135
Views
32
CrossRef citations to date
0
Altmetric
Review

Smart adjuvants

, &
Pages 391-400 | Published online: 09 Jan 2014

References

  • Lindblad EB. Aluminium compounds for use in vaccines. Immunol. Cell. Biol.82(5), 497–505 (2004).
  • Atmar RL, Keitel WA, Patel SM et al. Safety and immunogenicity of nonadjuvanted and MF59-adjuvanted influenza A/H9N2 vaccine preparation. Clin. Infect. Dis.43(9), 1135–1142 (2006).
  • Stephenson I, Zambon MC, Rudin A et al. Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers. J. Virol.80(10), 4962–4970 (2006).
  • Wobser M, Keikavoussi P, Kunzmann V, Weininger M, Andersen MH, Becker JC. Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol. Immunother.55(10), 1294–1298 (2005).
  • Saul A, Lawrence G, Allworth A et al. A human Phase 1 vaccine clinical trial of the Plasmodium falciparum malaria vaccine candidate apical membrane antigen 1 in Montanide ISA720 adjuvant. Vaccine23(23), 3076–3083 (2005).
  • Sheikh NA, Attard GS, van Rooijen N et al. Differential requirements for CTL generation by novel immunostimulants: APC tropism, use of the TAP-independent processing pathway, and dependency on CD80/CD86 costimulation. Vaccine21(25–26), 3775–3788 (2003).
  • Heeg K, Kuon W, Wagner H. Vaccination of class I major histocompatibility complex (MHC)-restricted murine CD8+ cytotoxic T lymphocytes towards soluble antigens: immunostimulating-ovalbumin complexes enter the class I MHC-restricted antigen pathway and allow sensitization against the immunodominant peptide. Eur. J. Immunol.21(6), 1523–1527 (1991).
  • Andersen CS, Dietrich J, Agger EM, Lycke NY, Lovgren K, Andersen P. The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior Mycobacterium bovis BCG immunity to Mycobacterium tuberculosis. Infect. Immun.75(1), 408–416 (2007).
  • Nguyen TV, Yuan L, Azevedo MS et al. High titers of circulating maternal antibodies suppress effector and memory B-cell responses induced by an attenuated rotavirus priming and rotavirus-like particle-immunostimulating complex boosting vaccine regimen. Clin. Vaccine Immunol.13(4), 475–485 (2006).
  • Morrow WJW, Yang YW, Sheikh NA. Immunobiology of the Tomatine adjuvant. Vaccine22(19), 2380–2384 (2004).
  • Kato M, McDonald KJ, Khan S et al. Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. Int. Immunol.18(6), 857–869 (2006).
  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med.196(12), 1627–1638 (2002).
  • Bonifaz LC, Bonnyay DP, Charalambous A et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med.199(6), 815–824 (2004).
  • Bozzacco L, Trumpfheller C, Siegel FP et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc. Natl Acad. Sci. USA104(4), 1289–1294 (2007).
  • Ferkol T, Perales JC, Mularo F, Hanson RW. Receptor-mediated gene transfer into macrophages. Proc. Natl Acad. Sci. USA93(1), 101–105 (1996).
  • Kawakami S, Yamashita F, Nishida K, Nakamura J, Hashida M. Glycosylated cationic liposomes for cell-selective gene delivery. Crit. Rev. Ther. Drug Carrier Syst.19(2), 171–190 (2002).
  • Arigita C, Bevaart L, Everse LA et al. Liposomal meningococcal B vaccination: role of dendritic cell targeting in the development of a protective immune response. Infect. Immun.71(9), 5210–5218 (2003).
  • Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med.203(12), 2613–2625 (2006).
  • Rensen PC, Gras JC, Lindfors EK et al. Selective targeting of liposomes to macrophages using a ligand with high affinity for the macrophage scavenger receptor class A. Curr. Drug Discov. Technol.3(2), 135–144 (2006).
  • Ribi EE, Cantrell JL, Von Eschen KB, Schwartzman SM. Enhancement of endotoxic shock by N-acetylmuramyl-l-alanyl-(l-seryl)-d-isoglutamine (muramyl dipeptide). Cancer Res.39(11), 4756–4759 (1979).
  • Parida SK, Huygen K, Ryffel B, Chakraborty T. Novel bacterial delivery system with attenuated Salmonella typhimurium carrying plasmid encoding Mtb antigen 85A for mucosal immunization: establishment of proof of principle in TB mouse model. Ann. NY Acad. Sci.1056, 366–378 (2005).
  • Galán JE. Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol.20(2), 263–271 (1996).
  • Russmann H, Shams H, Poblete F, Fu Y, Galan JE, Donis RO. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science281(5376), 565–568 (1998).
  • Nishikawa H, Sato E, Briones G et al. In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J. Clin. Invest.116(7), 1946–1954 (2006).
  • Kotton CN, Lankowski AJ, Scott N et al. Safety and immunogenicity of attenuated Salmonella enterica serovar Typhimurium delivering an HIV-1 Gag antigen via the Salmonella Type III secretion system. Vaccine24(37–39), 6216–6224 (2006).
  • Dadaglio G, Morel S, Bauche C et al. Recombinant adenylate cyclase toxin of Bordetella pertussis induces cytotoxic T lymphocyte responses against HLA*0201-restricted melanoma epitopes. Int. Immunol.15(12), 1423–1430 (2003).
  • Guermonprez P, Khelef N, Blouin E et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the α(M)β(2) integrin (CD11b/CD18). J. Exp. Med.193(9), 1035–1044 (2001).
  • Preville X, Ladant D, Timmerman B, Leclerc C. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res.65(2), 641–649 (2005).
  • Schlecht G, Loucka J, Najar H, Sebo P, Leclerc C. Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and in vivo Th1-polarized T cell priming. J. Immunol.173(10), 6089–6097 (2004).
  • Fayolle C, Bauche C, Ladant D, Leclerc C. Bordetella pertussis adenylate cyclase delivers chemically coupled CD8+ T-cell epitopes to dendritic cells and elicits CTL in vivo. Vaccine23(5), 604–614 (2004).
  • Mascarell L, Bauche C, Fayolle C et al. Delivery of the HIV-1 Tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non-human primates. Vaccine24(17), 3490–3499 (2006).
  • Saiki I, Kamisango K, Tanio Y, Okumura H, Yamamura Y, Azuma I. Adjuvant activity of purified peptidoglycan of Listeria monocytogenes in mice and guinea pigs. Infect. Immun.38(1), 58–65 (1982).
  • Weiskirch LM, Paterson Y. Listeria monocytogenes: a potent vaccine vector for neoplastic and infectious disease. Immunol. Rev.158, 159–169 (1997).
  • Schafer R, Portnoy DA, Brassell SA, Paterson Y. Induction of a cellular immune response to a foreign antigen by a recombinant Listeria monocytogenes vaccine. J. lmmunol.149(1), 53–59 (1992).
  • Ikonomidis G, Paterson Y, Kos FJ, Portnoy DA. Delivery of a viral antigen to the class 1 processing and presentation pathway by Listeria monocytogenes. J. Exp. Med.180(6), 2209–2218 (1994).
  • Frankel FR, Hegde S, Lieberman J, Paterson Y. Induction of cell-mediated immune responses to human immunodeficiency virus type 1 Gag protein by using Listeria monocytogenes as a live vaccine vector. J. Immunol.155(10), 4775–4782 (1995).
  • Shen H, Slifka MK, Matloubian M, Jensen ER, Ahmed R, Miller JF. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell mediated immunity. Proc. Natl Acad. Sci. USA92(9), 3987–3991 (1995).
  • Triebel F, Jitsukawa S, Baixeras E et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med.171(5), 1393–1405 (1990).
  • Huard B, Mastrangeli R, Prigent P et al. Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc. Natl Acad. Sci. USA94(11), 5744–5749 (1997).
  • Huard B, Gaulard P, Faure F, Hercend T, Triebel F. Cellular expression and tissue distribution of the human LAG-3-encoded protein, a MHC class II ligand. Immunogenetics39(3), 213–217 (1994).
  • El Mir S, Triebel F. A soluble lymphocyte activation gene-3 molecule used as a vaccine adjuvant elicits greater humoral and cellular immune responses to both particulate and soluble antigens. J. Immunol.164(11), 5583–5589 (2000).
  • Casati C, Camisaschi C, Rini F et al. Soluble human LAG-3 molecule amplifies the in vitro generation of type 1 tumor-specific immunity. Cancer Res.66(8), 4450–4460 (2006).
  • Fougeray S, Brignone C, Triebel F. A soluble LAG-3 protein as an immunopotentiator for therapeutic vaccines: preclinical evaluation of IMP321. Vaccine24(26), 5426–5433 (2006).
  • Janeway CA Jr, Medzhitov R. Introduction: the role of innate immunity in adaptive immune response. Semin. Immunol.10(5), 349–350 (1998).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol.21, 335–376 (2003).
  • Padalko E, Nuyens D, De Palma A et al. The interferon inducer ampligen [poly(I)-poly(C12U)] markedly protects mice against coxsackie B3 virus-induced myocarditis. Antimicrob. Agents Chemother.48(1), 267–274 (2004).
  • Evans JT, Cluff CW, Johnson DA, Lacy MJ, Persing DH, Baldridge JR. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev. Vaccines2(2), 219–229 (2003).
  • Huleatt J, Jacobs AR, Tang J et al. Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity. Vaccine25(4), 763–775 (2007).
  • Levine MM, Ristaino P, Sack RB, Kaper JB, Orskov F, Orskov I. Colonization factor antigens I and II and type 1 somatic pili in enterotoxigenic Escherichia coli: relation to enterotoxin type. Infect. Immun.39(2), 889–897 (1983).
  • Lycke N, Karlsson U, Sjolander A, Magnusson KE. The adjuvant action of cholera toxin is associated with an increased intestinal permeability for luminal antigens. Scand. J. Immunol.33(6), 691–698 (1991).
  • Wu HY, Russell MW. Comparison of systemic and mucosal priming for mucosal immune responses to a bacterial protein antigen given with or coupled to cholera toxin (CT) B subunit, and effects of pre-existing anti-CT immunity. Vaccine12(3), 215–222 (1994).
  • Staats HF, Ennis FA Jr. IL-1 is an effective adjuvant for mucosal and systemic immune responses when coadministered with protein immunogens. J. Immunol.162(10), 6141–6147 (1999).
  • Eberlein TJ, Rodrick ML, Massaro AF, Jung SE, Mannick JA, Schoof DD. Immunomodulatory effects of systemic low-dose recombinant interleukin-2 and lymphokine-activated killer cells in humans. Cancer Immunol. Immunother.30(3), 145–150 (1989).
  • West WH, Tauer KW, Yannelli JR et al. Multiple cycles of constant infusion recombinant interleukin-2 in adoptive cellular therapy of metastatic renal carcinoma. Mol. Biother.1(5), 268–274 (1989).
  • Dybul M, Hidalgo B, Chun TW et al. Pilot study of the effects of intermittent interleukin-2 on human immunodeficiency virus (HIV)-specific immune responses in patients treated during recently acquired HIV infection. J. Infect. Dis.185(1), 61–68 (2002).
  • Kuwabara K, Nishishita T, Morishita M et al. Results of a Phase I clinical study using dendritic cell vaccinations for thyroid cancer. Thyroid17(1), 53–58 (2007).
  • Shaw DM, Connolly NB, Patel PM et al. A Phase II study of a 5T4 oncofoetal antigen tumour-targeted superantigen (ABR-214936) therapy in patients with advanced renal cell carcinoma. Br. J. Cancer96(4), 567–574 (2007).
  • Smith KA, Andjelic S, Popmihajlov Z et al. Immunotherapy with canarypox vaccine and interleukin-2 for HIV-1 infection: termination of a randomized trial. PLoS Clin. Trials2(1), e5 (2007).
  • Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J. Clin. Invest.115(5), 1177–1187 (2005).
  • Liu W, Putnam AL, Xu-yu Z et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med.203(7), 1701–1711 (2006).
  • Trinchieri G, Scott P. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions. Res. Immunol.146(7–8), 423–431 (1995).
  • Schmidt CS, Mescher MF. Adjuvant effect of IL-12: conversion of peptide antigen administration from tolerizing to immunizing for CD8+ T cells in vivo. J. Immunol.163(5), 2561–2567 (1999).
  • Gollob JA, Schnipper CP, Orsini E et al. Characterization of a novel subset of CD8+ T cells that expands in patients receiving interleukin-12. J. Clin. Invest.102(3), 561–575 (1998).
  • Leonard JP, Sherman ML, Fisher GL et al. Effects of single-dose interleulin-12 exposure on interleukin-12-associated toxicity and interferon-γ production. Blood90(7), 2541–2548 (1997).
  • Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13(5), 715–725 (2000).
  • Shimozato O, Ugai S, Chiyo M et al. The secreted form of the p40 subunit of interleukin (IL)-12 inhibits IL-23 functions and abrogates IL-23-mediated antitumour effects. Immunology117(1), 22–28 (2006).
  • Ha SJ, Kim DJ, Baek KH, Yun YD, Sung YC. IL-23 induces stronger sustained CTL and Th1 immune responses than IL-12 in hepatitis C virus envelope protein 2 DNA immunization. J. Immunol.172(1), 525–531 (2004).
  • Matsui M, Moriya O, Belladonna ML et al. Adjuvant activities of novel cytokines, interleukin-23 (IL-23) and IL-27, for induction of hepatitis C virus-specific cytotoxic T lymphocytes in HLA-A*0201 transgenic mice. J. Virol.78(17), 9093–9104 (2004).
  • Overwijk WW, de Visser KE, Tirion FH et al. Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant. J. Immunol.176(9), 5213–5222 (2006).
  • Cline MJ, Golde DW. Production of colony-stimulating activity by human lymphocytes. Nature248(450), 703–704 (1974).
  • Burgess AW, Camakaris J, Metcalf D. Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J. Biol. Chem.252(6), 1998–2003 (1977).
  • Gough NM, Gough J, Metcalf D et al. Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte–macrophage colony stimulating factor. Nature309(5971), 763–767 (1984).
  • Gasson JC, Weisbart RH, Kaufman SE et al. Purified human granulocyte–macrophage colony-stimulating factor: direct action on neutrophils. Science226(4680), 1339–1342 (1984).
  • Wong GG, Witek JS, Temple PA et al. Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science228(4701), 810–815 (1985).
  • Mach N, Gillessen S, Wilson SB, Sheehan C, Mihm M, Dranoff G. Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte–macrophage colony-stimulating factor or Flt3-ligand. Cancer Res.60(12), 3239–3246 (2000).
  • Vasu C, Dogan RN, Holterman MJ, Prabhakar BS. Selective induction of dendritic cells using granulocyte macrophage-colony stimulating factor, but not fms-like tyrosine kinase receptor 3-ligand, activates thyroglobin-specific CD4+/CD25+ T cells and suppresses experimental autoimmune thyroiditis. J. Immunol.170(11), 5511–5522 (2003).
  • Serafini P, De Santo C, Marigo I et al. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol. Immunother.53(2), 64–72 (2004).
  • Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA90(8), 3539–3543 (1993).
  • Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann. Oncol.18(2), 226–232 (2006).
  • Small E, Schelhammer PF, Higano C et al. Placebo-controlled Phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol.24(19), 3089–3094 (2006).
  • Kundi M. New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev. Vaccines6(2), 133–140 (2007).

Website

  • The World Health report 2002, published 2004 www.who.int/whr/2004/annex/en/index.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.