and armadillo motif-containing protein inhibits the TRIF-dependent downregulation of signal regulatory protein alpha to interfere with intracellular bacterial elimination in Burkholderia pseudomallei-infected mouse macrophages. Infect Immun. 2013;81(9):3463–3471.
  • Pudla M, Limposuwan K, Utaisincharoen P. Burkholderia pseudomallei-induced expression of a negative regulator, sterile-alpha and Armadillo motif-containing protein, in mouse macrophages: a possible mechanism for suppression of the MyD88-independent pathway. Infect Immun. 2011;79(7):2921–2927.
  • Wiersinga WJ, van’t Veer C, van den Pangaart PS, et al. Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in Gram-negative sepsis (melioidosis). Crit Care Med. 2009;37(2):569–576.
  • Ekchariyawat P, Pudla S, Limposuwan K, et al. Expression of suppressor of cytokine signaling 3 (SOCS3) and cytokine-inducible Src homology 2-containing protein (CIS) induced in Burkholderia pseudomallei–infected mouse macrophages requires bacterial internalization. Microb Pathog. 2007;42(2–3):104–110.
  • Ekchariyawat P, Pudla S, Limposuwan K, et al. Burkholderia pseudomallei-induced expression of suppressor of cytokine signaling 3 and cytokine-inducible src homology 2-containing protein in mouse macrophages: a possible mechanism for suppression of the response to gamma interferon stimulation. Infect Immun. 2005;73(11):7332–7339.
  • Wiersinga WJ, Dessing MC, Kager PA, et al. High-throughput mRNA profiling characterizes the expression of inflammatory molecules in sepsis caused by Burkholderia pseudomallei. Infect Immun. 2007;75(6):3074–3079.
  • Wiersinga WJ, Dessing MC, van der Poll T. Gene-expression profiles in murine melioidosis. Microbes and Infection/Institut Pasteur. 2008;10(8):868–877.
  • Asakrah S, Nieves W, Mahdi Z, et al. Post-exposure therapeutic efficacy of COX-2 inhibition against Burkholderia pseudomallei. PLoS Negl Trop Dis. 2013;7(5):e2212.
  • Tan KS, Chen Y, Lim YC, et al. Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. J Immunology. 2010;184(9):5160–5171.
  • Utaisincharoen P, Tangthawornchaikul N, Kespichayawattana W, et al. Burkholderia pseudomallei interferes with inducible nitric oxide synthase (iNOS) production: a possible mechanism of evading macrophage killing. Microbiol Immunol. 2001;45(4):307–313.
  • Yoshimura A, Suzuki M, Sakaguchi R, et al. SOCS, Inflammation, and Autoimmunity. Front Immunol. 2012;3:20.
  • Lang R, Hammer M, Mages J. DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol. 2006;177(11):7497–7504.
  • Woodward EA, Prêle CM, Nicholson SE, et al. The anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology. 2010;131(1):118–127.
  • Arend WP, Malyak M, Guthridge CJ, et al. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27–55.
  • Liew FY, Xu D, Brint EK, et al. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5(6):446–458.
  • Kondo T, Kawai T, Akira S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 2012;33(9):449–458.
  • Zakharova M, Ziegler HK. Paradoxical anti-inflammatory actions of TNF-: Inhibition of IL-12 and IL-23 via TNF receptor 1 in macrophages and dendritic cells. J Immunol. 2005;175(8):5024–5033.
  • Massey S, Yeager LA, Blumentritt CA, et al. Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection. Sci Rep. 2014;4:4305.
  • Tangsudjai S, Pudla M, Limposuwan K, et al. Involvement of the MyD88-independent pathway in controlling the intracellular fate of Burkholderia pseudomallei infection in the mouse macrophage cell line RAW 264.7. Microbiol Immunol. 2010;54(5):282–290.
  • Novem V, Shui G, Wang D, et al. Structural and biological diversity of lipopolysaccharides from Burkholderia pseudomallei and Burkholderia thailandensis. Clin Vaccine Immunol: CVI. 2009;16(10):1420–1428.
  • Korneev KV, Arbatsky NP, Molinaro A, et al. Structural relationship of the lipid a acyl groups to activation of murine toll-like receptor 4 by lipopolysaccharides from pathogenic strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas Aeruginosa. Fron Immunol. 2015;6:595.
  • Matsuura M, Kawahara K, Ezaki T, et al. Biological activities of lipopolysaccharide of Burkholderia (Pseudomonas) pseudomallei. FEMS Microbiol Lett. 1996;137(1):79–83.
  • Utaisincharoen P, Tangthawornchaikul N, Kespichayawattana W, et al. Kinetic studies of the production of nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha) in macrophages stimulated with Burkholderia pseudomallei endotoxin. Clin Exp Immunol. 2000;122(3):324–329.
  • Chantratita N, Tandhavanant S, Myers ND, et al. Survey of innate immune responses to Burkholderia pseudomallei in human blood identifies a central role for lipopolysaccharide. Plos One. 2013;8(11):e81617.
  • Weehuizen TA, Prior JL, van der Vaart TW, et al. Differential toll-like receptor-signalling of Burkholderia pseudomallei lipopolysaccharide in murine and human models. Plos One. 2015;10(12):e0145397.
  • Wikraiphat C, Charoensap J, Utaisincharoen P, et al. Comparative in vivo and in vitro analyses of putative virulence factors of Burkholderia pseudomallei using lipopolysaccharide, capsule and flagellin mutants. FEMS Immunol Med Microbiol. 2009;56(3):253–259.
  • Wikraiphat C, Saiprom N, Tandhavanant S, et al. Colony morphology variation of Burkholderia pseudomallei is associated with antigenic variation and O-polysaccharide modification. Infect Immun. 2015;83(5):2127–2138.
  • Wongratanacheewin S, Kespichayawattana W, Intachote P, et al. Immunostimulatory CpG oligodeoxynucleotide confers protection in a murine model of infection with Burkholderia pseudomallei. Infect Immun. 2004;72(8):4494–4502.
  • Tan ZY, Khah AKL, Sim SH, et al. Synthetic TLR4 agonist as a potential immunotherapy for melioidosis. Open J Immunol. 2013;03(01):1–9.
  • Judy BM, Taylor K, Deeraksa A, et al. Prophylactic application of CpG oligonucleotides augments the early host response and confers protection in acute melioidosis. Plos One. 2012;7(3):e34176.
  • Mott TM, Johnston RK, Vijayakumar S, et al. Monitoring therapeutic treatments against infections using imaging techniques. Pathogens. 2013;2:2.
  • Waag DM, McCluskie MJ, Zhang N, et al. oligonucleotide can protect mice from a low aerosol challenge dose of Burkholderia mallei. Infect Immun. 2006;74(3):1944–1948.
  • Utaisincharoen P, Anuntagool N, Chaisuriya P, et al. CpG ODN activates NO and iNOS production in mouse macrophage cell line (RAW 264.7). Clin Exp Immunol. 2002;128(3):467–473.
  • Propst KL, Troyer RM, Kellihan LM, et al. Immunotherapy markedly increases the effectiveness of antimicrobial therapy for treatment of Burkholderia pseudomallei infection. Antimicrob Agents Chemother. 2010;54(5):1785–1792.
  • Goodyear A, Kellihan L, Bielefeldt-Ohmann H, et al. Protection from pneumonic infection with burkholderia species by inhalational immunotherapy. Infect Immun. 2009;77(4):1579–1588.
  • Easton A, Haque A, Chu K, et al. Combining vaccination and postexposure CpG therapy provides optimal protection against lethal sepsis in a biodefense model of human melioidosis. J Infect Dis. 2011;204(4):636–644.
  • Puangpetch A, Anderson R, Huang YY, et al. Cationic liposomes extend the immunostimulatory effect of CpG oligodeoxynucleotide against Burkholderia pseudomallei infection in BALB/c mice. Clin Vaccine Immunol: CVI. 2012;19(5):675–683.
  • Breitbach K, Kohler J, Steinmetz I. Induction of protective immunity against Burkholderia pseudomallei using attenuated mutants with defects in the intracellular life cycle. Trans R Soc Trop Med Hyg. 2008;102(Suppl 1):S89–94.
  • Whitlock GC, Deeraksa A, Qazi O, et al. Protective response to subunit vaccination against intranasal and challenge. Procedia Vaccinol. 2010;2(1):2–9.
  • Scott AE, Laws TR, D’Elia RV, et al. Protection against experimental melioidosis following immunization with live Burkholderia thailandensis expressing a manno-heptose capsule. Clin Vaccine Immunol: CVI. 2013;20(7):1041–1047.
  • Haque A, Chu K, Easton A, et al. A live experimental vaccine against Burkholderia pseudomallei elicits CD4+ T cell-mediated immunity, priming T cells specific for 2 type III secretion system proteins. J Infect Dis. 2006;194(9):1241–1248.
  • Atkins T, Prior RG, Mack K, et al. A mutant of Burkholderia pseudomallei, auxotrophic in the branched chain amino acid biosynthetic pathway, is attenuated and protective in a murine model of melioidosis. Infect Immun. 2002;70(9):5290–5294.
  • Silva EB, Goodyear A, Sutherland MD, et al. Correlates of immune protection following cutaneous immunization with an attenuated Burkholderia pseudomallei vaccine. Infect Immun. 2013;81(12):4626–4634.
  • Cuccui J, Easton A, Chu KK, et al. Development of signature-tagged mutagenesis in Burkholderia pseudomallei to identify genes important in survival and pathogenesis. Infect Immun. 2007;75(3):1186–1195.
  • Norris MH, Propst KL, Kang Y, et al. The Burkholderia pseudomallei Deltaasd mutant exhibits attenuated intracellular infectivity and imparts protection against acute inhalation melioidosis in mice. Infect Immun. 2011;79(10):4010–4018.
  • Muller CM, Conejero L, Spink N, et al. Role of RelA and SpoT in Burkholderia pseudomallei virulence and immunity. Infect Immun. 2012;80(9):3247–3255.
  • Cuccui J, Milne TS, Harmer N, et al. Characterization of the Burkholderia pseudomallei K96243 capsular polysaccharide I coding region. Infect Immun. 2012;80(3):1209–1221.
  • Stevens MP, Haque A, Atkins T, et al. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology. 2004;150(Pt 8):2669–2676.
  • Puangpetch A, Anderson R, Huang YY, et al. Comparison of the protective effects of killed Burkholderia pseudomallei and CpG oligodeoxynucleotide against live challenge. Vaccine. 2014;32(45):5983–5988.
  • Barnes JL, Ketheesan N. Development of protective immunity in a murine model of melioidosis is influenced by the source of Burkholderia pseudomallei antigens. Immunol Cell Biol. 2007;85(7):551–557.
  • Henderson A, Propst K, Kedl R, et al. Mucosal immunization with liposome-nucleic acid adjuvants generates effective humoral and cellular immunity. Vaccine. 2011;29(32):5304–5312.
  • Sarkar-Tyson M, Smither SJ, Harding SV, et al. Protective efficacy of heat-inactivated B. thailandensis, B. mallei or B. pseudomallei against experimental melioidosis and glanders. Vaccine. 2009;27(33):4447–4451.
  • Healey GD, Elvin SJ, Morton M, et al. Humoral and cell-mediated adaptive immune responses are required for protection against Burkholderia pseudomallei challenge and bacterial clearance postinfection. Infect Immun. 2005;73(9):5945–5951.
  • Elvin SJ, Healey GD, Westwood A, et al. Protection against heterologous Burkholderia pseudomallei strains by dendritic cell immunization. Infect Immun. 2006;74(3):1706–1711.
  • Ngugi SA, Ventura VV, Qazi O, et al. Lipopolysaccharide from Burkholderia thailandensis E264 provides protection in a murine model of melioidosis. Vaccine. 2010;28(47):7551–7555.
  • Nelson M, Prior JL, Lever MS, et al. Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis. J Med Microbiol. 2004;53(Pt 12):1177–1182.
  • Scott AE, Ngugi SA, Laws TR, et al. Protection against experimental melioidosis following immunisation with a lipopolysaccharide-protein conjugate. Journal Immunol Res. 2014;2014:392170.
  • Harland DN, Chu K, Haque A, et al. Identification of a LolC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis. Infect Immun. 2007;75(8):4173–4180.
  • Burtnick MN, Brett PJ, Harding SV, et al. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 2011;79(4):1512–1525.
  • Su YC, Wan KL, Mohamed R, et al. Immunization with the recombinant Burkholderia pseudomallei outer membrane protein Omp85 induces protective immunity in mice. Vaccine. 2010;28(31):5005–5011.
  • Chin CY, Tan SC, Nathan S. Immunogenic recombinant Burkholderia pseudomallei MprA serine protease elicits protective immunity in mice. Front Cell Infect Microbiol. 2012;2:85.
  • Chen YS, Hsiao YS, Lin HH, et al. Immunogenicity and anti-Burkholderia pseudomallei activity in Balb/c mice immunized with plasmid DNA encoding flagellin. Vaccine. 2006;24(6):750–758.
  • Druar C, Yu F, Barnes JL, et al. Evaluating Burkholderia pseudomallei Bip proteins as vaccines and Bip antibodies as detection agents. FEMS Immunol Med Microbiol. 2008;52(1):78–87.
  • Scott AE, Burtnick MN, Stokes MG, et al. Burkholderia pseudomallei capsular polysaccharide conjugates provide protection against acute melioidosis. Infect Immun. 2014;82(8):3206–3213.
  • Garcia-Quintanilla F, Iwashkiw JA, Price NL, et al. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front Microbiol. 2014;5:381.
  • Nieves W, Asakrah S, Qazi O, et al. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine. 2011;29(46):8381–8389.
  • Nieves W, Petersen H, Judy BM, et al. A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin Vaccine Immunol: CVI. 2014;21(5):747–754.
  • Chen YS, Hsiao YS, Lin HH, et al. CpG-modified plasmid DNA encoding flagellin improves immunogenicity and provides protection against Burkholderia pseudomallei infection in BALB/c mice. Infect Immun. 2006;74(3):1699–1705.
  • Ulrich RL, Amemiya K, Waag DM, et al. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice. Vaccine. 2005;23(16):1986–1992.
  • Ulrich RL, Deshazer D, Hines HB, et al. Quorum sensing: a transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei. Infect Immun. 2004;72(11):6589–6596.
  • Bandara AB, DeShazer D, Inzana TJ, et al. A disruption of ctpA encoding carboxy-terminal protease attenuates Burkholderia mallei and induces partial protection in CD1 mice. Microb Pathog. 2008;45(3):207–216.
  • Whitlock GC, Lukaszewski RA, Judy BM, et al. Host immunity in the protective response to vaccination with heat-killed Burkholderia mallei. BMC Immunol. 2008;9:55.
  • Amemiya K. Nonviable Burkholderia mallei induces a mixed Th1- and Th2-Like cytokine response in BALB/c mice. Infect Immun. 2002;70(5):2319–2325.
  • Amemiya K, Meyers JL, Trevino SR, et al. Interleukin-12 induces a Th1-like response to Burkholderia mallei and limited protection in BALB/c mice. Vaccine. 2006;24(9):1413–1420.
  • Fernandes PJ, Guo Q, Waag DM, et al. The type IV pilin of Burkholderia mallei is highly immunogenic but fails to protect against lethal aerosol challenge in a murine model. Infect Immun. 2007;75(6):3027–3032.
  • Torres AG, Gregory AE, Hatcher CL, et al. Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine. 2015;33(5):686–692.
  • Gregory AE, Judy BM, Qazi O, et al. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine. 2015;11(2):447–456.
  • Moustafa DA, Scarff JM, Garcia PP, et al. Recombinant salmonella expressing Burkholderia mallei LPS O antigen provides protection in a murine model of melioidosis and glanders. Plos One. 2015;10(7):e0132032.
  • Mott TM, Vijayakumar S, Sbrana E, et al. Characterization of the Burkholderia mallei tonB mutant and its potential as a backbone strain for vaccine development. PLoS Negl Trop Dis. 2015;9(6):e0003863.
  • Graham BS. New approaches to vaccine adjuvants: inhibiting the inhibitor. PLoS Med. 2006;3(1):e57.
  • Song XT, Evel-Kabler K, Rollins L, et al. An alternative and effective HIV vaccination approach based on inhibition of antigen presentation attenuators in dendritic cells. PLoS Med. 2006;3(1):e11.
  • Limmathurotsakul D, Funnell SG, Torres AG, et al. Consensus on the development of vaccines against naturally acquired melioidosis. Emerg Infect Dis. 2015;21(6):e1–e7.
  • Sarkar-Tyson M, Titball RW. Progress toward development of vaccines against melioidosis: A review. Clin Ther. 2010;32(8):1437–1445.
  • Choh LC, Ong GH, Vellasamy KM, et al. Burkholderia vaccines: are we moving forward? Front Cell Infect Microbiol. 2013;3:5.
  • Peacock SJ, Limmathurotsakul D, Lubell Y, et al. Melioidosis vaccines: a systematic review and appraisal of the potential to exploit biodefense vaccines for public health purposes. PLoS Negl Trop Dis. 2012;6(1):e1488.
  • Patel N, Conejero L, De Reynal M, et al. Development of vaccines against burkholderia pseudomallei. Front Microbiol. 2011;2:198.
  • West TE, Frevert CW, Liggitt HD, et al. Inhalation of Burkholderia thailandensis results in lethal necrotizing pneumonia in mice: a surrogate model for pneumonic melioidosis. Trans R Soc Trop Med Hyg. 2008;102(Suppl 1):S119–126.
  • Glass MB, Gee JE, Steigerwalt AG, et al. Pneumonia and septicemia caused by Burkholderia thailandensis in the United States. J Clin Microbiol. 2006;44(12):4601–4604.
  • Feodorova VA, Sayapina LV, Corbel MJ, et al. Russian vaccines against especially dangerous bacterial pathogens. Emerg Microbes Infect. 2014;3(12):e86.
  • Burtnick MN, Heiss C, Roberts RA, et al. Development of capsular polysaccharide-based glycoconjugates for immunization against melioidosis and glanders. Front Cell Infect Microbiol. 2012;2:108.
  • Petersen H, Nieves W, Russell-Lodrigue K, et al. Evaluation of a Outer Membrane Vesicle Vaccine in Nonhuman Primates. Procedia Vaccinol. 2014;8:38–42.
  • Whitlock GC, Robida MD, Judy BM, et al. Protective antigens against glanders identified by expression library immunization. Front Microbiol. 2011;2:227.
  • Jenjaroen K, Chumseng S, Sumonwiriya M, et al. T-cell responses are associated with survival in acute melioidosis patients. PLoS Negl Trop Dis. 2015;9(10):e0004152.
  • Bondi SK, Goldberg JB. Strategies toward vaccines against Burkholderia mallei and Burkholderia pseudomallei. Expert Rev Vaccines. 2008;7(9):1357–1365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.