123
Views
37
CrossRef citations to date
0
Altmetric
Review

Next generation: tuberculosis vaccines that elicit protective CD8+ T cells

, &
Pages 441-456 | Published online: 09 Jan 2014

References

  • Lefford MJ. Transfer of adoptive immunity to tuberculosis in mice. Infect. Immun.11, 1174–1181 (1975).
  • Orme IM, Collins FM. Adoptive protection of the Mycobacterium tuberculosis-infected lung. Dissociation between cells that passively transfer protective immunity and those that transfer delayed-type hypersensitivity to tuberculin. Cell. Immunol.84, 113–120 (1984).
  • Orme IM. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis.J. Immunol.138, 293–298 (1987).
  • Orme IM. Characteristics and specificity of acquired immunologic memory to Mycobacterium tuberculosis infection. J. Immunol.140, 3589–3593 (1988).
  • Pedrazzini T, Hug K, Louis JA. Importance of L3T4+ and Lyt-2+ cells in the immunologic control of infection with Mycobacterium bovis strain bacillus Calmette–Guerin in mice. Assessment by elimination of T cell subsets in vivo.J. Immunol.139, 2032–2037 (1987).
  • Feng CG, Britton WJ. CD4+ and CD8+ T cells mediate adoptive immunity to aerosol infection of Mycobacterium bovis bacillus Calmette–Guerin. J. Infect. Dis.181, 1846–1849 (2000).
  • Muller I, Cobbold SP, Waldmann H, Kaufmann SH. Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect. Immun.55, 2037–2041 (1987).
  • Cox JH, Knight BC, Ivanyi J. Mechanisms of recrudescence of Mycobacterium bovis BCG infection in mice. Infect. Immun.57, 1719–1724 (1989).
  • Sousa AO, Mazzaccaro RJ, Russell RG et al. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc. Natl Acad. Sci. USA97, 4204–4208 (2000).
  • Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis.J. Exp. Med.189, 1973–1980 (1999).
  • Rolph MS, Raupach B, Kobernick HH et al. MHC class Ia-restricted T cells partially account for β2-microglobulin-dependent resistance to Mycobacterium tuberculosis.Eur. J. Immunol.31, 1944–1949 (2001).
  • Urdahl KB, Liggitt D, Bevan MJ. CD8+ T cells accumulate in the lungs of Mycobacterium tuberculosis-infected Kb-/-Db-/- mice, but provide minimal protection. J. Immunol.170, 1987–1994 (2003).
  • Woodworth JS, Behar SM. Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity. Crit. Rev. Immunol.26, 317–352 (2006).
  • Mogues T, Goodrich M, Ryan L, LaCourse R, North R. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J. Exp. Med.193, 271–280 (2001).
  • van Pinxteren LA, Cassidy JP, Smedegaard BH, Agger EM, Andersen P. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur. J. Immunol.30, 3689–3698 (2000).
  • Smith CM, Wilson NS, Waithman J et al. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat. Immunol.5, 1143–1148 (2004).
  • Serbina NV, Lazarevic V, Flynn JL. CD4(+) T cells are required for the development of cytotoxic CD8(+) T cells during Mycobacterium tuberculosis infection. J. Immunol.167, 6991–7000 (2001).
  • Kamath AB, Woodworth J, Xiong X, Taylor C, Weng Y, Behar SM. Cytolytic CD8+ T cells recognizing CFP10 are recruited to the lung after Mycobacterium tuberculosis infection. J. Exp. Med.200, 1479–1489 (2004).
  • Romano M, Denis O, D’Souza S et al. Induction of in vivo functional Db-restricted cytolytic T cell activity against a putative phosphate transport receptor of Mycobacterium tuberculosis.J. Immunol.172, 6913–6921 (2004).
  • McShane H, Behboudi S, Goonetilleke N, Brookes R, Hill AV. Protective immunity against Mycobacterium tuberculosis induced by dendritic cells pulsed with both CD8(+)- and CD4(+)-T-cell epitopes from antigen 85A. Infect. Immun.70, 1623–1626 (2002).
  • Yewdell JW, Reits E, Neefjes J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat. Rev. Immunol.3, 952–961 (2003).
  • Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev.207, 145–157 (2005).
  • Majlessi L, Rojas MJ, Brodin P, Leclerc C. CD8+-T-cell responses of Mycobacterium-infected mice to a newly identified major histocompatibility complex class I-restricted epitope shared by proteins of the ESAT-6 family. Infect. Immun.71, 7173–7177 (2003).
  • Smith SM, Malin AS, Pauline T et al. Characterization of human Mycobacterium bovis bacille Calmette–Guerin-reactive CD8+ T cells. Infect. Immun.67, 5223–5230 (1999).
  • McMurray DN. A coordinated strategy for evaluating new vaccines for human and animal tuberculosis. Tuberculosis81, 141–146 (2001).
  • Kamath AT, Fruth U, Brennan MJ et al. New live mycobacterial vaccines: the Geneva consensus on essential steps towards clinical development. Vaccine23, 3753–3761 (2005).
  • Orme IM, McMurray DN, Belisle JT. Tuberculosis vaccine development: recent progress. Trends Microbiol.9, 115–118 (2001).
  • Kamath AB, Behar SM. Anamnestic responses of mice following Mycobacterium tuberculosis infection. Infect. Immun.73, 6110–6118 (2005).
  • Derrick SC, Yang AL, Morris SL. Vaccination with a Sindbis virus-based DNA vaccine expressing antigen 85B induces protective immunity against Mycobacterium tuberculosis.Infect. Immun.73, 7727–7735 (2005).
  • Romano M, D’Souza S, Adnet PY et al. Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from Mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. tuberculosis H37Rv. Vaccine24, 3353–3364 (2006).
  • Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell106, 255–258 (2001).
  • Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med.182, 389–400 (1995).
  • Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science307, 1630–1634 (2005).
  • Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med.199, 1607–1618 (2004).
  • Demangel C, Bean AG, Martin E, Feng CG, Kamath AT, Britton WJ. Protection against aerosol Mycobacterium tuberculosis infection using Mycobacterium bovis bacillus Calmette Guerin-infected dendritic cells. Eur. J. Immunol.29, 1972–1979 (1999).
  • Lewinsohn DA, Lines RA, Lewinsohn DM. Human dendritic cells presenting adenovirally expressed antigen elicit Mycobacterium tuberculosis-specific CD8+ T cells. Am. J. Respir. Crit. Care Med.166, 843–848 (2002).
  • Malowany JI, McCormick S, Santosuosso M et al. Development of cell-based tuberculosis vaccines: genetically modified dendritic cell vaccine is a much more potent activator of CD4 and CD8 T cells than peptide- or protein-loaded counterparts. Mol. Ther.13, 766–775 (2006).
  • Nakano H, Nagata T, Suda T et al. Immunization with dendritic cells retrovirally transduced with mycobacterial antigen 85A gene elicits the specific cellular immunity including cytotoxic T-lymphocyte activity specific to an epitope on antigen 85A. Vaccine24, 2110–2119 (2006).
  • Gonzalez-Juarrero M, Turner J, Basaraba RJ, Belisle JT, Orme IM. Florid pulmonary inflammatory responses in mice vaccinated with antigen-85 pulsed dendritic cells and challenged by aerosol with Mycobacterium tuberculosis.Cell. Immunol.220, 13–19 (2002).
  • Pithie AD, Rahelu M, Kumararatne DS et al. Generation of cytolytic T cells in individuals infected by Mycobacterium tuberculosis and vaccinated with BCG. Thorax47, 695–701 (1992).
  • Cayabyab MJ, Hovav AH, Hsu T et al. Generation of CD8+ T-cell responses by a recombinant nonpathogenic Mycobacterium smegmatis vaccine vector expressing human immunodeficiency virus type 1. Env. J. Virol.80, 1645–1652 (2006).
  • Uno-Furuta S, Matsuo K, Tamaki S et al. Immunization with recombinant Calmette–Guerin bacillus (BCG)-hepatitis C virus (HCV) elicits HCV-specific cytotoxic T lymphocytes in mice. Vaccine21, 3149–3156 (2003).
  • Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic’ S. Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl Acad. Sci. USA97, 13853–13858 (2000).
  • Horwitz MA, Harth G. A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect. Immun.71, 1672–1679 (2003).
  • Murray PJ, Aldovini A, Young RA. Manipulation and potentiation of antimycobacterial immunity using recombinant bacille Calmette–Guerin strains that secrete cytokines. Proc. Natl Acad. Sci. USA93, 934–939 (1996).
  • Pym AS, Brodin P, Majlessi L et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med.9, 533–539 (2003).
  • Grode L, Seiler P, Baumann S et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette–Guerin mutants that secrete listeriolysin. J. Clin. Invest.115, 2472–2479 (2005).
  • Winau F, Weber S, Sad S et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity24, 105–117 (2006).
  • Schaible UE, Winau F, Sieling PA et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med.9, 1039–1046 (2003).
  • Hess J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH. Mycobacterium bovis bacille Calmette–Guerin strains secreting listeriolysin of Listeria monocytogenes.Proc. Natl Acad. Sci. USA95, 5299–5304 (1998).
  • Conradt P, Hess J, Kaufmann SH. Cytolytic T-cell responses to human dendritic cells and macrophages infected with Mycobacterium bovis BCG and recombinant BCG secreting listeriolysin. Microbes. Infect.1, 753–764 (1999).
  • Martin C, Williams A, Hernandez-Pando R et al. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine24, 3408–3419 (2006).
  • Sambandamurthy VK, Derrick SC, Jalapathy KV et al. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis.Infect. Immun.73, 1196–1203 (2005).
  • Sampson SL, Dascher CC, Sambandamurthy VK et al. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect. Immun.72, 3031–3037 (2004).
  • Sambandamurthy VK, Wang X, Chen B et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat. Med.8, 1171–1174 (2002).
  • Sambandamurthy VK, Derrick SC, Hsu T et al.Mycobacterium tuberculosis δRD1 δpanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine24, 6309–6320 (2006).
  • Skinner MA, Yuan S, Prestidge R, Chuk D, Watson JD, Tan PL. Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis.Infect. Immun.65, 4525–4530 (1997).
  • Lagranderie MR, Balazuc AM, Deriaud E, Leclerc CD, Gheorghiu M. Comparison of immune responses of mice immunized with five different Mycobacterium bovis BCG vaccine strains. Infect. Immun.64, 1–9 (1996).
  • Wang J, Thorson L, Stokes RW et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol.173, 6357–6365 (2004).
  • Santosuosso M, Zhang X, McCormick S, Wang J, Hitt M, Xing Z. Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J. Immunol.174, 7986–7994 (2005).
  • Andersen P, Doherty TM. The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol.3, 656–662 (2005).
  • Havenga M, Vogels R, Zuijdgeest D et al. Novel replication-incompetent adenoviral B-group vectors: high vector stability and yield in PER.C6 cells. J. Gen. Virol.87, 2135–2143 (2006).
  • Roberts DM, Nanda A, Havenga MJ et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature441, 239–243 (2006).
  • Harrington LE, Most RR, Whitton JL, Ahmed R. Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope. J. Virol.76, 3329–3337 (2002).
  • Xu R, Johnson AJ, Liggitt D, Bevan MJ. Cellular and humoral immunity against vaccinia virus infection of mice. J. Immunol.172, 6265–6271 (2004).
  • Belyakov IM, Earl P, Dzutsev A et al. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc. Natl Acad. Sci. USA100, 9458–9463 (2003).
  • Snyder JT, Belyakov IM, Dzutsev A, Lemonnier F, Berzofsky JA. Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses. J. Virol.78, 7052–7060 (2004).
  • Smith GL, Murphy BR, Moss B. Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc. Natl Acad. Sci. USA80, 7155–7159 (1983).
  • Moss B, Smith GL, Gerin JL, Purcell RH. Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature311, 67–69 (1984).
  • Cremer KJ, Mackett M, Wohlenberg C, Notkins AL, Moss B. Vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D prevents latent herpes in mice. Science228, 737–740 (1985).
  • McShane H, Brookes R, Gilbert SC, Hill AV. Enhanced immunogenicity of CD4(+) T-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime–boost vaccination regimen for murine tuberculosis. Infect. Immun.69, 681–686 (2001).
  • Moss B. Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc. Natl Acad. Sci. USA93, 11341–11348 (1996).
  • Gonzalez-Aseguinolaza G, Nakaya Y, Molano A et al. Induction of protective immunity against malaria by priming–boosting immunization with recombinant cold-adapted influenza and modified vaccinia Ankara viruses expressing a CD8+-T-cell epitope derived from the circumsporozoite protein of Plasmodium yoelii.J. Virol.77, 11859–11866 (2003).
  • Sutter G, Staib C. Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr. Drug Targets Infect. Disord.3, 263–271 (2003).
  • Drexler I, Staib C, Sutter G. Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential? Curr. Opin. Biotechnol.15, 506–512 (2004).
  • Cosma A, Nagaraj R, Buhler S et al. Therapeutic vaccination with MVA-HIV-1 nef elicits Nef-specific T-helper cell responses in chronically HIV-1 infected individuals. Vaccine22, 21–29 (2003).
  • Lyons J, Sinos C, Destree A et al. Expression of Mycobacterium tuberculosis and Mycobacterium leprae proteins by vaccinia virus. Infect. Immun.58, 4089–4098 (1990).
  • Zhu X, Venkataprasad N, Ivanyi J, Vordermeier HM. Vaccination with recombinant vaccinia viruses protects mice against Mycobacterium tuberculosis infection. Immunology92, 6–9 (1997).
  • Malin AS, Huygen K, Content J et al. Vaccinia expression of Mycobacterium tuberculosis-secreted proteins: tissue plasminogen activator signal sequence enhances expression and immunogenicity of M. tuberculosis Ag85. Microbes Infect.2, 1677–1685 (2000).
  • Feng CG, Blanchard TJ, Smith GL, Hill AV, Britton WJ. Induction of CD8+ T-lymphocyte responses to a secreted antigen of Mycobacterium tuberculosis by an attenuated vaccinia virus. Immunol. Cell Biol.79, 569–575 (2001).
  • Goonetilleke NP, McShane H, Hannan CM et al. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette–Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol.171, 1602–1609 (2003).
  • Williams A, Goonetilleke NP, McShane H et al. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect. Immun.73, 3814–3816 (2005).
  • McShane H, Pathan AA, Sander CR et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med.10, 1240–1244 (2004).
  • McShane H, Pathan AA, Sander CR, Goonetilleke NP, Fletcher HA, Hill AV. Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials. Tuberculosis (Edinb.)85, 47–52 (2005).
  • Huygen K, Content J, Denis O et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat. Med.2, 893–898 (1996).
  • Fonseca DP, Benaissa-Trouw B, van Engelen M, Kraaijeveld CA, Snippe H, Verheul AF. Induction of cell-mediated immunity against Mycobacterium tuberculosis using DNA vaccines encoding cytotoxic and helper T-cell epitopes of the 38-kilodalton protein. Infect. Immun.69, 4839–4845 (2001).
  • Skeiky YA, Alderson MR, Ovendale PJ et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J. Immunol.172, 7618–7628 (2004).
  • Lowrie DB, Tascon RE, Bonato VL et al. Therapy of tuberculosis in mice by DNA vaccination. Nature400, 269–271 (1999).
  • Bonato VL, Goncalves ED, Soares EG et al. Immune regulatory effect of pHSP65 DNA therapy in pulmonary tuberculosis: activation of CD8+ cells, interferon-γ recovery and reduction of lung injury. Immunology113, 130–138 (2004).
  • Taylor JL, Turner OC, Basaraba RJ, Belisle JT, Huygen K, Orme IM. Pulmonary necrosis resulting from DNA vaccination against tuberculosis. Infect. Immun.71, 2192–2198 (2003).
  • Turner J, Rhoades ER, Keen M, Belisle JT, Frank AA, Orme IM. Effective preexposure tuberculosis vaccines fail to protect when they are given in an immunotherapeutic mode. Infect. Immun.68, 1706–1709 (2000).
  • Rosenberg SA, Yang JC, Sherry RM et al. Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum. Gene Ther.14, 709–714 (2003).
  • Triozzi PL, Aldrich W, Allen KO, Carlisle RR, LoBuglio AF, Conry RM. Phase I study of a plasmid DNA vaccine encoding MART-1 in patients with resected melanoma at risk for relapse. J. Immunother.28, 382–388 (2005).
  • Feng CG, Palendira U, Demangel C, Spratt JM, Malin AS, Britton WJ. Priming by DNA immunization augments protective efficacy of Mycobacterium bovis bacille Calmette–Guerin against tuberculosis. Infect. Immun.69, 4174–4176 (2001).
  • Derrick SC, Yang AL, Morris SL. A polyvalent DNA vaccine expressing an ESAT6-Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induced protective immunity. Vaccine23, 780–788 (2004).
  • Goter-Robinson C, Derrick SC, Yang AL, Jeon BY, Morris SL. Protection against an aerogenic Mycobacterium tuberculosis infection in BCG-immunized and DNA-vaccinated mice is associated with early type I cytokine responses. Vaccine24, 3522–3529 (2006).
  • Triccas JA, Sun L, Palendira U, Britton WJ. Comparative affects of plasmid-encoded interleukin 12 and interleukin 18 on the protective efficacy of DNA vaccination against Mycobacterium tuberculosis.Immunol. Cell Biol.80, 346–350 (2002).
  • Cai H, Yu DH, Tian X, Zhu YX. Coadministration of interleukin 2 plasmid DNA with combined DNA vaccines significantly enhances the protective efficacy against Mycobacterium tuberculosis.DNA Cell Biol.24, 605–613 (2005).
  • Kamath AT, Feng CG, Macdonald M, Briscoe H, Britton WJ. Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis.Infect. Immun.67, 1702–1707 (1999).
  • Kirman JR, Turon T, Su H et al. Enhanced immunogenicity to Mycobacterium tuberculosis by vaccination with an alphavirus plasmid replicon expressing antigen 85A. Infect. Immun.71, 575–579 (2003).
  • Nimal S, Thomas MS, Heath AW. Fusion of antigen to Fas-ligand in a DNA vaccine enhances immunogenicity. Vaccine25, 2306–2315 (2007).
  • Huygen K Plasmid DNA vaccination. Microbes Infect.7, 932–938 (2005).
  • Derrick SC, Repique C, Snoy P, Yang AL, Morris S. Immunization with a DNA vaccine cocktail protects mice lacking CD4 cells against an aerogenic infection with Mycobacterium tuberculosis.Infect. Immun.72, 1685–1692 (2004).
  • D’Souza S, Romano M, Korf J, Wang XM, Adnet PY, Huygen K. Partial reconstitution of the CD4+-T-cell compartment in CD4 gene knockout mice restores responses to tuberculosis DNA vaccines. Infect. Immun.74, 2751–2759 (2006).
  • Dietrich G, Bubert A, Gentschev I et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes.Nat. Biotechnol.16, 181–185 (1998).
  • Miki K, Nagata T, Tanaka T et al. Induction of protective cellular immunity against Mycobacterium tuberculosis by recombinant attenuated self-destructing Listeria monocytogenes strains harboring eukaryotic expression plasmids for antigen 85 complex and MPB/MPT51. Infect. Immun.72, 2014–2021 (2004).
  • Bennekov T, Dietrich J, Rosenkrands I, Stryhn A, Doherty TM, Andersen P. Alteration of epitope recognition pattern in Ag85B and ESAT-6 has a profound influence on vaccine-induced protection against Mycobacterium tuberculosis.Eur. J. Immunol.36, 3346–3355 (2006).
  • Shams H, Klucar P, Weis SE et al. Characterization of a Mycobacterium tuberculosis peptide that is recognized by human CD4+ and CD8+ T cells in the context of multiple HLA alleles. J. Immunol.173, 1966–1977 (2004).
  • Lewinsohn DM, Zhu L, Madison VJ et al. Classically restricted human CD8+ T lymphocytes derived from Mycobacterium tuberculosis-infected cells: definition of antigenic specificity. J. Immunol.166, 439–446 (2001).
  • Denis O, Tanghe A, Palfliet K et al. Vaccination with plasmid DNA encoding mycobacterial antigen 85A stimulates a CD4+ and CD8+ T-cell epitopic repertoire broader than that stimulated by Mycobacterium tuberculosis H37Rv infection. Infect. Immun.66, 1527–1533 (1998).
  • Kamath A, Woodworth JS, Behar SM. Antigen-specific CD8+ T cells and the development of central memory during Mycobacterium tuberculosis infection. J. Immunol.177, 6361–6369 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.