93
Views
28
CrossRef citations to date
0
Altmetric
Review

Glycolipid ligands of invariant natural killer T cells as vaccine adjuvants

, , , &
Pages 1519-1532 | Published online: 09 Jan 2014

References

  • Murphy K, Travers P, Walport M. Janeway’s Immunobiology (7th Edition). Garland Science, NY, USA (2007).
  • Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54(Pt 1), 1–13 (1989).
  • Matzinger P. The danger model: a renewed sense of self. Science296(5566), 301–305 (2002).
  • Steinman RM, Pope M. Exploiting dendritic cells to improve vaccine efficacy. J. Clin. Invest.109(12), 1519–1526 (2002).
  • Bendelac A, Matzinger P, Seder RA, Paul WE, Schwartz RH. Activation events during thymic selection. J. Exp. Med.175(3), 731–742 (1992).
  • Bendelac A, Schwartz RH. CD4+ and CD8+ T cells acquire specific lymphokine secretion potentials during thymic maturation. Nature353(6339), 68–71 (1991).
  • Hayakawa K, Lin BT, Hardy RR. Murine thymic CD4+ T cell subsets: a subset (Thy0) that secretes diverse cytokines and overexpresses the Vβ8 T cell receptor gene family. J. Exp. Med.176(1), 269–274 (1992).
  • Dellabona P, Padovan E, Casorati G, Brockhaus M, Lanzavecchia A. An invariant Vα24-JαQ/Vβ11 T cell receptor is expressed in all individuals by clonally expanded CD4–8- T cells. J. Exp. Med.180(3), 1171–1176 (1994).
  • Porcelli S, Yockey CE, Brenner MB, Balk SP. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4–8- αβ T cells demonstrates preferential use of several Vβ genes and an invariant TCRα chain. J. Exp. Med.178(1), 1–16 (1993).
  • Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what’s in a name? Nat. Rev. Immunol.4(3), 231–237 (2004).
  • Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity16(4), 583–594 (2002).
  • Terabe M, Swann J, Ambrosino E et al. A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med.202(12), 1627–1633 (2005).
  • Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ. Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection. Infect. Immun.73(1), 181–192 (2005).
  • Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med.199(7), 947–957 (2004).
  • Zajonc DM, Maricic I, Wu D et al. Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J. Exp. Med.202(11), 1517–1526 (2005).
  • Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol.26, 877–900 (2005).
  • Arase H, Arase N, Saito T. Interferon γ production by natural killer (NK) cells and NK1.1+ T cells upon NKR-P1 cross-linking. J. Exp. Med.183(5), 2391–2396 (1996).
  • Gumperz JE, Miyake S, Yamamura T, Brenner MB. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med.195(5), 625–636 (2002).
  • Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol.3(10), 781–790 (2003).
  • Brigl M, Brenner MB. CD1: antigen presentation and T cell function. Annu. Rev. Immunol.22, 817–890 (2004).
  • Vincent MS, Gumperz JE, Brenner MB. Understanding the function of CD1-restricted T cells. Nat. Immunol.4(6), 517–523 (2003).
  • Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol.15, 535–562 (1997).
  • Thedrez A, de Lalla C, Allain S et al. CD4 engagement by CD1d potentiates activation of CD4+ invariant NKT cells. Blood110(1), 251–258 (2007).
  • Chen X, Wang X, Besra GS, Gumperz JE. Modulation of CD1d-restricted NKT cell responses by CD4. J. Leuk. Biol.82(6), 1455–1465 (2007).
  • Lee PT, Benlagha K, Teyton L, Bendelac A. Distinct functional lineages of human Vα24 natural killer T cells. J. Exp. Med.195(5), 637–641 (2002).
  • Crowe NY, Coquet JM, Berzins SP et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med.202(9), 1279–1288 (2005).
  • Porcelli SA, Modlin RL. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol.17, 297–329 (1999).
  • Brutkiewicz RR, Bennink JR, Yewdell JW, Bendelac A. TAP-independent, β2-microglobulin-dependent surface expression of functional mouse CD1.1. J. Exp. Med.182(6), 1913–1919 (1995).
  • Wu D, Zajonc DM, Fujio M et al. Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc. Natl Acad. Sci. USA103(11), 3972–3977 (2006).
  • Zajonc DM, Cantu C 3rd, Mattner J et al. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat. Immunol.6(8), 810–818 (2005).
  • Koch M, Stronge VS, Shepherd D et al. The crystal structure of human CD1d with and without α-galactosylceramide. Nat. Immunol.6(8), 819–826 (2005).
  • Silk JD, Salio M, Brown J, Jones EY, Cerundolo V. Structural and functional aspects of lipid binding by CD1 molecules. Annu. Rev. Cell. Dev. Biol.24, 369–395 (2008).
  • Mandal M, Chen XR, Alegre ML et al. Tissue distribution, regulation and intracellular localization of murine CD1 molecules. Mol. Immunol.35(9), 525–536 (1998).
  • Brossay L, Jullien D, Cardell S et al. Mouse CD1 is mainly expressed on hemopoietic-derived cells. J. Immunol.159(3), 1216–1224 (1997).
  • Roark JH, Park SH, Jayawardena J, Kavita U, Shannon M, Bendelac A. CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J. Immunol.160(7), 3121–3127 (1998).
  • Bendelac A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med.182(6), 2091–2096 (1995).
  • Geissmann F, Cameron TO, Sidobre S et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol.3(4), 650–661 (2005).
  • Blumberg RS, Terhorst C, Bleicher P et al. Expression of a nonpolymorphic MHC class I-like molecule, CD1D, by human intestinal epithelial cells. J. Immunol.147(8), 2518–2524 (1991).
  • Larsson LC, Anderson P, Widner H, Korsgrent O. Enhanced survival of porcine neural xenografts in mice lacking CD1d1, but no effect of NK1.1 depletion. Cell Transplant.10(3), 295–304 (2001).
  • Karadimitris A, Gadola S, Altamirano M et al. Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc. Natl Acad. Sci. USA98(6), 2950–2952 (2001).
  • Emoto M, Kaufmann SH. Liver NKT cells: an account of heterogeneity. Trends Immunol.24(7), 364–369 (2003).
  • Sandberg JK, Bhardwaj N, Nixon DF. Dominant effector memory characteristics, capacity for dynamic adaptive expansion, and sex bias in the innate Vα24 NKT cell compartment. Eur. J. Immunol.33(3), 588–596 (2003).
  • Motsinger A, Haas DW, Stanic AK, Van Kaer L, Joyce S, Unutmaz D. CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J. Exp. Med.195(7), 869–879 (2002).
  • Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y. KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res.7(10–11), 529–534 (1995).
  • Kawano T, Cui J, Koezuka Y et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science278(5343), 1626–1629 (1997).
  • Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol.21, 483–513 (2003).
  • Borg NA, Wun KS, Kjer-Nielsen L et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature448(7149), 44–49 (2007).
  • Sidobre S, Naidenko OV, Sim BC, Gascoigne NR, Garcia KC, Kronenberg M. The Vα14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J. Immunol.169(3), 1340–1348 (2002).
  • Cantu C, Benlagha K, Savage PB, Bendelac A, Teyton L. The paradox of immune molecular recognition of α-galactosylceramide: low affinity, low specificity for CD1d, high affinity for αβ TCRs. J. Immunol.170(9), 4673–4682 (2003).
  • Mattner J, DeBord KL, Ismail N et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature434(7032), 525–529 (2005).
  • Kinjo Y, Wu DY, Kim G et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature434(7032), 520–525 (2005).
  • Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol.35(6), 1692–1701 (2005).
  • Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Dohren H. Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl. Microbiol. Biotechnol.67(4), 539–548 (2005).
  • Tupin E, Kinjo T, Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol.5(6), 405–417 (2007).
  • Kinjo Y, Tupin E, Wu D et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol.7(9), 978–986 (2006).
  • Belperron AA, Dailey CM, Bockenstedt LK. Infection-induced marginal zone B cell production of Borrelia hermsii-specific antibody is impaired in the absence of CD1d. J. Immunol.174(9), 5681–5686 (2005).
  • Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR. CD1 recognition by mouse NK1+ T lymphocytes. Science268(5212), 863–865 (1995).
  • Exley M, Garcia J, Balk SP, Porcelli S. Requirements for CD1d recognition by human invariant Vα24+ CD4-CD8- T cells. J. Exp. Med.186(1), 109–120 (1997).
  • Park SH, Roark JH, Bendelac A. Tissue-specific recognition of mouse CD1 molecules. J. Immunol.160(7), 3128–3134 (1998).
  • Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol.4(12), 1230–1237 (2003).
  • Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A. A thymic precursor to the NK T cell lineage. Science296(5567), 553–555 (2002).
  • Zimmer MI, Colmone A, Felio K, Xu H, Ma A, Wang CR. A cell-type specific CD1d expression program modulates invariant NKT cell development and function. J. Immunol.176(3), 1421–1430 (2006).
  • Zhou D, Mattner J, Cantu C et al. Lysosomal glycosphingolipid recognition by NKT cells. Science306(5702), 1786–1789 (2004).
  • Xia C, Yao Q, Schumann J et al. Synthesis and biological evaluation of α-galactosylceramide (KRN7000) and isoglobotrihexosylceramide (iGb3). Bioorg. Med. Chem. Lett.16(8), 2195–2199 (2006).
  • Porubsky S, Speak AO, Luckow B, Cerundolo V, Platt FM, Grone HJ. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc. Natl Acad. Sci. USA104(14), 5977–5982 (2007).
  • Christiansen D, Milland J, Mouhtouris E et al. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol.6(7), e172 (2008).
  • Speak AO, Salio M, Neville DC et al. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc. Natl Acad. Sci. USA104(14), 5971–5976 (2007).
  • Li Y, Teneberg S, Thapa P, Bendelac A, Levery SB, Zhou D. Sensitive detection of isoglobo and globo series tetraglycosylceramides in human thymus by ion trap mass spectrometry. Glycobiology18(2), 158–165 (2008).
  • Bendelac A, Bonneville M, Kearney JF. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol.1(3), 177–186 (2001).
  • Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest.114(10), 1379–1388 (2004).
  • Van Kaer L. Regulation of immune responses by CD1d-restricted natural killer T cells. Immunol. Res.30(2), 139–153 (2004).
  • Coquet JM, Chakravarti S, Kyparissoudis K et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc. Natl Acad. Sci. USA105(32), 11287–11292 (2008).
  • Matsuda JL, Gapin L, Baron JL et al. Mouse Vα14i natural killer T cells are resistant to cytokine polarization in vivo. Proc. Natl Acad. Sci. USA100(14), 8395–8400 (2003).
  • Stetson DB, Mohrs M, Reinhardt RL et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med.198(7), 1069–1076 (2003).
  • Parekh VV, Lalani S, Van Kaer L. The in vivo response of invariant natural killer T cells to glycolipid antigens. Int. Rev. Immunol.26(1–2), 31–48 (2006).
  • Parekh VV, Singh AK, Wilson MT et al. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J. Immunol.173(6), 3693–3706 (2004).
  • Nishimura T, Kitamura H, Iwakabe K et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int. Immunol.12(7), 987–994 (2000).
  • Kitamura H, Ohta A, Sekimoto M et al. α-galactosylceramide induces early B-cell activation through IL-4 production by NKT cells. Cell. Immunol.199(1), 37–42 (2000).
  • Carnaud C, Lee D, Donnars O et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol.163(9), 4647–4650 (1999).
  • Fujii S, Shimizu K, Hemmi H, Steinman RM. Innate Vα14+ natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol. Rev.220, 183–198 (2007).
  • Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med.198(2), 267–279 (2003).
  • Kitamura H, Iwakabe K, Yahata T et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med.189(7), 1121–1128 (1999).
  • Van Kaer L. α-galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat. Rev. Immunol.5(1), 31–42 (2005).
  • Goff RD, Gao Y, Mattner J et al. Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc.126(42), 13602–13603 (2004).
  • Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing Th2 bias of natural killer T cells. Nature413(6855), 531–534 (2001).
  • Yu KO, Im JS, Molano A et al. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl Acad. Sci. USA102(9), 3383–3388 (2005).
  • Fujio M, Wu D, Garcia-Navarro R, Ho DD, Tsuji M, Wong CH. Structure-based discovery of glycolipids for CD1d-mediated NKT cell activation: tuning the adjuvant versus immunosuppression activity. J. Am. Chem. Soc.128(28), 9022–9023 (2006).
  • Yang G, Schmieg J, Tsuji M, Franck RW. The C-glycoside analogue of the immunostimulant α-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew. Chem. Int. Ed. Engl.43(29), 3818–3822 (2004).
  • Schmieg J, Yang G, Franck RW, Tsuji M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide. J. Exp. Med.198(11), 1631–1641 (2003).
  • Harada M, Seino KI, Wakao H et al. Down-regulation of the invariant Vα14 antigen receptor in NKT cells upon activation. Int. Immunol.16(2), 241–247 (2004).
  • Crowe NY, Uldrich AP, Kyparissoudis K et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells. J. Immunol.171(8), 4020–4027 (2003).
  • Wilson MT, Johansson C, Olivares-Villagomez D et al. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl Acad. Sci. USA100(19), 10913–10918 (2003).
  • Eberl G, MacDonald HR. Rapid death and regeneration of NKT cells in anti-CD3ε- or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity9(3), 345–353 (1998).
  • Parekh VV, Wilson MT, Olivares-Villagomez D et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest.115(9), 2572–2583 (2005).
  • Van Kaer L. NKT cells: T lymphocytes with innate effector functions. Curr. Opin. Immunol.19(3), 354–364 (2007).
  • Van Kaer L, Joyce S. Innate immunity: NKT cells in the spotlight. Curr. Biol.15(11), R429–R431 (2005).
  • Kim S, Lalani S, Parekh VV, Vincent TL, Wu L, Van Kaer L. Impact of bacteria on the phenotype, functions and therapeutic activities of iNKT cells in mice. J. Clin. Invest.118(6), 2301–2315 (2008).
  • Lin Y, Roberts TJ, Wang CR, Cho S, Brutkiewicz RR. Long-term loss of canonical NKT cells following an acute virus infection. Eur. J. Immunol.35(3), 879–889 (2005).
  • Snyder-Cappione JE, Nixon DF, Loo CP et al. Individuals with pulmonary tuberculosis have lower levels of circulating CD1d-restricted NKT cells. J. Infect. Dis.195(9), 1361–1364 (2007).
  • Ulrich AP, Crowe NY, Kyparissoudis K et al. NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, BIM-dependent contraction, and hyporesponsiveness to further antigenic challenge. J. Immunol.175(5), 3092–3101 (2005).
  • Ikarashi Y, Iizuka A, Koshidaka Y et al. Phenotypical and functional alterations during the expansion phase of invariant Vα14 natural killer T (Vα14i NKT) cells in mice primed with α-galactosylceramide. Immunology116(1), 30–37 (2005).
  • Giaccone G, Punt CJA, Ando Y et al. A Phase I study of natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer. Res.8(12), 3702–3709 (2002).
  • Chiba A, Dascher CC, Besra GS, Brenner MB. Rapid NKT cell responses are self-terminating during the course of microbial infection. J. Immunol.181(4), 2292–2302 (2008).
  • Choi HJ, Xu H, Geng Y, Colmone A, Cho H, Wang CR. Bacterial infection alters the kinetics and function of iNKT cell responses. J. Leuk. Biol.84 DOI: 10.1189/jlb.0108038 (2008) (Epub ahead of print).
  • Halder RC, Aguilera C, Maricic I, Kumar V. Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J. Clin. Invest.117(8), 2302–2312 (2007).
  • Yanagisawa K, Exley MA, Jiang X, Ohkochi N, Taniguchi M, Seino K. Hyporesponsiveness to natural killer T-cell ligand α-galactosylceramide in cancer-bearing state mediated by CD11b+ Gr-1+ cells producing nitric oxide. Cancer Res.66(23), 11441–11446 (2006).
  • Tahir SM, Cheng O, Shaulov A et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J. Immunol.167(7), 4046–4050 (2001).
  • Stober D, Jomantaite I, Schirmbeck R, Reimann J. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J. Immunol.170(5), 2540–2548 (2003).
  • Hermans IF, Silk JD, Gileadi U et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol.171(10), 5140–5147 (2003).
  • Ko SY, Lee KA, Youn HJ et al. Mediastinal lymph node CD8α- DC initiate antigen presentation following intranasal coadministration of α-GalCer. Eur. J. Immunol.37(8), 2127–2137 (2007).
  • Silk JD, Hermans IF, Gileadi U et al. Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J. Clin. Invest.114(12), 1800–1811 (2004).
  • Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med.199(12), 1607–1618 (2004).
  • Fujii S, Shimizu K, Hemmi H et al. Glycolipid α-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc. Natl Acad. Sci. USA103, 11252–11257 (2006).
  • Taraban VY, Martin S, Attfield KE et al. Invariant NKT cells promote CD8+ cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J. Immunol.180(7), 4615–4620 (2008).
  • Singh N, Hong S, Scherer DC et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J. Immunol.163(5), 2373–2377 (1999).
  • Burdin N, Brossay L, Kronenberg M. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur. J. Immunol.29(6), 2014–2025 (1999).
  • Galli G, Nuti S, Tavarini S et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J. Exp. Med.197(8), 1051–1057 (2003).
  • Galli G, Pittoni P, Tonti E et al. Invariant NKT cells sustain specific B cell responses and memory. Proc. Natl Acad. Sci. USA104(10), 3984–3989 (2007).
  • Devera TS, Shah HB, Lang GA, Lang ML. Glycolipid-activated NKT cells support the induction of persistent plasma cell responses and antibody titers. Eur. J. Immunol.38(4), 1001–1011 (2008).
  • Kim JO, Kim DH, Chang WS et al. Asthma is induced by intranasal coadministration of allergen and natural killer T-cell ligand in a mouse model. J. Allergy Clin. Immunol.114(6), 1332–1338 (2004).
  • Campos RA, Szczepanik M, Itakura A et al. Cutaneous immunization rapidly activates liver invariant Vα14 NKT cells stimulating B-1 B cells to initiate T cell recruitment for elicitation of contact hypersensitivity. J. Exp. Med.198(12), 1785–1796 (2003).
  • Campos RA, Szczepanik M, Lisbonne M, Itakura A, Leite-de-Moraes M, Askenase PW. Invariant NKT cells rapidly activated via immunization with diverse contact antigens collaborate in vitro with B-1 cells to initiate contact sensitivity. J. Immunol.177(6), 3686–3694 (2006).
  • Rajewsky K. Clonal selection and learning in the antibody system. Nature381(6585), 751–758 (1996).
  • Lang GA, Exley MA, Lang ML. The CD1d-binding glycolipid α-galactosylceramide enhances humoral immunity to T-dependent and T-independent antigen in a CD1d-dependent manner. Immunology119(1), 116–125 (2006).
  • Lang GA, Devera TS, Lang ML. Requirement for CD1d expression by B cells to stimulate NKT cell-enhanced antibody production. Blood111(4), 2158–2162 (2008).
  • Barral P, Eckl-Dorna J, Harwood NE et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc. Natl Acad. Sci. USA105(24), 8345–8350 (2008).
  • Leadbetter EA, Brigl M, Illarionov P et al. NK T cells provide lipid antigen-specific cognate help for B cells. Proc. Natl Acad. Sci. USA105(24), 8339–8344 (2008).
  • Gray JD, Horwitz DA. Activated human NK cells can stimulate resting B cells to secrete immunoglobulin. J. Immunol.154(11), 5656–5664 (1995).
  • Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC et al. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med.195(5), 617–624 (2002).
  • Schmieg J, Gonzalez-Aseguinolaza G, Tsuji M. The role of natural killer T cells and other T cell subsets against infection by the pre-erythrocytic stages of malaria parasites. Microbes Infect.5(6), 499–506 (2003).
  • Ko SY, Ko HJ, Chang WS, Park SH, Kweon MN, Kang CY. α-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J. Immunol.175(5), 3309–3317 (2005).
  • Kamijuku H, Nagata Y, Jiang X et al. Mechanism of NKT cell activation by intranasal coadministration of α-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol.1(3), 208–218 (2008).
  • Youn HJ, Ko SY, Lee KA et al. A single intranasal immunization with inactivated influenza virus and α-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine25(28), 5189–5198 (2007).
  • Huang Y, Chen A, Li X et al. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, α-galactosylceramide. Vaccine26(15), 1807–1816 (2008).
  • Seino K, Motohashi S, Fujisawa T, Nakayama T, Taniguchi M. Natural killer T cell-mediated antitumor immune responses and their clinical applications. Cancer Sci.97(9), 807–812 (2006).
  • Ishikawa A, Motohashi S, Ishikawa E et al. A Phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res.11(5), 1910–1917 (2005).
  • Nieda M, Okai M, Tazbirkova A et al. Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood103(2), 383–389 (2004).
  • Chang DH, Osman K, Connolly J et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosylceramide loaded mature dendritic cells in cancer patients. J. Exp. Med.201(9), 1503–1517 (2005).
  • Fujii S. Exploiting dendritic cells and natural killer T cells in immunotherapy against malignancies. Trends Immunol.29(5), 242–249 (2008).
  • Liu K, Idoyaga J, Charalambous A et al. Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J. Exp. Med.202(11), 1507–1516 (2005).
  • Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S. Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J. Exp. Med.204(11), 2641–2653 (2007).
  • Fujii S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat. Immunol.3(9), 867–874 (2002).
  • Shimizu K, Goto A, Fukui M, Taniguchi M, Fujii S. Tumor cells loaded with α-galactosylceramide induce innate NKT and NK cell-dependent resistance to tumor implantation in mice. J. Immunol.178(5), 2853–2861 (2007).
  • Silk JD, Salio M, Reddy BG et al. Cutting edge: nonglycosidic CD1d lipid ligands activate human and murine invariant NKT cells. J. Immunol.180(10), 6452–6456 (2008).
  • Mattner J, Savage PB, Leung P et al. Liver autoimmunity triggered by NKT cells. Cell Host Microbe3(5), 304–315 (2008).
  • Wilson MT, Van Kaer L. Natural killer T cells as targets for therapeutic intervention in autoimmune diseases. Curr. Pharm. Des.9(3), 201–220 (2003).
  • Nieda M, Nicol A, Koezuka Y et al. Activation of human Vα24 NKT cells by α-glycosylceramide in a CD1d-restricted and Vα24 TCR-mediated manner. Hum. Immunol.60(1), 10–19 (1999).
  • Billiau A, Matthys P. Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J. Leuk. Biol.70(6), 849–860 (2001).
  • Veldt BJ, van der Vliet HJ, von Blomberg BM et al. Randomized placebo controlled Phase I/II trial of α-galactosylceramide for the treatment of chronic hepatitis C. J. Hepatol.47(3), 356–365 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.