56
Views
21
CrossRef citations to date
0
Altmetric
Review

Recombinant lentivector as a genetic immunization vehicle for antitumor immunity

, &
Pages 913-924 | Published online: 09 Jan 2014

References

  • Robinson HL, Amara RR. T cell vaccines for microbial infections. Nat. Med.11(4 Suppl.), S25–S32 (2005).
  • Autran B, Carcelain G, Combadiere B, Debre P. Therapeutic vaccines for chronic infections. Science305(5681), 205–208 (2004).
  • Munn DH, Mellor AL. The tumor-draining lymph node as an immune-privileged site. Immunol. Rev.213, 146–158 (2006).
  • Gajewski TF, Meng Y, Blank C et al. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev.213, 131–145 (2006).
  • Klebanoff CA, Gattinoni L, Restifo NP. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev.211, 214–224 (2006).
  • Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest.117(5), 1147–1154 (2007).
  • Voltan R, Robert-Guroff M. Live recombinant vectors for AIDS vaccine development. Curr. Mol. Med.3(3), 273–284 (2003).
  • Bennink JR, Yewdell JW, Smith GL, Moller C, Moss B. Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature311(5986), 578–579 (1984).
  • Kieny MP, Lathe R, Drillien R et al. Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature312(5990), 163–166 (1984).
  • Moss B, Smith GL, Gerin JL, Purcell RH. Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature311(5981), 67–69 (1984).
  • Adamina M, Daetwiler S, Rosenthal R, Zajac P. Clinical applications of recombinant virus-based cancer immunotherapy. Expert Opin. Biol. Ther.5(9), 1211–1224 (2005).
  • Casimiro DR, Chen L, Fu TM et al. Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J. Virol.77(11), 6305–6313 (2003).
  • Murata K, Garcia-Sastre A, Tsuji M et al. Characterization of in vivo primary and secondary CD8+ T cell responses induced by recombinant influenza and vaccinia viruses. Cell. Immunol.173(1), 96–107 (1996).
  • Maeda K, West K, Hayasaka D, Ennis FA, Terajima M. Recombinant adenovirus vector vaccine induces stronger cytotoxic T-cell responses than recombinant vaccinia virus vector, plasmid DNA, or a combination of these. Viral Immunol.18(4), 657–667 (2005).
  • Barouch DH, Nabel GJ. Adenovirus vector-based vaccines for human immunodeficiency virus type 1. Hum. Gene Ther.16(2), 149–156 (2005).
  • He Y, Zhang J, Mi Z, Robbins P, Falo LD Jr. Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J. Immunol.174(6), 3808–3817 (2005).
  • Collins MK, Cerundolo V. Gene therapy meets vaccine development. Trends Biotechnol.22(12), 623–626 (2004).
  • Esslinger C, Chapatte L, Finke D et al. In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8+ T cell responses. J. Clin. Invest.111(11), 1673–1681 (2003).
  • Breckpot K, Dullaers M, Bonehill A et al. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J. Gene Med.5(8), 654–667 (2003).
  • Chinnasamy N, Chinnasamy D, Toso JF et al. Efficient gene transfer to human peripheral blood monocyte-derived dendritic cells using human immunodeficiency virus type 1-based lentiviral vectors. Hum. Gene Ther.11(13), 1901–1909 (2000).
  • Zarei S, Abraham S, Arrighi JF et al. Lentiviral transduction of dendritic cells confers protective antiviral immunity in vivo. J. Virol.78(14), 7843–7845 (2004).
  • Buffa V, Negri DR, Leone P et al. A single administration of lentiviral vectors expressing either full-length human immunodeficiency virus 1 (HIV-1)(HXB2) Rev/Env or codon-optimized HIV-1(JR-FL) gp120 generates durable immune responses in mice. J. Gen. Virol.87(Pt 6), 1625–1634 (2006).
  • Iglesias MC, Frenkiel MP, Mollier K, Souque P, Despres P, Charneau P. A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus. J. Gene Med.8(3), 265–274 (2006).
  • Naldini L, Blomer U, Gallay P et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science272(5259), 263–267 (1996).
  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol.15(9), 871–875 (1997).
  • Dull T, Zufferey R, Kelly M et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol.72(11), 8463–8471 (1998).
  • Zufferey R, Dull T, Mandel RJ et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol.72(12), 9873–9880 (1998).
  • Yu X, Zhan X, D’Costa J et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol. Ther.7(6), 827–838 (2003).
  • Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat. Biotechnol.23(1), 108–116 (2005).
  • Chinnasamy D, Milsom MD, Shaffer J et al. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virol. J.3, 14 (2006).
  • Lund AH, Turner G, Trubetskoy A et al. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat. Genet.32(1), 160–165 (2002).
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (New York)302(5644), 415–419 (2003).
  • Montini E, Cesana D, Schmidt M et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol.24(6), 687–696 (2006).
  • Biffi A, De Palma M, Quattrini A et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Invest.113(8), 1118–1129 (2004).
  • Saenz DT, Loewen N, Peretz M et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J. Virol.78(6), 2906–2920 (2004).
  • Yanez-Munoz RJ, Balaggan KS, MacNeil A et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med.12(3), 348–353 (2006).
  • Negri DR, Michelini Z, Baroncelli S et al. Successful immunization with a single injection of non-integrating lentiviral vector. Mol. Ther.15(9), 1716–1723 (2007).
  • Follenzi A, Naldini L. HIV-based vectors. Preparation and use. Methods Mol. Med.69, 259–274 (2002).
  • Follenzi A, Naldini L. Generation of HIV-1 derived lentiviral vectors. Meth. Enzymol.346, 454–465 (2002).
  • Cronin J, Zhang XY, Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther.5(4), 387–398 (2005).
  • Breckpot K, Aerts JL, Thielemans K. Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther.14(11), 847–862(2007).
  • Morizono K, Xie Y, Ringpis GE et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat. Med.11(3), 346–352 (2005).
  • Yang L, Bailey L, Baltimore D, Wang P. Targeting lentiviral vectors to specific cell types in vivo. Proc. Natl Acad. Sci. USA103(31), 11479–11484 (2006).
  • Delenda C, Gaillard C. Real-time quantitative PCR for the design of lentiviral vector analytical assays. Gene Ther.12(Suppl. 1), S36–S50 (2005).
  • Jung S, Unutmaz D, Wong P et al. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity17(2), 211–220 (2002).
  • He Y, Zhang J, Donahue C, Falo LD Jr. Skin-derived dendritic cells induce potent CD8(+) T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity24(5), 643–656 (2006).
  • Li X, Mukai T, Young D, Frankel S, Law P, Wong-Staal F. Transduction of CD34+ cells by a vesicular stomach virus protein G (VSV-G) pseudotyped HIV-1 vector. Stable gene expression in progeny cells, including dendritic cells. J. Hum. Virol.1(5), 346–352 (1998).
  • Dyall J, Latouche JB, Schnell S, Sadelain M. Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood97(1), 114–121 (2001).
  • Schroers R, Sinha I, Segall H et al. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol. Ther.1(2), 171–179 (2000).
  • Firat H, Zennou V, Garcia-Pons F et al. Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy. J. Gene Med.4(1), 38–45 (2002).
  • Lizee G, Gonzales MI, Topalian SL. Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum. Gene Ther.15(4), 393–404 (2004).
  • Rouas R, Uch R, Cleuter Y et al. Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Ther.9(9), 715–724 (2002).
  • Zarei S, Leuba F, Arrighi JF, Hauser C, Piguet V. Transduction of dendritic cells by antigen-encoding lentiviral vectors permits antigen processing and MHC class I-dependent presentation. J. Allergy Clin. Immunol.109(6), 988–994 (2002).
  • Esslinger C, Romero P, MacDonald HR. Efficient transduction of dendritic cells and induction of a T-cell response by third-generation lentivectors. Hum. Gene Ther.13(9), 1091–1100 (2002).
  • Fonteneau JF, Larsson M, Beignon AS et al. Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J. Virol.78(10), 5223–5232 (2004).
  • Brown BD, Sitia G, Annoni A et al. In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood109(7), 2797–2805 (2007).
  • VandenDriessche T, Thorrez L, Naldini L et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood100(3), 813–822 (2002).
  • Palmowski MJ, Lopes L, Ikeda Y, Salio M, Cerundolo V, Collins MK. Intravenous injection of a lentiviral vector encoding NY-ESO-1 induces an effective CTL response. J. Immunol.172(3), 1582–1587 (2004).
  • Rowe HM, Lopes L, Ikeda Y et al. Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol. Ther.13(2), 310–319 (2006).
  • Kim JH, Majumder N, Lin H, Watkins S, Falo LD Jr, You Z. Induction of therapeutic antitumor immunity by in vivo administration of a lentiviral vaccine. Hum. Gene Ther.16(11), 1255–1266 (2005).
  • He Y, Falo LD. Induction of T cell immunity by cutaneous genetic immunization with recombinant lentivector. Immunol. Res.36(1–3), 101–117 (2006).
  • Belz GT, Smith CM, Kleinert L et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. USA101(23), 8670–8675 (2004).
  • Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol.2(3), 151–161 (2002).
  • Villadangos JA, Heath WR. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: limitations of the Langerhans cells paradigm. Semin. Immunol.17(4), 262–272 (2005).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature392(6673), 245–252 (1998).
  • Larrengina AT, Falo LD. Changing paradigms in cutaneous immunology: adapting with dendritic cells. J. Invest. Dermatol.124(1), 1–12 (2005).
  • Allan RS, Smith CM, Belz GT et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science301(5641), 1925–1928 (2003).
  • Allan RS, Waithman J, Bedoui S et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity25(1), 153–162 (2006).
  • Carbone FR, Belz GT, Heath WR. Transfer of antigen between migrating and lymph node-resident DCs in peripheral T-cell tolerance and immunity. Trends Immunol.25(12), 655–658 (2004).
  • Curtsinger JM, Johnson CM, Mescher MF. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J. Immunol.171(10), 5165–5171 (2003).
  • Gett AV, Sallusto F, Lanzavecchia A, Geginat J. T cell fitness determined by signal strength. Nat. Immunol.4(4), 355–360 (2003).
  • Iezzi G, Karjalainen K, Lanzavecchia A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity8(1), 89–95 (1998).
  • Stock AT, Mueller SN, van Lint AL, Heath WR, Carbone FR. Cutting edge: prolonged antigen presentation after herpes simplex virus-1 skin infection. J. Immunol.173(4), 2241–2244 (2004).
  • Jelley-Gibbs DM, Brown DM, Dibble JP, Haynes L, Eaton SM, Swain SL. Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J. Exp. Med.202(5), 697–706 (2005).
  • Storni T, Ruedl C, Renner WA, Bachmann MF. Innate immunity together with duration of antigen persistence regulate effector T cell induction. J. Immunol.171(2), 795–801 (2003).
  • Spierings DC, Lemmens EE, Grewal K, Schoenberger SP, Green DR. Duration of CTL activation regulates IL-2 production required for autonomous clonal expansion. Eur. J. Immunol.36(7), 1707–1717 (2006).
  • Gallimore A, Glithero A, Godkin A et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med.187(9), 1383–1393 (1998).
  • Dullaers M, Breckpot K, Van Meirvenne S et al. Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: implications for cancer immunotherapy protocols. Mol. Ther.10(4), 768–779 (2004).
  • Yang TC, Millar J, Groves T et al. The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J. Immunol.176(1), 200–210 (2006).
  • Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat. Rev. Immunol.5(3), 215–229 (2005).
  • Dullaers M, Van Meirvenne S, Heirman C et al. Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther.13(7), 630–640 (2006).
  • Metharom P, Ellem KA, Schmidt C, Wei MQ. Lentiviral vector-mediated tyrosinase-related protein 2 gene transfer to dendritic cells for the therapy of melanoma. Hum. Gene Ther.12(18), 2203–2213 (2001).
  • Chapatte L, Ayyoub M, Morel S et al. Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses. Cancer Res.66(10), 5461–5468 (2006).
  • Engelhorn ME, Guevara-Patino JA, Noffz G et al. Autoimmunity and tumor immunity induced by immune responses to mutations in self. Nat. Med.12(2), 198–206 (2006).
  • Guevara-Patino JA, Engelhorn ME, Turk MJ et al. Optimization of a self antigen for presentation of multiple epitopes in cancer immunity. J. Clin. Invest.116(5), 1382–1390 (2006).
  • Chapatte L, Colombetti S, Cerottini JC, Levy F. Efficient induction of tumor antigen-specific CD8+ memory T cells by recombinant lentivectors. Cancer Res.66(2), 1155–1160 (2006).
  • Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science298(5594), 850–854 (2002).
  • Overwijk WW, Theoret MR, Finkelstein SE et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med.198(4), 569–580 (2003).
  • Dudley ME, Wunderlich JR, Yang JC et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol.23(10), 2346–2357 (2005).
  • Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol.6(5), 383–393 (2006).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10(9), 909–15 (2004).
  • Morgan RA, Dudley ME, Wunderlich JR et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science314(5796), 126–129 (2006).
  • Bobisse S, Zanovello P, Rosato A. T-cell receptor gene transfer by lentiviral vectors in adoptive cell therapy. Expert Opin. Biol. Ther.7(6), 893–906 (2007).
  • Dropulic B, June CH. Gene-based immunotherapy for human immunodeficiency virus infection and acquired immunodeficiency syndrome. Hum. Gene Ther.17(6), 577–588 (2006).
  • Levine BL, Humeau LM, Boyer J et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl Acad. Sci. USA103(46), 17372–17377 (2006).
  • Abstract of keystone meeting symposia. The Potent New Anti-tumor Immunotherapies, Banff, Canada, 28 March–2 April, 2007.
  • Cohen J. AIDS research. Promising AIDS vaccine's failure leaves field reeling. News. Science318(5847), 28–29 (2007).
  • Sharma MD, Baban B, Chandler P et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest.117(9), 2570–2582 (2007).
  • Tang Q, Bluestone JA. Plasmacytoid DCs and T(reg) cells: casual acquaintance or monogamous relationship? Nat. Immunol.7(6), 551–553 (2006).
  • Badovinac VP, Messingham KA, Jabbari A, Haring JS, Harty JT. Accelerated CD8+ T-cell memory and prime–boost response after dendritic-cell vaccination. Nat. Med.11(7), 748–756 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.