79
Views
18
CrossRef citations to date
0
Altmetric
Review

Tuberculosis: from genome to vaccine

, , , &
Pages 541-551 | Published online: 09 Jan 2014

References

  • Donoghue HD, Spigelman M, Greenblatt CL et al. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect. Dis.4(9), 584–592 (2004).
  • Raviglione MC. The TB epidemic from 1992 to 2002. Tuberculosis 83(1–3), 4–14 (2003).
  • Comstock GW Epidemiology of tuberculosis. Am. Rev. Respir. Dis. 125(Suppl.), 8–16 (1982).
  • Mitchison DA. The diagnosis and therapy of tuberculosis during the past 100 years. Am. J. Respir. Crit. Care Med. 171(7), 699–706 (2005).
  • Andries K, Verhasselt P, Guillemont J et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307(5707), 223–227 (2005).
  • Brennan MJ The tuberculosis vaccine challenge. Tuberculosis 85(1–2), 7–12 (2005).
  • Cole ST, Brosch R, Parkhill J et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685), 537–544 (1998).
  • Fleischmann RD, Alland D, Eisen JA et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184(19), 5479–5490 (2002).
  • Valway SE, Sanchez MP, Shinnick TF et al. An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N. Engl. J. Med. 338(10), 633–639 (1998).
  • Betts JC, Dodson P, Quan S et al. Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. Microbiology146(Pt.12), 3205–3216 (2000).
  • Manca C, Tsenova L, Barry CE 3rd et al. Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J. Immunol. 162(11), 6740–6746 (1999).
  • Bishai WR, Dannenberg AM Jr, Parrish N et al. Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie's pulmonary tubercle count method. Infect. Immunol. 67(9), 4931–4934 (1999).
  • Manca C, Reed MB, Freeman S et al. Differential monocyte activation underlies strain–specific Mycobacterium tuberculosis pathogenesis. Infect. Immunol. 72(9), 5511–5514 (2004).
  • Ramakrishnan L, Federspiel NA, Falkow S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288(5470), 1436–1439 (2000).
  • Skeiky YA, Ovendale PJ, Jen S et al. T-cell expression cloning of a Mycobacterium tuberculosis gene encoding a protective antigen associated with the early control of infection. J. Immunol.165(12), 7140–7149 (2000).
  • Banu S, Honore N, Saint-Joanis B, Philpott D, Prevost MC, Cole ST. Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol. Microbiol. 44(1), 9–19 (2002).
  • Voskuil MI, Schnappinger D, Rutherford R, Liu Y, Schoolnik GK Regulation of the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis 84(3–4), 256–262 (2004).
  • Raynaud C, Guilhot C, Rauzier J et al. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol. Microbiol. 45(1), 203–217 (2002).
  • Reed MB, Domenech P, Manca C et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431(7004), 84–87 (2004).
  • Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc. Natl Acad. Sci. USA 101(14), 4871–4876 (2004).
  • Tsolaki AG, Hirsh AE, DeRiemer K et al. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc. Natl Acad. Sci. USA 101(14), 4865–4870 (2004).
  • Malik AN, Godfrey-Faussett P. Effects of genetic variability of Mycobacterium tuberculosis strains on the presentation of disease. Lancet Infect. Dis. 5(3), 174–183 (2005).
  • Cole ST, Eiglmeier K, Parkhill J et al. Massive gene decay in the leprosy bacillus. Nature 409(6823), 1007–1011 (2001).
  • Philipp WJ, Schwartz DC, Telenti A, Cole ST. Mycobacterial genome structure. Electrophoresis 19(4), 573–576 (1998).
  • Brosch R, Gordon SV, Eiglmeier K, Garnier T, Cole ST. Comparative genomics of the leprosy and tubercle bacilli. Res. Microbiol.151(2), 135–142 (2000).
  • Noordeen SK. The epidemiology of leprosy. In: Leprosy (2nd Edition), RC Hastings (Ed.), Churchill–Livingstone, Edinburgh, UK, 29–48 (1994).
  • Schorey JS, Carroll MC, Brown EJ. A macrophage invasion mechanism of pathogenic mycobacteria. Science 277(5329), 1091–1093 (1997).
  • Marmiesse M, Brodin P, Buchrieser C et al. Macro-array and bioinformatic analyses reveal mycobacterial 'core' genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology 150(Pt. 2), 483–496 (2004).
  • Gormus BJ, Meyers WM. Under-explored experimental topics related to integral mycobacterial vaccines for leprosy. Expert Rev. Vaccines 2(6), 791–804 (2003).
  • Calmette A. La Vaccination Preventive Contre la Tuberculose, Masson et Cie, Paris, France (1927).
  • Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol.178(5),1274–1282 (1996).
  • Behr MA, Wilson MA, Gill WP et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284(5419), 1520–1523 (1999).
  • Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol. Microbiol.32(3), 643–655 (1999).
  • Brosch R, Gordon SV, Buchrieser C, Pym AS, Garnier T, Cole ST. Comparative genomics uncovers large tandem chromosomal duplications in Mycobacterium bovis BCG Pasteur. Yeast 17(2), 111–123 (2000).
  • Garnier T, Eiglmeier K, Camus JC et al. The complete genome sequence of Mycobacterium bovis. Proc. Natl Acad. Sci. USA100(13), 7877–7882 (2003).
  • Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol. 46(3), 709–717 (2002).
  • Pym AS, Brodin P, Majlessi L et al. Recombinant BCG exporting ESAT–6 confers enhanced protection against tuberculosis. Nature Med.9(5), 533–539 (2003).
  • Claros MG, von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10(6), 685–686 (1994).
  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng.10(1), 1–6 (1997).
  • De Groot AS, Bosma A, Chinai N et al. From genome to vaccine: in silico predictions, ex vivo verification. Vaccine 19(31), 4385–4395 (2001).
  • Chaitra MG, Hariharaputran S, Chandra NR, Shaila MS, Nayak R. Defining putative T-cell epitopes from PE and PPE families of proteins of Mycobacterium tuberculosis with vaccine potential.Vaccine 23(10), 1265–1272 (2005).
  • De Groot AS, McMurry J, Marcon L et al. Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine 23(17–18), 2121–2131 (2005).
  • Flyer DC, Ramakrishna V, Miller C et al. Identification by mass spectrometry of CD8(+)-T-cell Mycobacterium tuberculosis epitopes within the Rv0341 gene product. Infect. Immunol. 70(6), 2926–2932 (2002).
  • Mostowy S, Cleto C, Sherman DR, Behr MA. The Mycobacterium tuberculosis complex transcriptome of attenuation. Tuberculosis84(3–4), 197–204 (2004).
  • Sun R, Converse PJ, Ko C, Tyagi S, Morrison NE, Bishai WR. Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. Mol. Microbiol. 52(1), 25–38 (2004).
  • Schnappinger D, Ehrt S, Voskuil MI et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med.198(5), 693–704 (2003).
  • Mattow J, Jungblut PR, Schaible UE et al. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains. Electrophoresis22(14), 2936–2946 (2001).
  • Starck J, Kallenius G, Marklund BI, Andersson DI, Akerlund T. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 150(Pt. 11), 3821–3829 (2004).
  • Andersen P, Askgaard D, Ljungqvist L, Bennedsen J, Heron I. Proteins released from Mycobacterium tuberculosis during growth. Infect. Immun.59(6), 1905–1910 (1991).
  • Orme IM, Roberts AD, Griffin JP, Abrams JS. Cytokine secretion by CD4 T lymphocytes acquired in response to Mycobacterium tuberculosis infection. J. Immunol. 151(1), 518–525 (1993).
  • Mattow J, Schaible UE, Schmidt F. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis 24(19–20), 3405–3420 (2003).
  • Pethe K, Alonso S, Biet F et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature412(6843), 190–194 (2001).
  • Temmerman S, Pethe K, Parra M et al. Methylation-dependent T-cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin. Nature Med. 10(9), 935–941 (2004).
  • Rosat JP, Grant EP, Beckman EM et al. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ αβ T-cell pool. J. Immunol.162(1), 366–371 (1999).
  • Moody DB, Ulrichs T, Muhlecker W et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404(6780), 884–888 (2000).
  • Gilleron M, Stenger S, Mazorra Z Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T-cells during infection with Mycobacterium tuberculosis. J. Exp. Med.199(5), 649–659 (2004).
  • Flynn JL. Immunology of tuberculosis and implications in vaccine development. Tuberculosis84(1–2), 93–101 (2004).
  • Havlir DV, Barnes PF. Tuberculosis in patients with human immunodeficiency virus infection. N. Engl. J. Med.340(5), 367–373 (1999).
  • Srikantiah P, Charlebois E, Havlir DV. Rapid increase in tuberculosis incidence soon after infection with HIV – a new twist in the twin epidemics. J. Infect. Dis. 191(2), 147–149 (2005).
  • Turner J, D'Souza CD, Pearl JE et al. CD8- and CD95/95L-dependent mechanisms of resistance in mice with chronic pulmonary tuberculosis. Am. J. Respir. Cell. Mol. Biol.24(2), 203–209 (2001).
  • Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J. Exp. Med. 189(12), 1973–1980 (1999).
  • Rolph MS, Raupach B, Kobernick HH. MHC class Ia-restricted T-cells partially account for β2-microglobulin-dependent resistance to Mycobacterium tuberculosis. Eur. J. Immunol.31(6), 1944–1949 (2001).
  • Stenger S, Hanson DA, Teitelbaum R et al. An antimicrobial activity of cytolytic T-cells mediated by granulysin. Science 282(5386), 121–125 (1998).
  • Cho S, Mehra V, Thoma-Uszynski S et al. Antimicrobial activity of MHC class I-restricted CD8+ T-cells in human tuberculosis. Proc. Natl Acad. Sci. USA 97(22), 12210–12215 (2000).
  • Waddell RD, Chintu C, Lein AD et al. Safety and immunogenicity of a five-dose series of inactivated Mycobacterium vaccae vaccination for the prevention of HIV-associated tuberculosis. Clin. Infect. Dis. 3(Suppl.), S309–S315 (2000).
  • Vuola JM, Ristola MA, Cole B et al. Immunogenicity of an inactivated mycobacterial vaccine for the prevention of HIV-associated tuberculosis: a randomized, controlled trial. AIDS17(16), 2351–2355 (2003).
  • Sula L, Radkovsky I. Protective effects of M. microti vaccine against tuberculosis. J. Hyg. Epidemiol. Microbiol. Immunol.20(1), 1–6 (1976).
  • Hart PD, Sutherland I. BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br. Med. J. 2(6082), 293–295 (1977).
  • Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med.178(6), 2243–2247 (1993).
  • Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM. The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology84(3), 423–432 (1995).
  • Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J. Immunol.155(5), 2515–2524 (1995).
  • Flynn JL, Goldstein MM, Triebold KJ, Sypek J, Wolf S, Bloom BR. The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology84(3), 423–432 (1995).
  • Altare F, Durandy A, Lammas D et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280(5368), 1432–1435 (1998).
  • de Jong R, Altare F, Haagen IA et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280(5368), 1435–1438 (1998).
  • Dorman E and Holland SM. Mutation in the signal-transducing chain of the interferon-receptor and susceptibility to mycobacterial infection. J. Clin. Invest. 101, 2364–2369 (1998).
  • Montali RJ, Mikota SK, Cheng LI. Mycobacterium tuberculosis in zoo and wildlife species. Rev. Sci. Tech. 20(1), 291–303 (2001).
  • Flynn JL, Capuano SV, Croix D et al. Non-human primates: a model for tuberculosis research. Tuberculosis 83(1–3), 116–118 (2003).
  • McShane H, Pathan AA, Sander CR et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nature Med. 10(11), 1240–1244 (2004).
  • Doherty TM New vaccine against tuberculosis. Trop. Med. Int. Health 9(7), 818–826 (2004).
  • Brandt L, Skeiky YA, Alderson MR et al. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect. Immun.72(11), 6622–6632 (2004).
  • Bosch X Tuberculosis vaccine trial gets underway. Lancet Infect. Dis. 4, 598 (2004).
  • Brandt L, Feino Cunha J, Weinreieh Olsen A et al. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect. Immun. 70(2), 627–678 (2002).
  • Black GF, Weir RE, Floyd S et al. BCG-induced increase in interferon-γ response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet 359(9315), 1393–1401 (2002).
  • De Lisle GW, Wards BJ, Buddle BM, Collins DM. The efficacy of live tuberculosis vaccines after presensitization with Mycobacterium avium. Tuberculosis85(1–2), 73–79 (2005).
  • Demangel C, Garnier T, Rosenkrands I, Cole ST. Differential effects of prior exposure to environmental mycobacteria on vaccination with Mycobacterium bovis BCG or a recombinant BCG strain expressing RD1 antigens. Infect. Immun.73(4), 2190–196 (2005).
  • Sørensen AL, Nagai S, Houen G, Andersen P, Andersen AB. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun. 63(5), 1710–1717 (1995).
  • Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl Acad. Sci. USA100(22), 13001–13006 (2003).
  • Majlessi L, Brodin P, Brosch R et al. Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J. Immunol. 174(6), 3570–3579 (2005).
  • McShane H. Developing an improved vaccine against tuberculosis. Expert Rev. Vaccines 3(3), 299–306 (2004).
  • Orme IM Current progress in tuberculosis vaccine development. Vaccine 23(17–18), 2105–2108 (2005).
  • Brosch R, Gordon SV, Marmiesse M et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99(6), 3684–3689 (2002).
  • McAdam RA, Weisbrod TR, Martin J et al. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect. Immun. 63(3), 1004–1012 (1995).
  • Guleria I, Teitelbaum R, McAdam RA, Kalpana G, Jacobs WR Jr, Bloom BR. Auxotrophic vaccines for tuberculosis. Nature Med.2(3), 334–337 (1996).
  • Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34(2), 257–267 (1999).
  • Sassetti CM, Boyd DH, Rubin EJ. Comprehensive identification of conditionally essential genes in mycobacteria.Proc. Natl Acad. Sci. USA 2001 98(22), 12712–12717 (2001).
  • Pavelka MS Jr, Chen B, Kelley CL, Collins FM, Jacobs WR Jr. Vaccine efficacy of a lysine auxotroph of Mycobacterium tuberculosis. Infect. Immun.71(7), 4190–4192 (2003).
  • Sambandamurthy VK, Wang X, Chen B et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nature Med. 8(10), 1171–1174 (2002).
  • Sassetti CM, Rubin EJ Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100(22), 12989–12994 (2003).
  • Cox JS, Chen B, McNeil M, Jacobs WR Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature402(6757), 79–83 (1999).
  • Perez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martin C. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol. Microbiol.41(1), 179–187 (2001).
  • Kamath AT, Fruth U, Brennan MJ et al. New live mycobacterial vaccines: the Geneva consensus on essential steps towards clinical development. Vaccine 23(29), 3753–3761 (2005).
  • Zahrt TC, Deretic V. An essential two-component signal transduction system in Mycobacterium tuberculosis. J. Bacteriol.182(13), 3832–3838 (2000).
  • Boom WH, Canaday DH, Fulton SA, Gehring AJ, Rojas RE, Torres M. Human immunity to M. tuberculosis: T-cell subsets and antigen processing. Tuberculosis83(1–3), 98–106 (2003).
  • Vergne I, Chua J, Singh SB, Deretic V. Cell biology of Mycobacterium tuberculosis phagosome. Ann. Rev. Cell. Dev. Biol. 20, 367–394 (2004).
  • Hess J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH. Mycobacterium bovis Bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes. Proc. Natl Acad. Sci. USA 95(9), 5299–5304 (1998).
  • Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl Acad. Sci. USA 97(25), 13853–13858 (2000).
  • Williams A, Hatch GJ, Clark SO et al. Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis 85(1–2), 29–38 (2005).
  • Brodin P, Majlessi L, Brosch R et al. Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T-cell immunity against region of difference 1 antigens. J. Infect. Dis. 190(1), 115–122 (2004).
  • De Groot AS, Rappuoli R. Genome-derived vaccines. Expert Rev. Vaccines1, 59–76 (2004).
  • Pizza M, Scarlato V, Masignani V et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287(5459), 1816–1820 (2000).
  • Capecchi B, Serruto D, Adu-Bobie J, Rappuoli R, Pizza M. The genome revolution in vaccine research. Curr. Issues Mol. Biol. 6(1), 17–27 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.