140
Views
1
CrossRef citations to date
0
Altmetric
Review

Respiratory syncytial virus and innate immunity: a complex interplay of exploitation and subversion

Pages 371-380 | Published online: 09 Jan 2014

References

  • Collins PL, Chanock RM, Murphy BR. Respiratory syncytial virus. In: Fields Virology, 4th Edition. Knipe DM, Howley PM (Eds). Lippincott Williams and Wilkins, Philadelphia, PA, USA, 1443–1485 (2001).
  • Lamb RA, Paterson RG, Jardetzky TS. Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology344, 30–37 (2006).
  • Werling D, Hope JC, Chaplin P, Collins RA, Taylor G, Howard CJ. Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. J. Leuk. Biol.66, 50–58 (1999).
  • Alwan WH, Kozlowska WJ, Openshaw PJM. Distinct types of lung disease caused by functional subsets of antiviral T cells. J. Exp. Med.179, 81–89 (1994).
  • Thompson WW, Shay DK, Weintraub E et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA289, 179–186 (2003).
  • Whimbey E, Champlin RE, Couch RB et al. Community respiratory virus infections among hospitalized adult bone marrow transplant recipients. Clin. Inf. Dis.22, 778–782 (1996).
  • Shay DK, Holman RC, Newman RD, Liu LL, Stout JW, Anderson LJ. Bronchiolitis-associated hospitalizations among US children, 1980–1996. JAMA282, 1440–1446 (1999).
  • Stein RT, Sherrill D, Morgan WJ et al. Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years. Lancet354, 541–545 (1999).
  • Sigurs N, Bjarnason R, Sigurbergsson F, Kjellman B. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Resp. Crit. Care Med.161, 1501–1507 (2000).
  • Cardenas S, Auais A, Piedimonte G. Palivizumab in the prophylaxis of respiratory syncytial virus infection. Expert Rev. Anti. Infect. Ther.3, 719–726 (2005).
  • Stevens TP, Hall CB. Controversies in palivizumab use. Pediatr. Infect. Dis. J.23, 1051–1052 (2004).
  • Kasel JA, Walsh EE, Frank AL, Baxter BD, Taber LH, Glezen WP. Relation of serum antibody to glycoproteins of respiratory syncytial virus with immunity to infection in children. Viral Immunol.1, 199–205 (1988).
  • Ogilvie MM, Vathenen AS, Radford M, Codd J, Key S. Maternal antibody and respiratory syncytial virus infection in infancy. J. Med. Virol.7, 263–271 (1981).
  • Henderson FW, Clyde WA, Collier AM et al. The etiologic and epidemiologic spectrum of bronchiolitis in pediatric practice. J. Pediatr.95, 183–190 (1979).
  • Singleton R, Etchart N, Hou S, Hyland L. Inability to evoke a long-lasting protective immune response to respiratory syncytial virus infection in mice correlates with ineffective nasal antibody responses. J. Virol.77, 11303–11311 (2003).
  • Hall CB, Walsh EE, Long CE, Schnabel KC. Immunity to and frequency of reinfection with respiratory syncytial virus. J. Infect. Dis.163, 693–698 (1991).
  • Bont L, Versteegh J, Swelsen WTM et al. Natural reinfection with respiratory syncytial virus does not boost virus-specific T-cell immunity. Pediatr. Res.52, 363–367 (2002).
  • Ramaswamy M, Shi L, Monick MM, Hunninghake GW, Look DC. Specific inhibition of type I interferon signal transduction by respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol.30, 893–900 (2004).
  • Schlender J, Walliser G, Fricke J, Conzelmann K-K. Respiratory syncytial virus fusion protein mediates inhibition of mitogen-induced T-cell proliferation by contact. J. Virol.76, 1163–1170 (2002).
  • Chang J, Braciale TJ. Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract. Nat. Med.8, 54–60 (2002).
  • Bossert B, Marozin S, Conzelmann K-K. Nonstructural proteins NS1 and NS2 of bovine respiratory syncytial virus block activation of interferon regulatory factor 3. J. Virol.77, 8661–8668 (2003).
  • Spann KM, Tran K-C, Chi B, Rabin RL, Collins PL. Suppression of the induction of α, β, and γ interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages. J. Virol.78, 4363–4369 (2004).
  • Valarcher J-F, Furze J, Wyld S, Cook R, Conzelmann K-K, Taylor G. Role of α/β interferons in the attenuation and immunogenicity of recombinant bovine respiratory syncytial viruses lacking NS proteins. J. Virol.77, 8426–8439 (2003).
  • Durbin AP and Karron RA. Progress in the development of respiratory syncytial virus and parainfluenza virus vaccines. Clin. Inf. Dis.37, 1668–1677 (2003).
  • Karron RA, Wright PF, Belshe RB et al. Identification of a recombinant live attenuated respiratory syncytial virus vaccine candidate that is highly attenuated in infants. J. Infect. Dis.191, 1093–1104 (2005).
  • Kim HW, Canchola JG, Brandt CD et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol.89, 422–434 (1969).
  • Kalina WV, Woolums AR, Gershwin LJ. Formalin-inactivated bovine RSV vaccine influences antibody levels in bronchoalveolar lavage fluid and disease outcome in experimentally infected calves. Vaccine23, 4625–4630 (2005).
  • Johnson TR, Graham BS. Contribution of respiratory syncytial virus G antigenicity to vaccine-enhanced illness and the implications for severe disease during primary respiratory syncytial virus infection. Pediatr. Infect. Dis. J.23, S46–S57 (2004).
  • Openshaw PJM, Culley FJ, Olszewska W. Immunopathogenesis of vaccine-enhanced RSV disease. Vaccine20(1 Suppl.), S27–S31 (2001).
  • Polack FP, Teng MN, Collins PL et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med.196, 859–865 (2002).
  • Durbin JE and Durbin RK. Respiratory syncytial virus-induced immunoprotection and immunopathology. Viral Immunol.17, 370–380 (2004).
  • Graham BS, Johnson TR, Peebles RS. Immune-mediated disease pathogenesis in respiratory syncytial virus infection. Immunopharmacology48, 237–247 (2000).
  • Durbin JE, Johnson TR, Durbin RK et al. The role of IFN in respiratory syncytial virus pathogenesis. J. Immunol.168, 2944–2952 (2002).
  • Johnson TR, Mertz SE, Gitiban N et al. Role for innate IFNs in determining respiratory syncytial virus immunopathology. J. Immunol.174, 7234–7241 (2005).
  • Peebles RS, Hashimoto K, Graham BS. The complex relationship between respiratory syncytial virus and allergy in lung disease. Viral Immunol.16, 25–34 (2003).
  • Bramley AM, Vitalis TA, Wiggs BR, Hegele RG. Effects of respiratory syncytial virus persistence on airway responsiveness and inflammation in guinea pigs. Eur. Respir. J.14, 1061–1067 (1999).
  • Graham BS, Rutigliano JA, Johnson TR. Respiratory syncytial virus immunobiology and pathogenesis. Virology297, 1–7 (2002).
  • Rutigliano JA and Graham BS. Prolonged production of TNF-α exacerbates illness during respiratory syncytial virus infection. J. Immunol.173, 3408–3417 (2004).
  • Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol.1, 135–145 (2001).
  • Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human Toll-like receptors and related genes. Biol. Pharm. Bull.28, 886–892 (2005).
  • Gelman AE, Zhang J, Choi Y, Turka LA. Toll-like receptor ligands directly promote activated CD4+ T cell survival. J. Immunol.172, 6065–6073 (2004).
  • Guillot L, Le Goffic R, Bloch S et al. Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem.280, 5571–5580 (2005).
  • Hart OM, Athie-Morales V, O'Connor GM, Gardiner CM. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-γ production. J. Immunol.175, 1636–1642 (2005).
  • Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function. Blood102, 2660–2669 (2003).
  • Nagase H, Okugawa S, Ota Y et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol.171, 3977–3982 (2003).
  • Honda K, Yanai H, Takaoka A, Taniguchi T. Regulation of the type I IFN induction: a current view. Inter. Immunol.17, 1367–1378 (2005).
  • Cambi A and Figdor CG. Dual function of C-type lectin-like receptors in the immune system. Curr. Opin. Cell Biol.15, 539–546 (2003).
  • Baribund F, Doms RW, Pohlmann S. The role of DC-SIGN and DC-SIGNR in HIV and Ebola virus infection: can potential therapeutics block virus transmission and dissemination? Expert Opin. Ther. Targets6, 423–431 (2002).
  • Cormier EG, Durso RJ, Tsamis F et al. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfeciton of liver cells by hepatitis C virus. Proc. Natl Acad. Sci. USA101, 14067–14072 (2004).
  • Jeffers SA, Tusell SM, Fillim-Ross L et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA101, 15748–15753 (2004).
  • Sakuntabhai A, Turbpaiboon C, Casadémont I et al. A variant in the CD209 promoter is associated with severity of dengue disease. Nat. Genetics37, 507–513 (2005).
  • Davis CW, Nguyen HY, Hanna SL, Sanchez MD, Doms RW, Pierson TC. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J. Virol.80, 1290–1301 (2006).
  • Liu F-T. Regulatory roles of galectins in the immune response. Int. Arch. Allergy Immunol.136, 385–400 (2005).
  • Ouellet M, Mercier S, Pelletier I et al. Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachement to host cells. J. Immunol.174, 4120–4126 (2005).
  • Asakura H, Kashio Y, Nakamura K et al. Selective eosinophil adhesion to fibroblast via IFN-γ-induced galectin-9. J. Immunol.169, 5912–5918 (2002).
  • Zuberi RI, Hsu DK, Kalayci O et al. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am. J. Pathol.165, 2045–2053 (2004).
  • LeVine AM, Whitsett JA. Pulmonary collectins and innate host defense of the lung. Microb. Infect.3, 161–166 (2001).
  • Griese M. Respiratory syncytial virus and pulmonary surfactant. Viral Immunol.15, 357–363 (2002).
  • Barr FE, Pedigo H, Johnson TR, Shepherd VL. Surfactant protein-A enhances uptake of respiratory synctial virus by monocytes and U937 macrophages. Am. J. Respir. Cell Mol. Biol.23, 586–592 (2000).
  • Hickling TP, Malhotra R, Bright H, McDowell W, Blair ED, Sim RB. Lung surfactant protein A provides a route of entry for respiratory syncytial virus into host cells. Viral Immunol.13, 125–135 (2000).
  • LeVine AM, Elliott J, Whitsett JA et al. Surfactant protein-D enhances phagocytosis and pulmonary clearance of respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol.31, 193–199 (2004).
  • LeVine AM, Gwozdz J, Stark JM, Bruno M, Whitsett J, Korfhagen T. Surfactant protein-A enhances respiratory syncytial virus clearance in vivo.J. Clin. Invest.103, 1015–1021 (1999).
  • Tibby SM, Hatherhill M, Wright SM, Wilson P, Postle AD, Murdoch IA. Exogenous surfactant supplementation in infants with respiratory syncytial virus bronchiolitis. Am. J. Resp. Crit. Care Med.162, 1251–1256 (2000).
  • Alcorn JL, Stark JM, Chiappetta CL, Jenkins G, Colasurdo GN. Effects of RSV infection on pulmonary surfactant protein SP-A in cultured human type II cells: contrasting consequences on SP-A mRNA and protein. Am. J. Physiol. Lung Cell. Mol. Physiol.289, L1113–L1122 (2005).
  • Löfgren J, Rämet M, Renko M, Marttila R, Hallman M. Association between surfactant protein A gene locus and severe respiratory syncytial virus infection in infants. J. Infect. Dis.185, 283–289 (2002).
  • Lahti M, Löfgren J, Marttila R et al. Surfactant protein D gene polymorphism associated with severe respiratory syncytial virus infection. Pediatr. Res.51, 696–699 (2002).
  • Akira S and Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4, 499–511 (2006).
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol.8, 769–776 (2005).
  • Bieback K, Lien E, Klagge IM et al. Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J. Virol.76, 8729–8736 (2002).
  • Maloney G, Schroder M, Bowie AG. Vaccinia virus protein A52R activates p38 mitogen-activated protein kinase and potentiates lipopolysaccharide-induced interleukin-10. J. Biol. Chem.280, 30838–30844 (2005).
  • Li K, Foy E, Ferreon JC et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 protein TRIF. Proc. Natl Acad. Sci. USA102, 2992–2997 (2005).
  • Jude BA, Pobezinsdaya Y, Bishop J et al. Subversion of the innate immune system by a retrovirus. Nat. Immunol.4, 573–578 (2003).
  • Fensterl V, Grotheer D, Berk I, Schlemminger S, Vallbracht A, Dotzauer A. Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of b interferon. J. Virol.79, 10968–10977 (2005).
  • Yang IA, Fong KM, Holgate ST, Holloway JW. The role of Toll-like receptors and related receptors of the innate immune system in asthma. Curr. Opin. Allergy Clin. Immunol.6, 23–28 (2006).
  • Kurt-Jones EA, Popova L, Kwinn L et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol.1, 398–401 (2000).
  • Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ, Tripp RA. Involvement of Toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol.75, 10730–10737 (2001).
  • Haeberle HA, Takizawa R, Casola A et al. Respiratory syncytial virus-induced activation of nuclear factor-κB in the lung involves alveolar macrophages and Toll-like receptor 4-dependent pathways. J. Infect. Dis.186, 1199–1206 (2002).
  • Monick MM, Yarovinsky TO, Powers LS et al. Respiratory syncytial virus up-regulates TLR4 and sensitizes airway epithelial cells to endotoxin. J. Biol. Chem.278, 53035–53044 (2003).
  • Ehl S, Bischoff R, Ostler T et al. The role of Toll-like receptor 4 versus interleukin-12 in immunity to respiratory syncytial virus. Eur. J. Immunol.34, 1146–1153 (2004).
  • van der Sluijs KF, van Elden L, Nijhuis M et al . Toll-like receptor 4 is not involved in host defense against respiratory tract infection with Sendai virus. Immunol. Lett.89, 201–206 (2003).
  • Faisca P, Anh DBT, Thomas A, Desmecht D. Suppression of pattern-recognition receptor TLR4 sensing does not alter lung responses to pneumovirus infection. Microb. Infect.8, 621–627 (2006).
  • Gagro A, Tominac M, Kršulovic-Hrešic V et al. Increased Toll-like receptor 4 expression in infants with respiratory syncytial virus bronchiolitis. Clin. Exp. Immunol.135, 267–272 (2004).
  • Tal G, Mandelberg A, Dalal I et al. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J. Infect. Dis.189, 2057–2063 (2004).
  • Badolato R, Fontana S, Barcella L et al. Toll-like receptor-4 genotype in children with respiratory infections. Allergy59, 1018–1019 (2004).
  • Polack FP, Irusta PM, Hoffman SJ et al. The cysteine-rich region of respiratory syncytial virus attachment protein inhibits innate immunity elicited by the virus and endotoxin. Proc. Natl Acad. Sci. USA102, 8996–9001 (2005).
  • Kawai T and Akira S. Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol.17, 338–344 (2005).
  • Tian B, Zhang Y, Luxon BA et al. Identification of NF-κB-dependent gene networks in respiratory syncytial virus-infected cells. J. Virol.76, 6800–6814 (2002).
  • Rudd BD, Burstein E, Duckett CS, Lukacs NW. Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J. Virol.79, 3350–3357 (2005).
  • Groskreutz DJ, Monick MM, Powers LS, Yarovinsky TO, Look DC, Hunninghake GW. Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells. J. Immunol.176, 1733–1740 (2006).
  • Rudd BD, Smit JJ, Flavell RA et al. Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J. Immunol.176, 1937–1942 (2006).
  • Hornung V, Schlender J, Günthner-Biller M et al. Replication-dependent potent IFN-α induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J. Immunol.173, 5935–5943 (2004).
  • Yoneyama M, Kikuchi M, Natsukawa T et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol.5, 730–737 (2004).
  • Andrejeva J, Childs KS, Carlos TS et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc. Natl Acad. Sci. USA101, 17264–17269 (2004).
  • Melchjorsen J, Jensen SB, Malmgaard L et al. Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J. Virol.79, 12944–12951 (2005).
  • Schlender J, Hornung V, Finke S et al. Inhibition of Toll-like receptor 7- and 9-mediated α/β interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J. Virol.79, 5507–5515 (2005).
  • Ulevitch RJ. Therapeutics targeting the innate immune system. Nat. Rev. Immunol.4, 512–520 (2004).
  • Pulendran B. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev.199, 227–250 (2004).
  • Wille-Reece U, Wu C, Flynn BJ, Kedl RM, Seder RA. Immunization with HIV-1 gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 gag-specific Th1 and CD8+ T cell responses. J. Immunol.174, 7676–7683 (2005).
  • Neuzil KM, Johnson JE, Tang Y-W et al. Adjuvants influence the quantitative and qualitative immune response in BALB/c mice immunized with respiratory syncytial virus FG subunit vaccine. Vaccine15, 525–532 (1997).
  • Prince GA, Denamur F, Deschamps M et al. Monophosphoryl lipid A adjuvant reverses a principal histologic parameter of formalin-inactivated respiratory syncytial virus vaccine-induced disease. Vaccine19, 2048–2054 (2001).
  • Hancock GE, Heers KM, Smith JD, Scheuer CA, Igraghimov AR, Pryharski KS. CpG containing oligodeoxynucleotides are potent adjuvants for parenteral vaccination with the fusion (F) protein of respiratory syncytial virus (RSV). Vaccine19, 4874–4882 (2001).
  • Hancock GE, Heers KM, Pryharski KS, Smith JD, Tiberio L. Adjuvants recognized by toll-like receptors inhibit the induction of polarized type 2 T cell responses by natural attachment (G) protein of respiratory syncytial virus. Vaccine21, 4348–4358 (2003).
  • Prince GA, Mond JJ, Porter DD, Yim KC, Lan SJ, Klinman DM. Immunoprotective activity and safety of a respiratory syncytial virus vaccine: mucosal delivery of fusion glycoprotein with a CpG oligodeoxynucleotide adjuvant. J. Virol.77, 13156–13160 (2003).
  • Oumouna M, Mapletoft JW, Karvonen BC, Babiuk LA, van Drunen Littel-van den Hurk S. Formulation with CpG oligodeoxynucleotides prevents induction of pulmonary immunopathology following priming with formalin-inactivated or commercial killed bovine respiratory syncytial virus vaccine. J. Virol.79, 2024–2032 (2005).
  • Perfetto SP, Chattopadhyay PK, Roederer. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol.4, 648–655 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.