89
Views
46
CrossRef citations to date
0
Altmetric
Review

Current status and future prospects for a vaccine against American trypanosomiasis

&
Pages 867-880 | Published online: 09 Jan 2014

References

  • World Health Organization. Control of Chagas disease: second report of the WHO expert committee. Geneva, Switzerland (2002).
  • Kirchhoff LV. American trypanosomiasis (Chagas’ disease) - a tropical disease now in the United States. N. Engl. J. Med. 329, 639–644 (1993).
  • Kirchhoff LV, Weiss LM, Wittner M, Tanowitz HB. Parasitic diseases of the heart. Front. Biosci. 9, 706–723 (2004).
  • Shulman IA, Appleman MD, Saxena S, Hiti AL, Kirchhoff LV. Specific antibodies to Trypanosoma cruzi among blood donors in Los Angeles, California. Transfusion 37, 727–731 (1997).
  • Leiby DA, Rentas FJ, Nelson KE et al. Evidence of Trypanosoma cruzi infection (Chagas’ disease) among patients undergoing cardiac surgery. Circulation 102, 2978–2982 (2000).
  • Leiby DA, Herron RM Jr, Read EJ, Lenes BA, Stumpf RJ. Trypanosoma cruzi in Los Angeles and Miami blood donors: impact of evolving donor demographics on seroprevalence and implications for transfusion transmission. Transfusion 42, 549–555 (2002).
  • Dodd RY, Leiby DA. Emerging infectious threats to the blood supply. Ann. Rev. Med. 55, 191–207 (2004).
  • Beard CB, Pye G, Steurer FJ et al. Chagas disease in a domestic transmission cycle, southern Texas, USA. Emerg. Infect. Dis. 9, 103–105 (2003).
  • Shadomy SV, Waring SC, Chappell CL. Combined use of enzyme-linked immunosorbent assay and flow cytometry to detect antibodies to Trypanosoma cruzi in domestic canines in Texas. Clin. Diagn. Lab. Immuno.l 11, 313–319 (2004).
  • Beard CB, Young DG, Butler JF, Evans DA. First isolation of Trypanosoma cruzi from a wild-caught Triatoma sanguisuga (LeConte) (Hemiptera: Triatominae) in Florida, USA. J. Parasitol. 74, 343–344 (1988).
  • Centers for Disease Control and Prevention. Chagas disease after organ transplantation - United States, 2001. JAMA287, 1795–1796 (2002).
  • Brisse S, Dujardin JC, Tibayrenc M. Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers. Mol. Biochem. Parasitol. 111, 95–105 (2000).
  • Brisse S, Verhoef J, Tibayrenc M. Characterization of large and small subunit rRNA and mini-exon genes further support the distinction of six Trypanosoma cruzi lineages. Int. J. Parasitol. 31, 1218–1226 (2001).
  • Barnabe C, Neubauer K, Solari A, Tibayrenc M. Trypanosoma cruzi: presence of the two major phylogenetic lineages and of several lesser discrete typing units (DTUs) in Chile and Paraguay. Acta. Trop. 78, 127–137 (2001).
  • Bosseno MF, Barnabe C, Magallon Gastelum E et al. Predominance of Trypanosoma cruzi lineage I in Mexico. J. Clin. Microbiol. 40, 627–632 (2002).
  • Barnabe C, Yaeger R, Pung O, Tibayrenc M. Trypanosoma cruzi: a considerable phylogenetic divergence indicates that the agent of Chagas disease is indigenous to the native fauna of the United States. Exp. Parasitol. 99, 73–79 (2001).
  • Rossi MA, Ramos SG, Bestetti RB. Chagas’ heart disease: clinical-pathological correlation. Front Biosci. 8, E94–E109 (2003).
  • Rocha MO, Ribeiro AL, Teixeira MM. Clinical management of chronic Chagas cardiomyopathy. Front Biosci. 8, E44–E54 (2003).
  • Gomes ML, Galvao LM, Macedo AM, Pena SD, Chiari E. Chagas’ disease diagnosis: comparative analysis of parasitologic, molecular, and serologic methods. Am. J. Trop. Med. Hyg. 60, 205–210 (1999).
  • Portela-Lindoso AA, Shikanai-Yasuda MA. Chronic Chagas’ disease: from xenodiagnosis and hemoculture to polymerase chain reaction. Rev. Saude. Publica. 37, 107–115 (2003).
  • Andersson J. Molecular diagnosis of experimental Chagas disease. Trends Parasitol. 20, 52–53 (2004).
  • Gonzalez N, Galindo I, Guevara P et al. Identification and detection of Trypanosoma cruzi by using a DNA amplification fingerprint obtained from the ribosomal intergenic spacer. J. Clin. Microbiol. 32, 153–158 (1994).
  • Schofield CJ, Dias JC. The Southern Cone initiative against Chagas disease. Adv. Parasitol. 42, 1–27 (1999).
  • Dias J, Schofield C. The evolution of Chagas disease (American trypanosomiasis) control after 90 years since Carlos Chagas discovery. Mem. Inst. Oswaldo Cruz 94(Suppl. 1), 103–121 (1999).
  • Schmunis GA, Cruz JR. Safety of the blood supply in Latin America. Clin. Microbiol. Rev. 18, 12–29 (2005).
  • de Andrade AL, Zicker F, de Oliveira RM et al. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet348, 1407–1413 (1996).
  • Coura JR. Current prospects of specific treatment of Chagas’ disease. Bol. Chil. Parasitol. 51, 69–75 (1996).
  • Rodriques Coura J, de Castro SL. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz 97, 3–24 (2002).
  • Leon JS, Engman DM. Autoimmunity in Chagas heart disease. Int. J. Parasitol. 31, 555–561 (2001).
  • Leon JS, Engman DM. The significance of autoimmunity in the pathogenesis of Chagas heart disease. Front Biosci. 8, e315–322 (2003).
  • Girones N, Fresno M. Etiology of Chagas disease myocarditis: autoimmunity, parasite persistence, or both? Trends Parasitol. 19, 19–22 (2003).
  • Iwai LK, Juliano MA, Juliano L, Kalil J, Cunha-Neto E. T-cell molecular mimicry in Chagas disease: identification and partial structural analysis of multiple cross-reactive epitopes between Trypanosoma cruzi B13 and cardiac myosin heavy chain. J. Autoimmun. 24, 111–117 (2005).
  • Higuchi MD, Benvenuti LA, Martins Reis M, Metzger M. Pathophysiology of the heart in Chagas’ disease: current status and new developments. Cardiovasc. Res. 60, 96–107 (2003).
  • Lane JE, Olivares-Villagomez D, Vnencak-Jones CL, McCurley TL, Carter CE. Detection of Trypanosoma cruzi with the polymerase chain reaction and in situ hybridization in infected murine cardiac tissue. Am. J. Trop. Med. Hyg. 56, 588–595 (1997).
  • Wincker P, Telleria J, Bosseno MF et al. PCR-based diagnosis for Chagas’ disease in Bolivian children living in an active transmission area: comparison with conventional serological and parasitological diagnosis. Parasitology 114(Pt. 4), 367–373 (1997).
  • Anez N, Carrasco H, Parada H et al. Myocardial parasite persistence in chronic chagasic patients. Am. J. Trop. Med. Hyg. 60, 726–732 (1999).
  • Mortara RA, da Silva S, Taniwaki NN. Confocal fluorescence microscopy: a powerful tool in the study of Chagas’ disease. Rev. Soc. Bras. Med. Trop. Res. 33, 79–82 (2000).
  • Salomone OA, Juri D, Omelianiuk MO et al. Prevalence of circulating Trypanosoma cruzi detected by polymerase chain reaction in patients with Chagas’ cardiomyopathy. Am. J. Cardiol. 85, 1274–1276 (2000).
  • Monteon-Padilla V, Hernandez-Becerril N, Ballinas-Verdugo MA, Aranda-Fraustro A, Reyes PA. Persistence of Trypanosoma cruzi in chronic chagasic cardiopathy patients. Arch. Med. Res. 32, 39–43 (2001).
  • Caliari MV, de Lana M, Caja RA et al. Immunohistochemical studies in acute and chronic canine chagasic cardiomyopathy. Virchows Arch. 441, 69–76 (2002).
  • Rocha A, de Meneses AC, da Silva AM et al. Pathology of patients with Chagas’ disease and acquired immunodeficiency syndrome. Am. J. Trop. Med. Hyg. 50, 261–268 (1994).
  • Sartori AM, Lopes MH, Caramelli B et al. Simultaneous occurrence of acute myocarditis and reactivated Chagas’ disease in a patient with AIDS. Clin. Infect. Dis. 21, 1297–1299 (1995).
  • Jardim E, Takayanagui OM. Chagasic meningoencephalitis with detection of Trypanosoma cruzi in the cerebrospinal fluid of an immunodepressed patient. J. Trop. Med. Hyg. 97, 367–370 (1994).
  • D’Almeida P, Keitel E, Bittar A et al. Long-term evaluation of kidney donors. Transplant Proc. 28, 93–94 (1996).
  • Muniz J, Freitas G. Ensaios de vacinacao preventive e cyrativa nas infeccoes pelo Schizotrypanum cruzi. Mem. Inst. Oswaldo Cruz44, 529–541 (1946).
  • Kagan IG, Norman L. Immunologic studies on Trypanosoma cruzi. III. Duration of acquired immunity in mice initially infected with a North American strain of T. cruzi. J. Infect. Dis. 108, 213–217 (1961).
  • Hauschka TS. Persistence of strain-specific behavior in two strains of Trypanosoma cruzi after prolonged transfer through inbred mice. J. Parasitol. 35, 593–599 (1949).
  • Rego SFM. Esatado das lesoes provacadas pelo Trypanosoma cruzi chagas, 1909, no baco e no figado do camundongo branco (‘mus musculis’) com diversos graus de resistencia. J. Bras. Med.1, 599–674 (1959).
  • Basombrio MA. Trypanosoma cruzi: partial prevention of the natural infection of guinea-pigs with a killed parasite vaccine. Exp. Parasitol. 71, 1–8 (1990).
  • Goble FC, Boyd JL, Grim WM, Konrath M. Vaccination against experimental Chagas’ disease with homogenates of culture forms of Trypanosoma cruzi. J. Parasitol. 50, 19 (1964).
  • Seneca H, Peer PM. Immuno-biological properties of chagatoxin (lipopolysaccharide). Trans. R. Soc. Trop. Med. Hyg. 60, 610–620 (1966).
  • Gonzalez Cappa SM, Pesce UJ, Cantarella AI, Schmunis GA. Trypanosoma cruzi: protection of mice with epimastigote antigens from immunologically different parasite strains. Exp. Parasitol. 35, 179–186 (1974).
  • Roberson EL, Hanson WL. Correspondence: Transfer of immunity to T. cruzi. Trans. R. Soc. Trop. Med. Hyg. 68, 338 (1974).
  • Okanla EO, Stumpf JL, Dusanic DG. Resistance of mice immunized with irradiated and lyophilized stages of Trypanosoma cruzi to infections with metacyclics. Int. J. Parasitol. 12, 251–256 (1982).
  • Garcia CA, Oliveira EC, Sakurada JK, Santos LM. Protective immunity induced by a Trypanosoma cruzi soluble extract antigen in experimental Chagas’ disease. Role of interferon-γ. Immunol. Invest. 29, 1–12 (2000).
  • Gonzalez Cappa SM, Bronzina A, Katzin AM et al. Antigens of subcellular fractions of Trypanosoma cruzi. III. Humoral immune response and histopathology of immunized mice. J. Protozool. 27, 467–471 (1980).
  • Ruiz AM, Esteva M, Riarte A, Subias E, Segura EL. Immunoprotection of mice against Trypanosoma cruzi with a lyophilized flagellar fraction of the parasite plus adjuvant. Immunol. Lett.12, 1–4 (1986).
  • Ruiz AM, Esteva M, Cabeza Meckert P, Laguens RP, Segura EL. Protective immunity and pathology induced by inoculation of mice with different subcellular fractions of Trypanosoma cruzi. Acta. Trop. 42, 299–309 (1985).
  • Collier WA. Uber Immunitat bei der Chagas krankheit der weissen mau. Z. Hyg. Infektionskr. 11288–92 (1931).
  • Fernandes JF, Castellani O, Okumura M. Histopathology of the heart and muscles in mice immunized against Trypanosoma cruzi. Rev. Inst. Med. Trop. Sao Paulo 8, 151–156 (1966).
  • Hauschka TS, Goodwin MB et al. Immunological relationship between seven strains of Trypanosoma cruzi and its application in the diagnosis of Chagas’ disease. Am. J. Trop. Med. Hyg. 30, 1–16 (1950).
  • Pizzi T, Prager R. Immunity to infection induced by culture of Trypanosoma cruzi of atenuated virulence; preliminary communication. Bol. Inf. Parasit. Chil. 7, 20–21 (1952).
  • Brener Z, Chiari E. Susceptibility of different strains of Trypanosoma cruzi to various chemotherapeutic agents. Rev. Inst. Med. Trop. Sao Paulo 9, 197–207 (1967).
  • Menezes H. The use of adjuvants in the vaccination of mice with lyophilized ‘Trypanosoma cruzi’. Hospital (Rio J) 68, 1341–1346 (1965).
  • Menezes H. Protective effect of an avirulent (cultivated) strain of Trypanosoma cruzi against experimental infection in mice. Rev. Inst. Med. Trop. Sao Paulo 10, 1–4 (1968).
  • Menezes H. Active immunization of mice with the avirulent Y strain of Trypanosoma cruzi against heterologous virulent strains of the the same parasite. Rev. Inst. Med. Trop. Sao Paulo 11, 335–342 (1969).
  • Menezes H. Active immunization of dogs with a non-virulent strain of Trypanosoma cruzi. Rev. Inst. Med. Trop. Sao Paulo 11, 258–263 (1969).
  • Revelli S, Basombrio MA, Valenti JL et al. Evaluation of an attenuated Trypanosoma cruzi strain in rats. Analysis of survival, parasitemia and tissue damage. Medicina 53, 39–43 (1993).
  • Araujo Z, El Bouhdidi A, Heremans H et al. Vaccination of mice with a combination of BCG and killed Leishmania promastigotes reduces acute Trypanosoma cruzi infection by promoting an IFN-γ response. Vaccine 17, 957–964 (1999).
  • Kierszenbaum F, Ferraresi RW. Enhancement of host resistance against Trypanosoma cruzi infection by the immunoregulatory agent muramyl dipeptide. Infect. Immun. 25, 273–278 (1979).
  • Abath FG, Coutinho EM, Montenegro SM, Gomes YM, Carvalho AB. The use of non-specific immunopotentiators in experimental Trypanosoma cruzi infection. Trans. R. Soc. Trop. Med. Hyg. 82, 73–76 (1988).
  • Tarleton RL, Koller BH, Latour A, Postan M. Susceptibility of β 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature 356, 338–340 (1992).
  • Bachmaier K, Neu N, Pummerer C et al. iNOS expression and nitrotyrosine formation in the myocardium in response to inflammation is controlled by the interferon regulatory transcription factor 1. Circulation 96, 585–591 (1997).
  • Martins GA, Cardoso MA, Aliberti JC, Silva JS. Nitric oxide-induced apoptotic cell death in the acute phase of Trypanosoma cruzi infection in mice. Immunol. Lett.63, 113–120 (1998).
  • Aliberti JC, Souto JT, Marino AP et al. Modulation of chemokine production and inflammatory responses in interferon-γ- and tumor necrosis factor-R1-deficient mice during Trypanosoma cruzi infection. Am. J. Pathol. 158, 1433–1440. (2001).
  • Chandra M, Tanowitz HB, Petkova SB et al. Significance of inducible nitric oxide synthase in acute myocarditis caused by Trypanosoma cruzi (Tulahuen strain). Int. J. Parasitol. 32, 897–905 (2002).
  • Silva JS, Vespa GN, Cardoso MA, Aliberti JC, Cunha FQ. Tumor necrosis factor α mediates resistance to Trypanosoma cruzi infection in mice by inducing nitric oxide production in infected γ interferon-activated macrophages. Infect. Immun. 63, 4862–4867 (1995).
  • Cardillo F, Voltarelli JC, Reed SG, Silva JS. Regulation of Trypanosoma cruzi infection in mice by γ interferon and interleukin-10: role of NK cells. Infect. Immun. 64, 128–134 (1996).
  • Cardillo F, Nomizo A, Postol E, Mengel J. NK1.1 cells are required to control T-cell hyperactivity during Trypanosoma cruzi infection. Med. Sci. Monit. 10, BR259–267 (2004).
  • Vespa GN, Cunha FQ, Silva JS. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect. Immun. 62, 5177–5182 (1994).
  • Brener Z, Gazzinelli RT. Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas’ disease. Int. Arch. Allergy Immunol. 114, 103–110 (1997).
  • Garg N, Tarleton RL. Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection. Infect. Immun. 70, 5547–5555 (2002).
  • Wizel B, Nunes M, Tarleton RL. Identification of Trypanosoma cruzi trans-sialidase family members as targets of protective CD8+ TC1 responses. J. Immunol. 159, 6120–6130 (1997).
  • Krautz GM, Kissinger JC, Krettli AU. The targets of the lytic antibody response against Trypanosoma cruzi. Parasitol. Today 16, 31–34 (2000).
  • Umezawa ES, Shikanai-Yasuda MA, Stolf AM. Changes in isotype composition and antigen recognition of anti-Trypanosoma cruzi antibodies from acute to chronic Chagas disease. J. Clin. Lab. Anal. 10, 407–413 (1996).
  • Antas PR, Azevedo EN, Luz MR et al. A reliable and specific enzyme-linked immunosorbent assay for the capture of IgM from human chagasic sera using fixed epimastigotes of Trypanosoma cruzi. Parasitol. Res. 86, 813–820 (2000).
  • Reis MM, Higuchi MdL, Benvenuti LA et al. An in situ quantitative immunohistochemical study of cytokines and IL-2R+ in chronic human chagasic myocarditis: correlation with the presence of myocardial Trypanosoma cruzi antigens. Clin. Immunol. Immunopathol. 83, 165–172 (1997).
  • Higuchi MD, Ries MM, Aiello VD et al. Association of an increase in CD8+ T-cells with the presence of Trypanosoma cruzi antigens in chronic, human, chagasic myocarditis. Am. J. Trop. Med. Hyg. 56, 485–489 (1997).
  • Wizel B, Palmieri M, Mendoza C et al. Human infection with Trypanosoma cruzi induces parasite antigen-specific cytotoxic T-lymphocyte responses. J. Clin. Invest. 102, 1062–1071 (1998).
  • Laucella SA, Postan M, Martin D et al. Frequency of interferon -γ- producing T-cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease. J. Infect. Dis. 189, 909–918 (2004).
  • Santos MA, Garg N, Tarleton RL. The identification and molecular characterization of Trypanosoma cruzi amastigote surface protein-1, a member of the trans-sialidase gene super-family. Mol. Biochem. Parasitol. 86, 1–11 (1997).
  • Araguth MF, Rodrigues MM, Yoshida N. Trypanosoma cruzi metacyclic trypomastigotes: neutralization by the stage-specific monoclonal antibody 1G7 and immunogenicity of 90 kD surface antigen. Parasite Immunol. 10, 707–712 (1988).
  • Ruiz AM, Esteva M, Subias E et al. Monoclonal antibodies against the flagellar fraction of epimastigotes of Trypanosoma cruzi: immunoprotection against metacyclic trypomastigotes obtained by immunization of mice with an affinity-purified antigen. Mol. Biochem. Parasitol. 39, 117–125 (1990).
  • Fralish BH, Tarleton RL. Genetic immunization with LYT1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection. Vaccine 21, 3070–3080 (2003).
  • Low HP, Tarleton RL. Molecular cloning of the gene encoding the 83 kDa amastigote surface protein and its identification as a member of the Trypanosoma cruzi sialidase superfamily. Mol. Biochem. Parasitol. 88, 137–149 (1997).
  • Boscardin SB, Kinoshita SS, Fujimura AE, Rodrigues MM. Immunization with cDNA expressed by amastigotes of Trypanosoma cruzi elicits protective immune response against experimental infection. Infect. Immun. 71, 2744–2757 (2003).
  • El-Sayed NM, Myler PJ, Bartholomeu DC et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309, 409–415 (2005).
  • Garg N, Nunes MP, Tarleton RL. Delivery by Trypanosoma cruzi of proteins into the MHC class I antigen processing and presentation pathway. J. Immunol. 158, 3293–3302 (1997).
  • Kumar S, Tarleton RL. Antigen-specific Th1 but not Th2 cells provide protection from lethal Trypanosoma cruzi infection in mice. J. Immunol. 166, 4596–4603 (2001).
  • Moutiez M, Aumercier M, Schoneck R et al. Purification and characterization of a trypanothione-glutathione thioltransferase from Trypanosoma cruzi. Biochem. J 310(Pt. 2), 433–437 (1995).
  • Allaoui A, Francois C, Zemzoumi K, Guilvard E, Ouaissi A. Intracellular growth and metacyclogenesis defects in Trypanosoma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele. Mol. Microbiol. 32, 1273–1286 (1999).
  • Tomas AM, Miles MA, Kelly JM. Overexpression of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, is associated with enhanced metacyclogenesis. Eur. J. Biochem. 244, 596–603 (1997).
  • Norris KA. Stable transfection of Trypanosoma cruzi epimastigotes with the trypomastigote-specific complement regulatory protein cDNA confers complement resistance. Infect. Immun. 66, 2460–2465 (1998).
  • Scott MT, Neal RA, Woods NC. Immunization of marmosets with Trypanosoma cruzi cell surface glycoprotein (GP90). Trans. R. Soc. Trop. Med. Hyg. 79, 451–454 (1985).
  • Harth G, Mills AA, Lin T, Araujo FG. Trypanosoma cruzi glycoprotein of M(r) 56,000 characterization and assessment of its potential to protect against fatal parasite infections. Mol. Microbiol. 11, 261–271 (1994).
  • Santori FR, Paranhos-Bacalla GS, Franco DASJ et al. A recombinant protein based on the Trypanosoma cruzi metacyclic trypomastigote 82-kilodalton antigen that induces and effective immune response to acute infection. Infect. Immun. 64, 1093–1099 (1996).
  • Wrightsman RA, Manning JE. Paraflagellar rod proteins administered with alum and IL-12 or recombinant adenovirus expressing IL-12 generates antigen-specific responses and protective immunity in mice against Trypanosoma cruzi. Vaccine 18, 1419–1427 (2000).
  • Wrightsman RA, Luhrs KA, Fouts D, Manning JE. Paraflagellar rod protein-specific CD8+ cytotoxic T-lymphocytes target Trypanosoma cruzi-infected host cells. Parasite Immunol. 24, 401–412 (2002).
  • Luhrs KA, Fouts DL, Manning JE. Immunization with recombinant paraflagellar rod protein induces protective immunity against Trypanosoma cruzi infection. Vaccine 21, 3058–3069 (2003).
  • Sepulveda P, Hontebeyrie M, Liegeard P, Mascilli A, Norris KA. DNA-Based immunization with Trypanosoma cruzi complement regulatory protein elicits complement lytic antibodies and confers protection against Trypanosoma cruzi infection. Infect. Immun. 68, 4986–4991 (2000).
  • Ouaissi A, Da Silva AC, Guevara AG et al. The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2, and confers protection against lethal infection. J. Immunol. 168, 6386–6374 (2001).
  • Laderach D, Cerban F, Motran C, Vottero de Cima E, Gea S. Trypanosoma cruzi: the major cysteinyl proteinase (cruzipain) is a relevant immunogen of parasite acidic antigens (FIII). Int. J. Parasitol. 26, 1249–1254 (1996).
  • Schnapp AR, Eickhoff CS, Sizemore D, Curtiss R 3rd, Hoft DF. Cruzipain induces both mucosal and systemic protection against Trypanosoma cruzi in mice. Infect. Immun. 70, 5065–5074 (2002).
  • Frank FM, Petray PB, Cazorla SI et al. Use of a purified Trypanosoma cruzi antigen and CpG oligodeoxynucleotides for immunoprotection against a lethal challenge with trypomastigotes. Vaccine 22, 77–86 (2003).
  • Costa F, Franchin G, Pereira-Chioccola VL et al. Immunization with a plasmid DNA containing the gene of trans-sialidase reduces Trypanosoma cruzi infection in mice. Vaccine 16, 768–774 (1998).
  • Planelles L, Thomas MC, Alonso C, Lopez MC. DNA immunization with Trypanosoma cruzi HSP70 fused to the KMP11 protein elicits a cytotoxic and humoral immune response against the antigen and leads to protection. Infect. Immun. 69, 6558–6563. (2001).
  • Wizel B, Garg N, Tarleton RL. Vaccination with trypomastigote surface antigen 1-encoding plasmid DNA confers protection against lethal Trypanosoma cruzi infection. Infect. Immun. 66, 5073–5081 (1998).
  • Schnapp AR, Eickhoff CS, Scharfstein J, Hoft DF. Induction of B- and T-cell responses to cruzipain in the murine model of Trypanosoma cruzi infection. Microbes Infect. 4, 805–813 (2002).
  • Katae M, Miyahira Y, Takeda K et al. Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy. Infect. Immun. 70, 4833–4840 (2002).
  • Miyahira Y, Akiba H, Katae M et al. Cutting edge: a potent adjuvant effect of ligand to receptor activator of NF-κ B gene for inducing antigen-specific CD8+ T-cell response by DNA and viral vector vaccination. J. Immunol. 171, 6344–6348 (2003).
  • Alberti E, Acosta A, Sarmiento ME et al. Specific cellular and humoral immune response in Balb/c mice immunized with an expression genomic library of Trypanosoma cruzi. Vaccine 16, 608–612 (1998).
  • Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect. Immun. 72, 46–53 (2004).
  • Huygen K. Plasmid DNA vaccination. Microbes Infect. 7, 932–938 (2005).
  • Donnelly JJ, Wahren B, Liu MA. DNA vaccines: progress and challenges. J. Immunol. 175, 633–639 (2005).
  • Schenkman S, Eichinger D, Pereira ME, Nussenzweig V. Structural and functional properties of Trypanosoma cruzi trans-sialidase. Ann. Rev. Microbiol. 48, 499–523 (1994).
  • Manning-Cela R, Cortes A, Gonzalez-Rey E et al. LYT1 protein is required for efficient in vitro infection by Trypanosoma cruzi. Infect. Immun. 69, 3916–3923. (2001).
  • Maranon C, Thomas MC, Planelles L, Lopez MC. The immunization of A2/K(b) transgenic mice with the KMP11-HSP70 fusion protein induces CTL response against human cells expressing the T. cruzi KMP11 antigen: identification of A2-restricted epitopes. Mol. Immunol. 38, 279–287 (2001).
  • Frasch AC. Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol. Today 16, 282–286. (2000).
  • Garg N, Tarleton RL. Elicitation of protective cellular and humoral immune responses to Trypanosoma cruzi infection using DNA vaccines can be augmented with cytokines. Proceedings of the 10th International Congress of Immunology, New Delhi, India, 1421–1426 (1998).
  • Vasconcelos JR, Boscardin SB, Hiyane MI et al. A DNA-priming protein-boosting regimen significantly improves Type 1 immune response but not protective immunity to Trypanosoma cruzi infection in a highly susceptible mouse strain. Immunol. Cell Biol. 81, 121–129 (2003).
  • Pizza M, Scarlato V, Masignani V et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000).
  • Etz H, Minh DB, Henics T et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc. Natl Acad. Sci. USA 99, 6573–6578 (2002).
  • Ross BC, Czajkowski L, Hocking D et al. Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine 19, 4135–4142 (2001).
  • Adamou JE, Heinrichs JH, Erwin AL et al. Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect. Immun. 69, 949–958 (2001).
  • Bhatia V, Sinha M, Luxon B, Garg N. Utility of Trypanosoma cruzi sequence database for the identification of potential vaccine candidates: In silico and in vitro screening. Infect. Immun. 72, 6245–6254 (2004).
  • Corral RS, Petray PB. CpG DNA as a Th1-promoting adjuvant in immunization against Trypanosoma cruzi. Vaccine 19, 234–242 (2000).
  • Dhiman N, Bonilla R, O’Kane DJ, Poland GA. Gene expression microarrays: a 21st century tool for directed vaccine design. Vaccine 20, 22–30 (2001).
  • Rathod PK, Ganesan K, Hayward RE, Bozdech Z, DeRisi JL. DNA microarrays for malaria. Trends Parasitol. 18, 39–45 (2002).
  • Grifantini R, Bartolini E, Muzzi A et al. Gene expression profile in Neisseria meningitidis and Neisseria lactamica upon host-cell contact: from basic research to vaccine development. Ann. NY Acad. Sci. 975, 202–216 (2002).
  • Chen L, Martinez O, Overbergh L et al. Early upregulation of Th2 cytokines and late surge of Th1 cytokines in an atopic dermatitis model. Clin. Exp. Immunol. 138, 375–387 (2004).
  • Prabhakar U, Conway TM, Murdock P et al. Correlation of protein and gene expression profiles of inflammatory proteins after endotoxin challenge in human subjects. DNA Cell. Biol. 24, 410–431 (2005).
  • Bigger CB, Brasky KM, Lanford RE. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J. Virol.75, 7059–7066 (2001).
  • Dorn A, Zhao H, Granberg F et al. Identification of specific cellular genes upregulated late in adenovirus Type 12 infection. J. Virol.79, 2404–2412 (2005).
  • Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J. Immunol. 171, 3655–3667 (2003).
  • Cassat JE, Dunman PM, McAleese F et al. Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J Bacteriol 187, 576–592 (2005).
  • Minning TA, Bua J, Garcia GA, McGraw RA, Tarleton RL. Microarray profiling of gene expression during trypomastigote to amastigote transition in Trypanosoma cruzi. Mol. Biochem. Parasitol. 131, 55–64 (2003).
  • Baptista CS, Vencio RZ, Abdala S et al. DNA microarrays for comparative genomics and analysis of gene expression in Trypanosoma cruzi. Mol. Biochem. Parasitol. 138, 183–194 (2004).
  • Gorelik G, Cremaschi G, Borda E, Sterin-Borda L. Trypanosoma cruzi antigens downregulate T-lymphocyte proliferation by muscarinic cholinergic receptor-dependent release of PGE2. Acta. Physiol. Pharmacol. Ther. Latinoam. 48, 115–123 (1998).
  • Kierszenbaum F, de Diego JL, Fresno M, Sztein MB. Inhibitory effects of the Trypanosoma cruzi membrane glycoprotein AGC10 on the expression of IL-2 receptor chains and secretion of cytokines by subpopulations of activated human T-lymphocytes. Eur. J. Immunol. 29, 1684–1691 (1999).
  • Sztein MB, Kierszenbaum F. Mechanisms of development of immunosuppression during Trypanosoma infections. Parasitol. Today 9, 424–428 (1993).
  • Ouaissi A, Guevara-Espinoza A, Chabe F, Gomez-Corvera R, Taibi A. A novel and basic mechanism of immunosuppression in Chagas’ disease: Trypanosoma cruzi releases in vitro and in vivo a protein which induces T-cell unresponsiveness through specific interaction with cysteine and glutathione. Immunol. Lett.48, 221–224 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.