65
Views
8
CrossRef citations to date
0
Altmetric
Perspective

Prospects for a T-cell receptor vaccination against myasthenia gravis

&
Pages 473-492 | Published online: 09 Jan 2014

References

  • Vincent A, Palace J, Hilton-Jones D. Myasthenia gravis. Lancet 357, 2122–2128 (2001).
  • Vincent A. Unraveling the pathogenesis of myasthenia gravis. Natl Rev. Immunol.2, 797–804 (2002).
  • Lindstrom JM. Acetylcholine receptors and myasthenia. Muscle Nerve23, 453–477 (2000).
  • Drachman DB. Myasthenia gravis. In: The Autoimmune Diseases. Rose NR, Mackay IP (Eds), San Diego, CA, USA. 637–662 (1998).
  • Melms A, Chrestel S, Schalke BC et al. Autoimmune T-lymphocytes in myasthenia gravis. Determination of target epitopes using T lines and recombinant products of the mouse nicotinic acetylcholine receptor gene. J. Clin. Invest.83, 785–790 (1989).
  • Hohlfeld R, Toyka KV, Heininger K, Grosse-Wilde H, Kalies I. Autoimmune human T-lymphocytes specific for acetylcholine receptor. Nature 310, 244–246 (1984).
  • Giraud M, Beaurain G, Eymard B, Tranchant C, Gajdos P, Garchon HJ. Genetic control of autoantibody expression in autoimmune myasthenia gravis: role of the self-antigen and of HLA-linked loci. Genes Immun. 5, 398–404 (2004).
  • Vincent A, McConville J, Farrugia ME, Newsom-Davis J. Seronegative myasthenia gravis. Semin. Neurol. 24, 125–133 (2004).
  • Vincent A, Bowen J, Newsom-Davis J, McConville J. Seronegative generalised myasthenia gravis: clinical features, antibodies, and their targets. Lancet Neurol.2, 99–106 (2003).
  • Liyanage Y, Hoch W, Beeson D, Vincent A. The agrin/muscle-specific kinase pathway: new targets for autoimmune and genetic disorders at the neuromuscular junction. Muscle Nerve25, 4–16 (2002).
  • Lindstrom J. Is ‘seronegative’ MG explained by autoantibodies to MuSK? Neurology62, 1920–1921 (2004).
  • Berrih-Aknin S, Cohen-Kaminsky S, Neumann D et al. Cellular aspects of myasthenia gravis. Immunol. Res.7, 189–199 (1988).
  • Levine GD, Rosai J. Thymic hyperplasia and neoplasia: a review of current concepts. Hum. Pathol. 9, 495–515 (1978).
  • Vincent A. Aetiological factors in the development of myasthenia gravis. Adv. Neuroimmunol. 4, 355–371 (1994).
  • Willcox N. Myasthenia Gravis. Curr. Opin. Immunol.5, 910–917 (1993).
  • Salmon AM, Bruand C, Cardona A, Changeux JP, Berrih-Aknin S. An acetylcholine receptor α subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis. J. Clin. Invest. 101, 2340–2350 (1998).
  • Levinson AI, Wheatley LM. The thymus and the pathogenesis of myasthenia gravis. Clin. Immunol. Immunopathol. 78, 1–5 (1996).
  • Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S, Berrih-Aknin S. Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis. J. Immunol.157, 3752–3760 (1996).
  • Melms A, Schalke BC, Kirchner T, Muller-Hermelink HK, Albert E, Wekerle H. Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J. Clin. Invest. 81, 902–908 (1988).
  • Truffault F, Cohen-Kaminsky S, Khalil I, Levasseur P, Berrih-Aknin S. Altered intrathymic T-cell repertoire in human myasthenia gravis. Ann. Neurol.41, 731–741 (1997).
  • Moulian N, Bidault J, Truffault F, Yamamoto AM, Levasseur P, Berrih-Aknin S. Thymocyte Fas expression is dysregulated in myasthenia gravis patients with anti-acetylcholine receptor antibody. Blood89, 3287–3295 (1997).
  • Sommer N, Willcox N, Harcourt GC, Newsom-Davis J. Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor-reactive T-cells. Ann. Neurol.28, 312–319 (1990).
  • Fujii Y, Monden Y, Nakahara K, Hashimoto J, Kawashima Y. Antibody to acetylcholine receptor in myasthenia gravis: production by lymphocytes from thymus or thymoma. Neurology 34, 1182–1186 (1984).
  • Leprince C, Cohen-Kaminsky S, Berrih-Aknin S et al. Thymic B-cells from myasthenia gravis patients are activated B-cells. Phenotypic and functional analysis. J. Immunol.145, 2115–2122 (1990).
  • Berrih-Aknin S, Morel E, Raimond F et al. The role of the thymus in myasthenia gravis: immunohistological and immunological studies in 115 cases. Ann. NY Acad. Sci.505, 50–70 (1987).
  • Le Brigand H, Levasseur P, Miranda AR, Gaud C, Wojakowski I. Surgical treatment of myasthenia by thymectomy. A report on 248 cases. Sem. Hop. 56, 1502–1505 (1980).
  • Molnar J, Szobor A. Myasthenia gravis: effect of thymectomy in 425 patients. A 15-year experience. Eur. J. Cardiothorac. Surg. 4, 8–14 (1990).
  • Gronseth GS, Barohn RJ. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology55, 7–15 (2000).
  • Jaretzki A, Barohn RJ, Ernstoff RM et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Ann. Thorac. Surg.70, 327–334 (2000).
  • Phillips LH. The epidemiology of myasthenia gravis. Semin. Neurol.24, 17–20 (2004).
  • MacDonald BK, Cockerell OC, Sander JW, Shorvon SD. The incidence and lifetime prevalence of neurological disorders in a prospective community-based study in the UK. Brain123(Pt. 4), 665–676 (2000).
  • Grob D. Natural history of myasthenia gravis. In: Myasthenia Gravis and Myasthenic Disorders. Engel AG (Ed.) Oxford, UK. 131–145 (1999).
  • Richman DP, Agius MA. Treatment of autoimmune myasthenia gravis. Neurology 61, 1652–1661 (2003).
  • Ciafaloni E, Massey JM, Tucker-Lipscomb B, Sanders DB. Mycophenolate mofetil for myasthenia gravis: an open-label pilot study. Neurology 56, 97–99 (2001).
  • Drachman DB. Immunotherapy in neuromuscular disorders: current and future strategies. Muscle Nerve19, 1239–1251 (1996).
  • Ferrero B, Durelli L. High-dose intravenous immunoglobulin G treatment of myasthenia gravis. Neurol. Sci.23(Suppl. 1), S9–S24 (2002).
  • Antozzi C. Myasthenia gravis and myasthenic syndrome. Neurol. Sci.24(Suppl.4), S260–S263 (2003).
  • Engel AG. Congenital Myasthenic disorders. In: Myasthenis Gravis and Myasthenic Disorders. Engel AG (Ed), Oxford, 251–297 (1999).
  • Newsom-Davis J. Therapy in myasthenia gravis and Lambert-Eaton myasthenic syndrome. Semin. Neurol.23, 191–198 (2003).
  • Gajdos P, Chevret S, Clair B, Tranchant C, Chastang C. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Myasthenia Gravis Clinical Study Group. Ann. Neurol.41, 789–796 (1997).
  • Dalakas MC. Intravenous immunoglobulin in the treatment of autoimmune neuromuscular diseases: present status and practical therapeutic guidelines. Muscle Nerve22, 1479–1497 (1999).
  • Keesey JC. A history of treatments for myasthenia gravis. Semin. Neurol.24, 5–16 (2004).
  • Christadoss P, Poussin M, Deng C. Animal models of myasthenia gravis. Clin. Immunol. 94, 75–87 (2000).
  • Tzartos SJ, Barkas T, Cung MT et al. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol. Rev.163, 89–120 (1998).
  • Berrih-Aknin S, Cohen-Kaminsky S, Lepage V, Neumann D, Bach JF, Fuchs S. T-cell antigenic sites involved in myasthenia gravis: correlations with antibody titre and disease severity. J. Autoimmun. 4, 137–153 (1991).
  • Protti MP, Manfredi AA, Horton RM, Bellone M, Conti-Tronconi BM. Myasthenia gravis: recognition of a human autoantigen at the molecular level. Immunol. Today.14, 363–368 (1993).
  • Weiner HL. Induction of oral tolerance to the acetylcholine receptor for treatment of myasthenia gravis. J. Clin. Invest. 104, 1667–1668 (1999).
  • Im SH, Barchan D, Fuchs S, Souroujon MC. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. J. Clin. Invest.104, 1723–1730 (1999).
  • Maiti PK, Feferman T, Im SH, Souroujon MC, Fuchs S. Immunosuppression of rat myasthenia gravis by oral administration of a syngeneic acetylcholine receptor fragment. J. Neuroimmunol. 152, 112–120 (2004).
  • Pachner AR. Antigen-specific immunotherapy in myasthenia gravis: failed promise and new hope. J. Neuroimmunol.152, vii–viii (2004).
  • Krause I, Blank M, Shoenfeld Y. Immunomodulation of experimental autoimmune diseases via oral tolerance. Crit. Rev. Immunol.20, 1–16 (2000).
  • Faria AM, Weiner HL. Oral tolerance: mechanisms and therapeutic applications. Adv. Immunol. 73, 153–264 (1999).
  • Bielekova B, Goodwin B, Richert N et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a Phase II clinical trial with an altered peptide ligand. Nature Med. 6, 1167–1175 (2000).
  • Weathington NM, Blalock JE. Rational design of peptide vaccines for autoimmune disease: harnessing molecular recognition to fix a broken network. Expert Rev. Vaccines 2, 61–73 (2003).
  • Pendergraft WF III, Preston GA, Shah RR et al. Autoimmunity is triggered by cPR-3(105–201), a protein complementary to human autoantigen proteinase-3. Nature Med. 10, 72–79 (2004).
  • Vandenbark AA, Hashim GA, Offner H. T-cell receptor peptides in treatment of autoimmune disease: rationale and potential. J. Neurosci. Res. 43, 391–402 (1996).
  • Gigliotti D, Lefvert AK, Jeddi-Tehrani M et al. Overexpression of select T-cell receptor V beta gene families within CD4+ and CD8+ T-cell subsets of myasthenia gravis patients: a role for superantigen(s)? Mol. Med. 2, 452–459 (1996).
  • Mantegazza R, Oksenberg JR, Baggi F et al. Increased incidence of certain TCR and HLA genes associated with myasthenia gravis in Italians. J. Autoimmun. 3, 431–440 (1990).
  • Grunewald J, Ahlberg R, Lefvert AK, DerSimonian H, Wigzell H, Janson CH. Abnormal T-cell expansion and V-gene usage in myasthenia gravis patients. Scand. J. Immunol. 34, 161–168 (1991).
  • Willcox N, Baggi F, Batocchi AP et al. Approaches for studying the pathogenic T-cells in autoimmune patients. Ann. NY Acad. Sci.681, 219–237 (1993).
  • Melms A, Oksenberg JR, Malcherek G et al. T-cell receptor gene usage of acetylcholine receptor-specific T-helper cells. Ann. NY Acad. Sci.681, 313–314 (1993).
  • Raju R, Navaneetham D, Protti MP et al. Acetylcholine receptor-specific CD4+ T-cells in myasthenia gravis patients have individual, but restricted TCR V beta usage. Ann. NY Acad. Sci.841, 324–328 (1998).
  • Infante AJ, Baillargeon J, Kraig E et al. Evidence of a diverse T-cell receptor repertoire for acetylcholine receptor, the autoantigen of myasthenia gravis. J. Autoimmun.21, 167–174 (2003).
  • Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nature Rev. Immunol.2, 85–95 (2002).
  • Aissaoui A, Klingel-Schmitt I, Couderc J et al. Prevention of autoimmune attack by targeting specific T-cell receptor in a SCID mice model of myasthenia gravis. Ann. Neurol. 46, 559–567 (1999).
  • Compston DA, Vincent A, Newsom-Davis J, Batchelor JR. Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. Brain103, 579–601 (1980).
  • Vieira ML, Caillat-Zucman S, Gajdos P, Cohen-Kaminsky S, Casteur A, Bach JF. Identification by genomic typing of non-DR3 HLA class II genes associated with myasthenia gravis. J. Neuroimmunol. 47, 115–122 (1993).
  • Jambou F, Zhang W, Menestrier M et al. Circulating regulatory anti-TCR antibodies in patients with myasthenia gravis. J. Clin. Invest. 112, 265–274 (2003).
  • Jambou F, Menestrier M, Klingel-Schmitt I et al. Rationale for a T-cell receptor peptide therapy in Myasthenia Gravis. Ann. NY Acad. Sci. USA. 988, 320–323 (2003).
  • Jambou F, Cohen-Kaminsky S. Immunoregulation by Vβ specific antibodies in myasthenia gravis: mining physiological T-cell homeostasis for TCR specific therapy. Cell Mol. Biol. (Noisy-le-grand) 181–192 (2003).
  • Kahn CR, McIntosh KR, Drachman DB. T-cell vaccination in experimental myasthenia gravis: a double-edged sword. J. Autoimmun.3, 659–669 (1990).
  • Sela M, Arnon R, Schechter B. Therapeutic vaccines: realities of today and hopes for the future. Drug Discov. Today.7, 664–673 (2002).
  • Cohen IR. T-cell vaccination for autoimmune disease: a panorama. Vaccine20, 706–710 (2001).
  • Kumar V, Coulsell E, Ober B, Hubbard G, Sercarz E, Ward ES. Recombinant T-cell receptor molecules can prevent and reverse experimental autoimmune encephalomyelitis: dose effects and involvement of both CD4 and CD8 T-cells. J. Immunol.159, 5150–5156 (1997).
  • Offner H, Adlard K, Bebo BF Jr et al. Vaccination with BV8S2 protein amplifies TCR-specific regulation and protection against experimental autoimmune encephalomyelitis in TCR BV8S2 transgenic mice. J. Immunol.161, 2178–2186 (1998).
  • Waisman A, Ruiz PJ, Hirschberg DL et al. Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 Immunity Nature Med. 2, 899–905 (1996).
  • Kumar V, Sercarz E. Genetic vaccination: the advantages of going naked. Nature Med. 2, 857–859 (1996).
  • Matsumoto Y, Jee Y, Sugisaki M. Successful TCR-based immunotherapy for autoimmune myocarditis with DNA vaccines after rapid identification of pathogenic TCR. J. Immunol.164, 2248–2254 (2000).
  • Braciak TA, Pedersen B, Chin J et al. Protection against experimental autoimmune encephalomyelitis generated by a recombinant adenovirus vector expressing the Vβ 8.2 TCR is disrupted by coadministration with vectors expressing either IL-4 or -10. J. Immunol.170, 765–774 (2003).
  • Vandenbark AA, Morgan E, Bartholomew R et al. TCR peptide therapy in human autoimmune diseases. Neurochem. Res.26, 713–730 (2001).
  • Vandenbark AA, Chou YK, Whitham R et al. Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nature Med. 2, 1109–1115 (1996).
  • Hellings N, Raus J, Stinissen P. T-cell vaccination in multiple sclerosis: update on clinical application and mode of action. Autoimmun. Rev.3, 267–275 (2004).
  • Kumar V, Sercarz E, Zhang J, Cohen I. T-cell vaccination: from basics to the clinic. Trends Immunol. 22, 539–540 (2001).
  • Zhang J. T-cell vaccination for autoimmune diseases: immunologic lessons and clinical experience in multiple sclerosis. Expert Rev. Vaccines1, 285–292 (2002).
  • Cohen IR. Peptide therapy for Type I diabetes: the immunological homunculus and the rationale for vaccination. Diabetologia45, 1468–1474 (2002).
  • Lambert SL, Okada CY, Levy R. TCR vaccines against a murine T-cell lymphoma: a primary role for antibodies of the IgG2c class in tumor protection. J. Immunol.172, 929–936 (2004).
  • Husband AJ, Bao S, McClure SJ, Emery DL, Ramsay AJ. Antigen delivery strategies for mucosal vaccines. Int. J. Parasitol.26, 825–834 (1996).
  • Eriksson K, Holmgren J. Recent advances in mucosal vaccines and adjuvants. Curr. Opin. Immunol.14, 666–672 (2002).
  • Bourdette DN, Whitham RH, Chou YK et al. Immunity to TCR peptides in multiple sclerosis. I. Successful immunization of patients with synthetic Vβ 5.2 and Vβ 6.1 CDR2 peptides. J. Immunol.152, 2510–2519 (1994).
  • Chou YK, Morrison WJ, Weinberg AD et al. Immunity to TCR peptides in multiple sclerosis. II. T-cell recognition of V beta 5.2 and V beta 6.1 CDR2 peptides. J. Immunol. 152, 2520–2529 (1994).
  • Haqqi TM, Qu XM, Anthony D, Ma J, Sy MS. Immunization with T-cell receptor V beta chain peptides deletes pathogenic T-cells and prevents the induction of collagen-induced arthritis in mice. J. Clin. Invest. 97, 2849–2858 (1996).
  • Moreland LW, Heck LW Jr, Koopman WJ et al. V beta 17 T-cell receptor peptide vaccination in rheumatoid arthritis: results of Phase I dose escalation study. J. Rheumatol. 23, 1353–1362 (1996).
  • Bridges SL Jr, Moreland LW. T-cell receptor peptide vaccination in the treatment of rheumatoid arthritis. Rheum. Dis. Clin. North Am. 24, 641–650 (1998).
  • Garren H, Ruiz PJ, Watkins TA et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity15, 15–22 (2001).
  • Kumar V, Sercarz E. An integrative model of regulation centered on recognition of TCR peptide/MHC complexes. Immunol. Rev.182, 113–121 (2001).
  • Sercarz E, Maverakis E, van den Elzen P, Madakamutil L, Kumar V. Seven surprises in the TCR-centred regulation of immune responsiveness in an autoimmune system. Novartis Found. Symp. 252, 165–171 (2003).
  • Madakamutil LT, Maricic I, Sercarz E, Kumar V. Regulatory T-cells control autoimmunity in vivo by inducing apoptotic depletion of activated pathogenic lymphocytes. J. Immunol.170, 2985–2992 (2003).
  • Hermans G, Denzer U, Lohse A, Raus J, Stinissen P. Cellular and humoral immune responses against autoreactive T-cells in multiple sclerosis patients after T-cell vaccination. J. Autoimmun. 13, 233–246 (1999).
  • Honda A, Ametani A, Matsumoto T et al. Vaccination with an immunodominant peptide of bovine Type II collagen induces an anti-TCR response, and modulates the onset and severity of collagen-induced arthritis. Int. Immunol.16, 737–745 (2004).
  • Elias D, Tikochinski Y, Frankel G, Cohen IR. Regulation of NOD mouse autoimmune diabetes by T-cells that recognize a TCR CDR3 peptide. Int. Immunol.11, 957–966 (1999).
  • Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T-cells. Adv. Immunol.81, 331–371 (2003).
  • Vandenbark AA, Hicks K, Tsaknaridis L et al. Regulation of autoimmunity with TCR peptides: latest breakthroughs. 6th International Symposium on the Immunotherapy of the Rheumatic Disesases. Cyprus (2002).
  • Balandina A, Lécart S, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4+ CD25+ T-cells in the thymus of patients with autoimmune myasthenia gravis. Blood105, 735–741 (2005).
  • Kumar V. Homeostatic control of immunity by TCR peptide-specific Tregs. J. Clin. Invest.114, 1222–1226 (2004).
  • Buenafe AC, Tsaknaridis L, Spencer L et al. Specificity of regulatory CD4+ CD25+ T-cells for self-T-cell receptor determinants. J. Neurosci. Res. 76, 129–140 (2004).
  • Liu HY, Buenafe AC, Matejuk A et al. Estrogen inhibition of EAE involves effects on dendritic cell function. J. Neurosci. Res. 70, 238–248 (2002).
  • Polanczyk MJ, Carson BD, Subramanian S et al. Cutting edge: estrogen drives expansion of the CD4+ CD25+ regulatory T-cell compartment. J. Immunol.173, 2227–2230 (2004).
  • Offner H, Adlard K, Zamora A, Vandenbark AA. Estrogen potentiates treatment with T-cell receptor protein of female mice with experimental encephalomyelitis. J. Clin. Invest.105, 1465–1472 (2000).
  • Herkel J, Brunner S, Meyer zum Buschenfelde KH, Lohse AW. Humoral mechanisms in T-cell vaccination: induction and functional characterization of antilymphocytic autoantibodies. J. Autoimmun. 10, 137–146 (1997).
  • Hong J, Zang YC, Tejada-Simon MV et al. Reactivity and regulatory properties of human anti-idiotypic antibodies induced by T-cell vaccination. J. Immunol.165, 6858–6864 (2000).
  • Billiau A, Matthys P. Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J. Leukoc. Biol. 70, 849–860 (2001).
  • Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines2, 305–315 (2003).
  • Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol.84, 223–243 (1997).
  • Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmun. Rev.2, 119–125 (2003).
  • Morgan EE, Nardo CJ, Diveley JP et al. Vaccination with a CDR2 BV6S2/6S5 peptide in adjuvant induces peptide-specific T-cell responses in patients with multiple sclerosis. J. Neurosci. Res. 64, 298–301 (2001).
  • Moreland LW, Morgan EE, Adamson TC III et al. T-cell receptor peptide vaccination in rheumatoid arthritis: a placebo-controlled trial using a combination of Vβ3, Vβ14, and Vβ17 peptides. Arthritis Rheum.41, 1919–1929 (1998).
  • Pannetier C, Cochet M, Darche S, Casrouge A, Zoller M, Kourilsky P. The sizes of the CDR3 hypervariable regions of the murine T-cell receptor β chains vary as a function of the recombined germ-line segments. Proc. Natl Acad. Sci. USA90, 4319–4323 (1993).
  • Pasqual N, Gallagher M, Aude-Garcia C et al. Quantitative and qualitative changes in V-J α rearrangements during mouse thymocytes differentiation: implication for a limited T-cell receptor α chain repertoire. J. Exp. Med.196, 1163–1173 (2002).
  • Muraro PA, Jacobsen M, Necker A et al. Rapid identification of local T-cell expansion in inflammatory organ diseases by flow cytometric T-cell receptor Vβ analysis. J. Immunol. Methods246, 131–143 (2000).
  • Guillet M, Sebille F, Soulillou J. TCR usage in naive and committed alloreactive cells: implications for the understanding of TCR biases in transplantation. Curr. Opin. Immunol. 13, 566–571 (2001).
  • Steinman L. Despite epitope spreading in the pathogenesis of autoimmune disease, highly restricted approaches to immune therapy may still succeed (with a hedge on this bet). J. Autoimmun.14, 278–282 (2000).
  • Vincent A, Willcox N, Hill M, Curnow J, MacLennan C, Beeson D. Determinant spreading and immune responses to acetylcholine receptors in myasthenia gravis. Immunol. Rev.164, 157–168 (1998).
  • Xu L, Villain M, Galin FS, Araga S, Blalock JE. Prevention and reversal of experimental autoimmune myasthenia gravis by a monoclonal antibody against acetylcholine receptor-specific T-cells. Cell Immunol. 208, 107–114 (2001).
  • Villinger F. Cytokines as clinical adjuvants: how far are we? Expert Rev. Vaccines2, 317–326 (2003).

Websites

  • Europa http://europa.eu.int/comm/research/quality-of-life/cell-factory/volume2/projects/qlk3-2001-00225_en.html (Accessed July 2005)
  • Immune Tolerance Network www.immunetolerance.org (Accessed July 2005)
  • Myasthenia Gravis Foundation www.myasthenia.org (Accessed July 2005)
  • Epiplot software to predict peptide immunogenicity http://solea.quim.ucm.es/∼mag/ (Accessed July 2005)
  • Antheprot software to predict peptide immunogenicity http://antheprot-pbil.ibcp.fr/ (Accessed July 2005)
  • T-cell vaccination http://t-cellvaccination.org (Accessed July 2005)
  • Immune Response Corporation www.imnr.com (Accessed July 2005)
  • International ImMunoGeneTics (IMGT) database for TCR amino acid sequences http://imgt.cines.fr (Accessed July 2005)
  • Association Francaise Contre les Myopathies www.afm-france.org (Accessed July 2005)
  • Opexa Pharmaceutical www.opexapharmaceuticals.com (Accessed July 2005)
  • Connectics http://ir.connetics.com (Accessed July 2005)
  • Multiple Sclerosis Organization www.mult-sclerosis.org (Accessed July 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.