56
Views
21
CrossRef citations to date
0
Altmetric
Review

Tenets of protection from progression to AIDS: lessons from the immune responses to HIV-2 infection

&
Pages 319-331 | Published online: 09 Jan 2014

References

  • UNAIDS. AIDS Epidemic Update: Special Report on HIV/AIDS. Update. AE, Geneva (2006).
  • Clavel F, Guetard D, Brun-Vezinet F et al. Isolation of a new human retrovirus from West African patients with AIDS. Science233(4761), 343–346 (1986).
  • Quinn TC. Population migration and the spread of types 1 and 2 human immunodeficiency viruses. Proc. Natl Acad. Sci. USA91(7), 2407–2414 (1994).
  • Poulsen AG, Aaby P, Larsen O et al. 9-year HIV-2-associated mortality in an urban community in Bissau, West Africa. Lancet349(9056), 911–914 (1997).
  • Berry N, Jaffar S, Schim van der Loeff M et al. Low level viremia and high CD4% predict normal survival in a cohort of HIV type-2-infected villagers. AIDS Res. Hum. Retroviruses18(16), 1167–1173 (2002).
  • Alabi AS, Jaffar S, Ariyoshi K et al. Plasma viral load, CD4 cell percentage, HLA and survival of HIV-1, HIV-2, and dually infected Gambian patients. AIDS17(10), 1513–1520 (2003).
  • Jaffar S, Wilkins A, Ngom PT et al. Rate of decline of percentage CD4+ cells is faster in HIV-1 than in HIV-2 infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.16(5), 327–332 (1997).
  • Berry N, Ariyoshi K, Jaffar S et al. Low peripheral blood viral HIV-2 RNA in individuals with high CD4 percentage differentiates HIV-2 from HIV-1 infection. J. Hum. Virol.1(7), 457–468 (1998).
  • Marlink R, Kanki P, Thior I et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science265(5178), 1587–1590 (1994).
  • Martinez-Steele E, Awasana AA, Corrah T et al. Is HIV-2-induced AIDS different from HIV-1-associated AIDS? Data from a West African clinic. AIDS21(3), 317–324 (2007).
  • Whittle H, Egboga A, Todd J et al. Clinical and laboratory predictors of survival in Gambian patients with symptomatic HIV-1 or HIV-2 infection. AIDS6(7), 685–689 (1992).
  • Schim van der Loeff MF, Jaffar S, Aveika AA et al. Mortality of HIV-1, HIV-2 and HIV-1/HIV-2 dually infected patients in a clinic-based cohort in The Gambia. AIDS16(13), 1775–1783 (2002).
  • Hansmann A, Schim van der Loeff MF, Kaye S et al. Baseline plasma viral load and CD4 cell percentage predict survival in HIV-1- and HIV-2-infected women in a community-based cohort in The Gambia. J. Acquir. Immune Defic. Syndr.38(3), 335–341 (2005).
  • Travers K, Mboup S, Marlink R et al. Natural protection against HIV-1 infection provided by HIV-2. Science268(5217), 1612–1615 (1995).
  • Norrgren H, Andersson S, Biague AJ et al. Trends and interaction of HIV-1 and HIV-2 in Guinea-Bissau, West Africa: no protection of HIV-2 against HIV-1 infection. AIDS13(6), 701–707 (1999).
  • Wiktor SZ, Nkengasong JN, Ekpini ER et al. Lack of protection against HIV-1 infection among women with HIV-2 infection. AIDS13(6), 695–699 (1999).
  • Schim van der Loeff MF, Aaby P, Aryioshi K et al. HIV-2 does not protect against HIV-1 infection in a rural community in Guinea-Bissau. AIDS15(17), 2303–2310 (2001).
  • Rowland-Jones SL, Whittle HC. Out of Africa: what can we learn from HIV-2 about protective immunity to HIV-1? Nat. Immunol.8(4) 329–331 (2007).
  • Ariyoshi K, Cham F, Berry N et al. HIV-2-specific cytotoxic T-lymphocyte activity is inversely related to proviral load. AIDS9(6), 555–559 (1995).
  • Sousa AE, Chaves AF, Loureiro A, Victorino RM. Comparison of the frequency of interleukin (IL)-2-, interferon-γ-, and IL-4-producing T cells in 2 diseases, human immunodeficiency virus types 1 and 2, with distinct clinical outcomes. J. Infect. Dis.184(5), 552–559 (2001).
  • Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z, Victorino RM. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J. Immunol.169(6), 3400–3406 (2002).
  • Lopes AR, Jaye A, Dorrell L et al. Greater CD8+ TCR heterogeneity and functional flexibility in HIV-2 compared to HIV-1 infection. J. Immunol.171(1), 307–316 (2003).
  • Andersson S, Larsen O, Da Silva Z et al. Human immunodeficiency virus (HIV)-2-specific T lymphocyte proliferative responses in HIV-2-infected and in HIV-2-exposed but uninfected individuals in Guinea-Bissau. Clin. Exp. Immunol.139(3), 483–489 (2005).
  • Duvall MG, Jaye A, Dong T et al. Maintenance of HIV-specific CD4+ T cell help distinguishes HIV-2 from HIV-1 infection. J. Immunol.176(11), 6973–6981 (2006).
  • Nuvor SV, van der Sande M, Rowland-Jones S, Whittle H, Jaye A. Natural killer cell function is well preserved in asymptomatic human immunodeficiency virus type 2 (HIV-2) infection but similar to that of HIV-1 infection when CD4 T-cell counts fall. J. Virol.80(5), 2529–2538 (2006).
  • Alatrakchi N, Damond F, Matheron S et al. Proliferative, IFNg and IL-2-producing T-cell responses to HIV-2 in untreated HIV-2 infection. AIDS20(1), 29–34 (2006).
  • Leligdowicz A, Yindom LM, Onyango C et al. Robust Gag-specific T cell responses characterize viremia control in HIV-2 infection. J. Clin. Invest.117(10), 3067–3074 (2007).
  • Duvall MG, Precopio ML, Ambrozak DA et al. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur. J. Immunol.38350–363 (2008).
  • Larsen O, da Silva Z, Sandstrom A et al. Declining HIV-2 prevalence and incidence among men in a community study from Guinea-Bissau. AIDS12(13), 1707–1714 (1998).
  • Schim van der Loeff MF, Sarge-Njie R, Ceesay S et al. Regional differences in HIV trends in The Gambia: results from sentinel surveillance among pregnant women. AIDS (London, England)17(12), 1841–1846 (2003).
  • van der Loeff MF, Awasana AA, Sarge-Njie R et al. Sixteen years of HIV surveillance in a West African research clinic reveals divergent epidemic trends of HIV-1 and HIV-2. Int. J. Epidemiol.35(5), 1322–1328 (2006).
  • Chen Z, Telfier P, Gettie A et al. Genetic characterization of new West African simian immunodeficiency virus SIVsm: geographic clustering of household-derived SIV strains with human immunodeficiency virus type 2 subtypes and genetically diverse viruses from a single feral sooty mangabey troop. J. Virol.70(6), 3617–3627 (1996).
  • Santiago ML, Range F, Keele BF et al. Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Tai Forest, Cote d’Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. J. Virol.79(19), 12515–12527 (2005).
  • Lemey P, Pybus OG, Wang B et al. Tracing the origin and history of the HIV-2 epidemic. Proc. Natl Acad. Sci. USA100(11), 6588–6592 (2003).
  • Schim van der Loeff MF, Aaby P. Towards a better understanding of the epidemiology of HIV-2. AIDS13(Suppl. A), S69–S84 (1999).
  • Poulsen AG, Aaby P, Gottschau A et al. HIV-2 infection in Bissau, West Africa, 1987–1989: incidence, prevalences, and routes of transmission. J. Acquir. Immune Defic. Syndr.6(8), 941–948 (1993).
  • De Cock KM, Adjorlolo G, Ekpini E et al. Epidemiology and transmission of HIV-2. Why there is no HIV-2 pandemic. JAMA270(17), 2083–2086 (1993).
  • Aaby P, Ariyoshi K, Buckner M et al. Age of wife as a major determinant of male-to-female transmission of HIV-2 infection: a community study from rural West Africa. AIDS10(13), 1585–1590 (1996).
  • Poulsen AG, Kvinesdal BB, Aaby P et al. Lack of evidence of vertical transmission of human immunodeficiency virus type 2 in a sample of the general population in Bissau. J. Acquir. Immune Defic. Syndr.5(1), 25–30 (1992).
  • Kanki PJ, Travers KU, S MB et al. Slower heterosexual spread of HIV-2 than HIV-1. Lancet343(8903), 943–946 (1994).
  • Adjorlolo-Johnson G, De Cock KM, Ekpini E et al. Prospective comparison of mother-to-child transmission of HIV-1 and HIV-2 in Abidjan, Ivory Coast. JAMA272(6), 462–466 (1994).
  • O’Donovan D, Ariyoshi K, Milligan P et al. Maternal plasma viral RNA levels determine marked differences in mother-to-child transmission rates of HIV-1 and HIV-2 in The Gambia. MRC/Gambia Government/University College London Medical School working group on mother–child transmission of HIV. AIDS14(4), 441–448 (2000).
  • Reeves JD, Doms RW. Human immunodeficiency virus type 2. J. Gen. Virol.83(Pt 6), 1253–1265 (2002).
  • Reeves JD, Hibbitts S, Simmons G et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J. Virol.73(9), 7795–7804 (1999).
  • McKnight A, Dittmar MT, Moniz-Periera J et al. A broad range of chemokine receptors are used by primary isolates of human immunodeficiency virus type 2 as coreceptors with CD4. J. Virol.72(5), 4065–4071 (1998).
  • Bron R, Klasse PJ, Wilkinson D et al. Promiscuous use of CC and CXC chemokine receptors in cell-to-cell fusion mediated by a human immunodeficiency virus type 2 envelope protein. J. Virol.71(11), 8405–8415 (1997).
  • Guillon C, van der Ende ME, Boers PH et al. Coreceptor usage of human immunodeficiency virus type 2 primary isolates and biological clones is broad and does not correlate with their syncytium-inducing capacities. J. Virol.72(7), 6260–6263 (1998).
  • Owen SM, Ellenberger D, Rayfield M et al. Genetically divergent strains of human immunodeficiency virus type 2 use multiple coreceptors for viral entry. J. Virol.72(7), 5425–5432 (1998).
  • Morner A, Bjorndal A, Albert J et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J. Virol.73(3), 2343–2349 (1999).
  • Shi Y, Brandin E, Vincic E et al. Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation. J. Gen. Virol.86(Pt 12), 3385–3396 (2005).
  • Ariyoshi K, Berry N, Wilkins A et al. A community-based study of human immunodeficiency virus type 2 provirus load in rural village in West Africa. J. Infect. Dis.173(1), 245–248 (1996).
  • Popper SJ, Sarr AD, Gueye-Ndiaye A et al. Low plasma human immunodeficiency virus type 2 viral load is independent of proviral load: low virus production in vivo. J. Virol.74(3), 1554–1557 (2000).
  • MacNeil A, Sarr AD, Sankale JL et al. Direct evidence of lower viral replication rates in vivo in human immunodeficiency virus type 2 (HIV-2) infection than in HIV-1 infection. J. Virol.81(10), 5325–5330 (2007).
  • Blaak H, Boers PH, Schutten M, van der Enden ME, Osterhaus AD. HIV-2-infected individuals with undetectable plasma viremia carry replication-competent virus in peripheral blood lymphocytes. J. Acquir. Immune Defic. Syndr.36(3), 777–782 (2004).
  • MacNeil A, Sankale JL, Meloni ST et al. Long-term intrapatient viral evolution during HIV-2 infection. J. Infect. Dis.195(5), 726–733 (2007).
  • Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat. Rev. Immunol.6(11), 859–868 (2006).
  • Douek DC, Brenchley JM, Betts MR et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature417(6884), 95–98 (2002).
  • Duvall MG, Lore K, Blaak H et al. Dendritic cells are less susceptible to human immunodeficiency virus type 2 (HIV-2) infection than to HIV-1 infection. J. Virol.81(24), 13486–13498 (2007).
  • Guyader M, Emerman M, Sonigo P et al. Genome organization and transactivation of the human immunodeficiency virus type 2. Nature326(6114), 662–669 (1987).
  • Schramm B, Penn ML, Palacios EH et al. Cytopathicity of human immunodeficiency virus type 2 (HIV-2) in human lymphoid tissue is coreceptor dependent and comparable to that of HIV-1. J. Virol.74(20), 9594–9600 (2000).
  • Whittle HC, Ariyoshi K, Rowland-Jones S. HIV-2 and T cell recognition. Curr. Opin. Immunol.10(4), 382–387 (1998).
  • Fauci AS, Mavilio D, Kottilil S. NK cells in HIV infection: paradigm for protection or targets for ambush. Nat. Rev. Immunol.5(11), 835–843 (2005).
  • Luban J. Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 Infection. J. Virol.81(3), 1054–1061 (2007).
  • Stremlau M, Owens CM, Perron MJ et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature427(6977), 848–853 (2004).
  • Ylinen LM, Keckesova Z, Wilson SJ, Ranasinghe S, Towers GJ. Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5α alleles. J. Virol.79(18), 11580–11587 (2005).
  • Song H, Nakayama EE, Yokoyama M et al. A single amino acid of the human immunodeficiency virus type 2 capsid affects its replication in the presence of cynomolgus monkey and human TRIM5α. J. Virol.81(13), 7280–7285 (2007).
  • Brenchley JM, Schacker TW, Ruff LE et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med.200(6), 749–759 (2004).
  • Mattapallil JJ, Douek DC, Hill B et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature434(7037), 1093–1097 (2005).
  • Picker LJ, Watkins DI. HIV pathogenesis: the first cut is the deepest. Nat. Immunol.6(5), 430–432 (2005).
  • Klenerman P, Hill A. T cells and viral persistence: lessons from diverse infections. Nat. Immunol.6(9), 873–879 (2005).
  • Brenchley JM, Price DA, Douek DC. HIV disease: fallout from a mucosal catastrophe? Nat. Immunol.7(3), 235–239 (2006).
  • Papagno L, Spina CA, Marchant A et al. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol.2(2), E20 (2004).
  • Harari A, Vallelian F, Meylan PR, Pantaleo G. Functional heterogeneity of memory CD4 T cell responses in different conditions of antigen exposure and persistence. J. Immunol.174(2), 1037–1045 (2005).
  • Matloubian M, Concepcion RJ, Ahmed R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol.68(12), 8056–8063 (1994).
  • Kostense S, Ogg GS, Manting EH et al. High viral burden in the presence of major HIV-specific CD8+ T cell expansions: evidence for impaired CTL effector function. Eur. J. Immunol.31(3), 677–686 (2001).
  • Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat. Immunol.7(5), 475–481 (2006).
  • Andersson S, Norrgren H, da Silva Z et al. Plasma viral load in HIV-1 and HIV-2 singly and dually infected individuals in Guinea-Bissau, West Africa: significantly lower plasma virus set point in HIV-2 infection than in HIV-1 infection. Arch. Intern. Med.160(21), 3286–3293 (2000).
  • Albuquerque AS, Cortesao CS, Foxall RB et al. Rate of increase in circulating IL-7 and loss of IL-7R{α} expression differ in HIV-1 and HIV-2 infections: two lymphopenic diseases with similar hyperimmune activation but distinct outcomes. J. Immunol.178(5), 3252–3259 (2007).
  • Silvestri G, Paiardini M, Pandrea I, Lederman MM, Sodora DL. Understanding the benign nature of SIV infection in natural hosts. J. Clin. Invest.117(11), 3148–3154 (2007).
  • Broussard SR, Staprans SI, White R et al. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J. Virol.75(5), 2262–2275 (2001).
  • Gordon SN, Klatt NR, Bosinger SE et al. Severe depletion of mucosal CD4+ T cells in AIDS-free simian immunodeficiency virus-infected sooty mangabeys. J. Immunol.179(5), 3026–3034 (2007).
  • Silvestri G, Sodora DL, Koup RA et al. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity18(3), 441–452 (2003).
  • Walker BD, Chakrabarti S, Moss B et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature328(6128), 345–348 (1987).
  • Koup RA, Safrit JT, Cao Y et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol.68(7), 4650–4655 (1994).
  • Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol.68(9), 6103–6110 (1994).
  • Ogg GS, Jin X, Bonhoeffer S et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science279(5359), 2103–2106 (1998).
  • Ogg GS, Kostense S, Klein MR et al. Longitudinal phenotypic analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes: correlation with disease progression. J. Virol.73(11), 9153–9160 (1999).
  • Appay V, Dunbar PR, Callan M et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med.8(4), 379–385 (2002).
  • Jin X, Bauer DE, Tuttleton SE et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med.189(6), 991–998 (1999).
  • Goulder PJ, Phillips RE, Colbert RA et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med.3(2), 212–217 (1997).
  • Moore CB, John M, James IR et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science296(5572), 1439–1443 (2002).
  • Grassly NC, Xiang Z, Ariyoshi K et al. Mortality among human immunodeficiency virus type 2-positive villagers in rural Guinea-Bissau is correlated with viral genotype. J. Virol.72(10), 7895–7899 (1998).
  • Diouf K, Sarr AD, Eisen G et al. Associations between MHC class I and susceptibility to HIV-2 disease progression. J. Hum. Virol.5(1), 1–7 (2002).
  • Gotch F, McAdam SN, Allsopp CE et al. Cytotoxic T cells in HIV2 seropositive Gambians. J. Immunol.151(6), 3361–3369 (1993).
  • Rowland-Jones S, Sutton J, Ariyoshi K et al. HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nat. Med.1(1), 59–64 (1995).
  • Bertoletti A, Cham F, McAdam S et al. Cytotoxic T cells from human immunodeficiency virus type 2-infected patients frequently cross-react with different human immunodeficiency virus type 1 clades. J. Virol.72(3), 2439–2448 (1998).
  • Rowland-Jones SL, Dong T, Dorrell L et al. Broadly cross-reactive HIV-specific cytotoxic T-lymphocytes in highly-exposed persistently seronegative donors. Immunol. Lett.66(1–3), 9–14 (1999).
  • Sarr AD, Lu Y, Sankale JL et al. Robust HIV type 2 cellular immune response measured by a modified anthrax toxin-based enzyme-linked immunospot assay. AIDS Res. Hum. Retroviruses17(13), 1257–1264 (2001).
  • Jaye A, Sarge-Njie R, Schim van der Loeff M et al. No differences in cellular immune responses between asymptomatic HIV type 1- and type 2-infected Gambian patients. J. Infect. Dis.189(3), 498–505 (2004).
  • Betts MR, Ambrozak DR, Douek DC et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J. Virol.75(24), 11983–11991 (2001).
  • Novitsky V, Cao H, Rybak N et al. Magnitude and frequency of cytotoxic T-lymphocyte responses: identification of immunodominant regions of human immunodeficiency virus type 1 subtype C. J. Virol.76(20), 10155–10168 (2002).
  • Yu XG, Addo MM, Rosenberg ES et al. Consistent patterns in the development and immunodominance of human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection. J. Virol.76(17), 8690–8701 (2002).
  • Cao J, McNevin J, Holte S et al. Comprehensive analysis of human immunodeficiency virus type 1 (HIV-1)-specific γ-interferon-secreting CD8+ T cells in primary HIV-1 infection. J. Virol.77(12), 6867–6878 (2003).
  • Addo MM, Yu XG, Rathod A et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol.77(3), 2081–2092 (2003).
  • Kaufmann DE, Bailey PM, Sidney J et al. Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of Gag and Nef and the presence of broadly recognized peptides. J. Virol.78(9), 4463–4477 (2004).
  • Masemola A, Mashishi T, Khoury G et al. Hierarchical targeting of subtype C human immunodeficiency virus type 1 proteins by CD8+ T cells: correlation with viral load. J. Virol.78(7), 3233–3243 (2004).
  • Rinaldo C, Huang XL, Fan ZF et al. High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long-term nonprogressors. J. Virol.69(9), 5838–5842 (1995).
  • Kalams SA, Buchbinder SP, Rosenberg ES et al. Association between virus-specific cytotoxic T-lymphocyte and helper responses in human immunodeficiency virus type 1 infection. J. Virol.73(8), 6715–6720 (1999).
  • Edwards BH, Bansal A, Sabbaj S et al. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J. Virol.76(5), 2298–2305 (2002).
  • Goulder PJ, Brander C, Annamalai K et al. Differential narrow focusing of immunodominant human immunodeficiency virus gag-specific cytotoxic T-lymphocyte responses in infected African and caucasoid adults and children. J. Virol.74(12), 5679–5690 (2000).
  • Novitsky V, Gilbert P, Peter T et al. Association between virus-specific T-cell responses and plasma viral load in human immunodeficiency virus type 1 subtype C infection. J. Virol.77(2), 882–890 (2003).
  • Ramduth D, Chetty P, Mngquandaniso NC et al. Differential immunogenicity of HIV-1 clade C proteins in eliciting CD8+ and CD4+ cell responses. J. Infect. Dis.192(9), 1588–1596 (2005).
  • Kiepiela P, Ngumbela K, Thobakgale C et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat. Med.13(1), 46–53 (2007).
  • Melamed D, Mark-Danieli M, Kenan-Eichler M et al. The conserved carboxy terminus of the capsid domain of human immunodeficiency virus type 1 Gag protein is important for virion assembly and release. J. Virol.78(18), 9675–9688 (2004).
  • Martinez-Picado J, Prado JG, Fry EE et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J. Virol.80(7), 3617–3623 (2006).
  • Lichterfeld M, Yu XG, Cohen D et al. HIV-1 Nef is preferentially recognized by CD8 T cells in primary HIV-1 infection despite a relatively high degree of genetic diversity. AIDS18(10), 1383–1392 (2004).
  • Zheng NN, Kiviat NB, Sow PS et al. Comparison of human immunodeficiency virus (HIV)-specific T-cell responses in HIV-1- and HIV-2-infected individuals in Senegal. J. Virol.78(24), 13934–13942 (2004).
  • Gillespie GM, Pinheiro S, Sayeid-Al-Jamee M et al. CD8+ T cell responses to human immunodeficiency viruses type 2 (HIV-2) and type 1 (HIV-1) Gag proteins are distinguishable by magnitude and breadth but not cellular phenotype. Eur. J. Immunol.35(5), 1445–1453 (2005).
  • Dong T, Stewart-Jones G, Chen N et al. HIV-specific cytotoxic T cells from long-term survivors select a unique T cell receptor. J. Exp. Med.200(12), 1547–1557 (2004).
  • Meyer-Olson D, Brady KW, Bartman MT et al. Fluctuations of functionally distinct CD8+ T-cell clonotypes demonstrate flexibility of the HIV-specific TCR repertoire. Blood107(6), 2373–2383 (2006).
  • Phillips RE, Rowland-Jones S, Nixon DF et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature354(6353), 453–459 (1991).
  • John M, Mallal S. CTL responses to HIV and SIV: wrestling with smoke. Nat. Immunol.6(3), 232–234 (2005).
  • McMichael AJ, Rowland-Jones SL. Cellular immune responses to HIV. Nature410(6831), 980–987 (2001).
  • Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science300(5617), 339–342 (2003).
  • Giorgi JV, Hultin LE, McKeating JA et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis.179(4), 859–870 (1999).
  • Jaffar S, Van der Loeff MS, Eugen-Olsen J et al. Immunological predictors of survival in HIV type 2-infected rural villagers in Guinea-Bissau. AIDS Res. Hum. Retroviruses21(6), 560–564 (2005).
  • Hanson A, Sarr AD, Shea A et al. Distinct profile of T cell activation in HIV type 2 compared to HIV type 1 infection: differential mechanism for immunoprotection. AIDS Res. Hum. Retroviruses21(9), 791–798 (2005).
  • Michel P, Balde AT, Roussilhon C et al. Reduced immune activation and T cell apoptosis in human immunodeficiency virus type 2 compared with type 1: correlation of T cell apoptosis with b2 microglobulin concentration and disease evolution. J. Infect. Dis.181(1), 64–75 (2000).
  • Markovitz DM, Hannibal M, Perez VL et al. Differential regulation of human immunodeficiency viruses (HIVs): a specific regulatory element in HIV-2 responds to stimulation of the T-cell antigen receptor. Proc. Natl Acad. Sci. USA87(23), 9098–9102 (1990).
  • Hannibal MC, Markovitz DM, Clark N, Nabel GJ. Differential activation of human immunodeficiency virus type 1 and 2 transcription by specific T-cell activation signals. J. Virol.67(8), 5035–5040 (1993).
  • Munch J, Schindler M, Wildum S et al. Primary sooty mangabey simian immunodeficiency virus and human immunodeficiency virus type 2 nef alleles modulate cell surface expression of various human receptors and enhance viral infectivity and replication. J. Virol.79(16), 10547–10560 (2005).
  • Schindler M, Munch J, Kutsch O et al. Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell125(6), 1055–1067 (2006).
  • Betts MR, Price DA, Brenchley JM et al. The functional profile of primary human antiviral CD8+ T cell effector activity is dictated by cognate peptide concentration. J. Immunol.172(10), 6407–6417 (2004).
  • Emini EA, Schleif WA, Nunberg JH et al. Prevention of HIV-1 infection in chimpanzees by gp120 V3 domain-specific monoclonal antibody. Nature355(6362), 728–730 (1992).
  • Wei X, Decker JM, Wang S et al. Antibody neutralization and escape by HIV-1. Nature422(6929), 307–312 (2003).
  • Bjorling E, Scarlatti G, von Gegerfelt A et al. Autologous neutralizing antibodies prevail in HIV-2 but not in HIV-1 infection. Virology193(1), 528–530 (1993).
  • Fenyo EM, Putkonen P. Broad cross-neutralizing activity in serum is associated with slow progression and low risk of transmission in primate lentivirus infections. Immunol. Lett.51(1–2), 95–99 (1996).
  • Witvrouw M, Pannecouque C, Van Laethem K et al. Activity of non-nucleoside reverse transcriptase inhibitors against HIV-2 and SIV. AIDS13(12), 1477–1483 (1999).
  • Colson P, Henry M, Tourres C et al. Polymorphism and drug-selected mutations in the protease gene of human immunodeficiency virus type 2 from patients living in Southern France. J. Clin. Microbiol.42(2), 570–577 (2004).
  • Jallow S, Kaye S, Alabi A et al. Virological and immunological response to Combivir and emergence of drug resistance mutations in a cohort of HIV-2 patients in The Gambia. AIDS20(10), 1455–1458 (2006).
  • Mullins C, Eisen G, Popper S et al. Highly active antiretroviral therapy and viral response in HIV type 2 infection. Clin. Infect. Dis.38(12), 1771–1779 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.