177
Views
40
CrossRef citations to date
0
Altmetric
Review

Exploiting viral properties for the rational design of modern vaccines

&
Pages 43-54 | Published online: 09 Jan 2014

References

  • Plotkin SA. Vaccines: past, present and future. Nat. Med.11(Suppl. 4), S5–S11 (2005).
  • Lambert PH, Liu M, Siegrist CA. Can successful vaccines teach us how to induce efficient protective immune responses? Nat. Med.11(Suppl. 4), S54–S62 (2005).
  • Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: role of physicochemical properties of particulate carriers – liposomes and microspheres – on the phagocytosis by macrophages. J. Control. Release79(1–3), 29–40 (2002).
  • Fifis T, Gamvrellis A, Crimeen-Irwin B et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol.173(5), 3148–3154 (2004).
  • Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell111(7), 927–930 (2002).
  • Ochsenbein AF, Fehr T, Lutz C et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science286(5447), 2156–2159 (1999).
  • Carroll MC. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol.16, 545–568 (1998).
  • Ackerman AL, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol.5(7), 678–684 (2004).
  • Elliott T, Neefjes J. The complex route to MHC class I–peptide complexes. Cell127(2), 249–251 (2006).
  • Kovacsovics-Bankowski M, Clark K, Benacerraf B, Rock KL. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl Acad. Sci. USA90(11), 4942–4946 (1993).
  • Storni T, Bachmann MF. Loading of MHC class I and II presentation pathways by exogenous antigens: a quantitative in vivo comparison. J. Immunol.172(10), 6129–6135 (2004).
  • Ikomi F, Hanna GK, Schmid-Schonbein G. Size- and surface-dependent uptake of colloid particles into the lymphatic system. Lymphology32(3), 90–102 (1999).
  • Kamantigue E, Edwards W 3rd, Chada S et al. Evidence for localization of biologically active recombinant retroviral vector to lymph nodes in mice injected intramuscularly. Gene Ther.3(2), 128–136 (1996).
  • West AP, Koblansky AA, Ghosh S. Recognition and signaling by Toll-like receptors. Annu. Rev. Cell Dev. Biol.22, 409–437 (2006).
  • Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol.7(3), 179–190 (2007).
  • Meylan E, Tschopp J. Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol. Cell22(5), 561–569 (2006).
  • Hornung V, Ellegast J, Kim S et al. 5´-triphosphate RNA is the ligand for RIG-I. Science314(5801), 994–997 (2006).
  • Pichlmair A, Schulz O, Tan CP et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5´-phosphates. Science314(5801), 997–1001 (2006).
  • Takaoka A, Wang Z, Choi MK et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature448(7152), 501–505 (2007).
  • Kawai T, Akira S. Innate immune recognition of viral infection. Nat. Immunol.7(2), 131–137 (2006).
  • Bachmann MF, Zinkernagel RM. The influence of virus structure on antibody responses and virus serotype formation. Immunol. Today17(12), 553–558 (1996).
  • Bachmann MF, Zinkernagel RM. Neutralizing antiviral B cell responses. Annu. Rev. Immunol.15, 235–270 (1997).
  • Bachmann MF, Hengartner H, Zinkernagel RM. T helper cell-independent neutralizing B cell response against vesicular stomatitis virus: role of antigen patterns in B cell induction? Eur. J. Immunol.25(12), 3445–3451 (1995).
  • Chackerian B, Lenz P, Lowy DR, Schiller JT. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J. Immunol.169(11), 6120–6126 (2002).
  • Dintzis RZ, Vogelstein B, Dintzis HM. Specific cellular stimulation in the primary immune response: experimental test of a quantized model. Proc. Natl Acad. Sci. USA79(3), 884–888 (1982).
  • Jegerlehner A, Storni T, Lipowsky G et al. Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur. J. Immunol.32(11), 3305–3314 (2002).
  • Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol.2(4), 251–262 (2002).
  • Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J. Virol.78(11), 5535–5545 (2004).
  • Wherry EJ, Puorro KA, Porgador A, Eisenlohr LC. The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J. Immunol.163(7), 3735–3745 (1999).
  • Kundig TM, Shahinian A, Kawai K et al. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity5(1), 41–52 (1996).
  • van Stipdonk MJ, Lemmens EE, Schoenberger SP. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol.2(5), 423–429 (2001).
  • Mercado R, Vijh S, Allen SE et al. Early programming of T cell populations responding to bacterial infection. J. Immunol.165(12), 6833–6839 (2000).
  • Iezzi G, Karjalainen K, Lanzavecchia A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity8(1), 89–95 (1998).
  • van Stipdonk MJ, Hardenberg G, Bijker MS et al. Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol.4(4), 361–365 (2003).
  • Storni T, Ruedl C, Renner WA, Bachmann MF. Innate immunity together with duration of antigen persistence regulate effector T cell induction. J. Immunol.171(2), 795–801 (2003).
  • Chao CC, Jensen R, Dailey MO. Mechanisms of L-selectin regulation by activated T cells. J. Immunol.159(4), 1686–1694 (1997).
  • Oehen S, Brduscha-Riem K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol.161(10), 5338–5346 (1998).
  • Bachmann MF, Beerli RR, Agnellini P et al. Long-lived memory CD8+ T cells are programmed by prolonged antigen exposure and low levels of cellular activation. Eur. J. Immunol.36(4), 842–854 (2006).
  • Sinha RK, Khuller GK. The protective efficacy of a liposomal encapsulated 30 kDa secretory protein of Mycobacterium tuberculosis H37Ra against tuberculosis in mice. Immunol. Cell Biol.75(5), 461–466 (1997).
  • Ambrosch F, Wiedermann G, Jonas S et al. Immunogenicity and protectivity of a new liposomal hepatitis A vaccine. Vaccine15(11), 1209–1213 (1997).
  • Kwak LW, Pennington R, Boni L et al. Liposomal formulation of a self lymphoma antigen induces potent protective antitumor immunity. J. Immunol.160(8), 3637–3641 (1998).
  • Sjolander A, Cox JC, Barr IG. ISCOMs: an adjuvant with multiple functions. J. Leukoc. Biol.64(6), 713–723 (1998).
  • Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOM-based vaccines: the second decade. Immunol. Cell Biol.83(2), 119–128 (2005).
  • Smith RE, Donachie AM, Mowat AM. Immune stimulating complexes as mucosal vaccines. Immunol. Cell Biol.76(3), 263–269 (1998).
  • Gamvrellis A, Leong D, Hanley JC et al. Vaccines that facilitate antigen entry into dendritic cells. Immunol. Cell Biol.82(5), 506–516 (2004).
  • Wang C, Ge Q, Ting D et al. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat. Mater.3(3), 190–196 (2004).
  • Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan – DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med.5(4), 387–391 (1999).
  • Beyer T, Herrmann M, Reiser C, Bertling W, Hess J. Bacterial carriers and virus-like-particles as antigen delivery devices: role of dendritic cells in antigen presentation. Curr. Drug Targets Infect. Disord.1(3), 287–302 (2001).
  • Ruedl C, Storni T, Lechner F, Bachi T, Bachmann MF. Cross-presentation of virus-like particles by skin-derived CD8- dendritic cells: a dispensable role for TAP. Eur. J. Immunol.32(3), 818–825 (2002).
  • Barth H, Ulsenheimer A, Pape GR et al. Uptake and presentation of hepatitis C virus-like particles by human dendritic cells. Blood105(9), 3605–3614 (2005).
  • Sedlik C, Saron M, Sarraseca J, Casal I, Leclerc C. Recombinant parvovirus-like particles as an antigen carrier: a novel nonreplicative exogenous antigen to elicit protective antiviral cytotoxic T cells. Proc. Natl Acad. Sci. USA94(14), 7503–7508 (1997).
  • Moron VG, Rueda P, Sedlik C, Leclerc C. in vivo, dendritic cells can cross-present virus-like particles using an endosome-to-cytosol pathway. J. Immunol.171(5), 2242–2250 (2003).
  • Fausch SC, Da Silva DM, Kast WM. Differential uptake and cross-presentation of human papillomavirus virus-like particles by dendritic cells and Langerhans cells. Cancer Res63(13), 3478–3482 (2003).
  • Buseyne F, Le Gall S, Boccaccio C et al. MHC-I-restricted presentation of HIV-1 virion antigens without viral replication. Nat. Med.7(3), 344–349 (2001).
  • Wan Y, Wu Y, Zhou J et al. Cross-presentation of phage particle antigen in MHC class II and endoplasmic reticulum marker-positive compartments. Eur. J. Immunol.35(7), 2041–2050 (2005).
  • Bachmann MF, Schwarz K, Wolint P et al. Cutting edge: distinct roles for T help and CD40/CD40 ligand in regulating differentiation of proliferation-competent memory CD8+ T cells. J. Immunol.173(4), 2217–2221 (2004).
  • Jegerlehner A, Maurer P, Bessa J et al. TLR9 signaling in B cells determines class switch recombination to IgG2a. J. Immunol.178(4), 2415–2420 (2007).
  • Singh M, Kazzaz J, Ugozzoli M et al. Polylactide-co-glycolide microparticles with surface adsorbed antigens as vaccine delivery systems. Curr. Drug Deliv.3(1), 115–120 (2006).
  • Mao C, Koutsky LA, Ault KA et al. Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithelial neoplasia: a randomized controlled trial. Obstet. Gynecol.107(1), 18–27 (2006).
  • Harper DM, Franco EL, Wheeler C et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet364(9447), 1757–1765 (2004).
  • Chackerian B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines6(3), 381–390 (2007).
  • Jegerlehner A, Tissot A, Lechner F et al. A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine20(25–26), 3104–3112 (2002).
  • Chackerian B, Lowy DR, Schiller JT. Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J. Clin. Invest.108(3), 415–423 (2001).
  • Maurer P, Jennings GT, Willers J et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and Phase I safety and immunogenicity. Eur. J. Immunol.35(7), 2031–2040 (2005).
  • Kundig TM, Senti G, Schnetzler G et al. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J. Allergy Clin. Immunol.117(6), 1470–1476 (2006).
  • Spohn G, Schwarz K, Maurer P et al. Protection against osteoporosis by active immunization with TRANCE/RANKL displayed on virus-like particles. J. Immunol.175(9), 6211–6218 (2005).
  • Ambuhl PM, Tissot AC, Fulurija A et al. A vaccine for hypertension based on virus-like particles: preclinical efficacy and Phase I safety and immunogenicity. J. Hypertens.25(1), 63–72 (2007).
  • Spohn G, Bachmann MF. Therapeutic vaccination to block receptor-ligand interactions. Expert Opin. Biol. Ther.3(3), 469–476 (2003).
  • Spohn G, Guler R, Johansen P et al. A virus-like particle-based vaccine selectively targeting soluble TNF-α protects from arthritis without inducing reactivation of latent tuberculosis. J. Immunol.178(11), 7450–7457 (2007).
  • Li Q, Cao C, Chackerian B et al. Overcoming antigen masking of anti-amyloidβ antibodies reveals breaking of B cell tolerance by virus-like particles in amyloidbeta immunized amyloid precursor protein transgenic mice. BMC Neurosci.5, 21–(2004).
  • Rohn TA, Jennings GT, Hernandez M et al. Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis. Eur. J. Immunol.36(11), 2857–2867 (2006).
  • Tissot AC, Maurer P, Nussberger J et al. Vaccination against angiotensin II reduces day-time and early morning ambulatory blood pressure: results of a randomized placebo-controlled Phase IIa study with CYT006-AngQb. Lancet (2008) (in press).
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation.Nat. Rev. Drug Discov.5(6), 471–484 (2006).
  • Cooper CL, Davis HL, Morris ML et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind Phase I/II study. J. Clin. Immunol.24(6), 693–701 (2004).
  • Cooper CL, Davis HL, Angel JB et al. CPG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults. AIDS19(14), 1473–1479 (2005).
  • Cooper CL, Davis HL, Morris ML et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine22(23–24), 3136–3143 (2004).
  • Creticos PS, Schroeder JT, Hamilton RG et al. Immunotherapy with a ragweed-Toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl J. Med.355(14), 1445–1455 (2006).
  • Sloat BR, Cui Z. Nasal immunization with anthrax protective antigen protein adjuvanted with polyriboinosinic-polyribocytidylic acid induced strong mucosal and systemic immunities. Pharm. Res.23(6), 1217–1226 (2006).
  • Ichinohe T, Watanabe I, Ito S et al. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J. Virol.79(5), 2910–2919 (2005).
  • Dockrell DH, Kinghorn GR. Imiquimod and resiquimod as novel immunomodulators. J. Antimicrob. Chemother.48(6), 751–755 (2001).
  • Vasilakos JP, Smith RM, Gibson SJ et al. Adjuvant activities of immune response modifier R-848: comparison with CpG ODN. Cell. Immunol.204(1), 64–74 (2000).
  • Wille-Reece U, Wu CY, Flynn BJ, Kedl RM, Seder RA. Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T cell responses. J. Immunol.174(12), 7676–7683 (2005).
  • Heikenwalder M, Polymenidou M, Junt T et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med.10(2), 187–192 (2004).
  • Storni T, Ruedl C, Schwarz K et al. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol.172(3), 1777–1785 (2004).
  • Krieg AM, Efler SM, Wittpoth M, Al Adhami MJ, Davis HL. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J. Immunother. (1997), 27(6), 460–471 (2004).
  • Zaks K, Jordan M, Guth A et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol.176(12), 7335–7345 (2006).
  • Westwood A, Elvin SJ, Healey GD, Williamson ED, Eyles JE. Immunological responses after immunisation of mice with microparticles containing antigen and single stranded RNA (polyuridylic acid). Vaccine24(11), 1736–1743 (2006).
  • Yoshida H, Horie H, Matsuura K, Miyamura T. Characterisation of vaccine-derived polioviruses isolated from sewage and river water in Japan. Lancet356(9240), 1461–1463 (2000).
  • Nathanson N, Fine P. Virology. Poliomyelitis eradication – a dangerous endgame. Science296(5566), 269–270 (2002).
  • Chackerian B, Lowy DR, Schiller JT. Induction of autoantibodies to mouse CCR5 with recombinant papillomavirus particles. Proc. Natl Acad. Sci. USA96(5), 2373–2378 (1999).
  • Greenstone HL, Nieland JD, de Visser KE et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc. Natl Acad. Sci. USA95(4), 1800–1805 (1998).
  • Tegerstedt K, Lindencrona JA, Curcio C et al. A single vaccination with polyomavirus VP1/VP2Her2 virus-like particles prevents outgrowth of HER-2/neu-expressing tumors. Cancer Res.65(13), 5953–5957 (2005).
  • Da Silva DM, Pastrana DV, Schiller JT, Kast WM. Effect of preexisting neutralizing antibodies on the anti-tumor immune response induced by chimeric human papillomavirus virus-like particle vaccines. Virology290(2), 350–360 (2001).
  • Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials28(35), 5344–5357 (2007).

Websites

  • Cytos Biotechnology, media release www.cytos.com/doc/Cytos_Press_E_050514.pdf
  • Cytos Biotechnology, media release www.cytos.com/doc/Cytos_PhaseIIa_E_051214.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.