76
Views
9
CrossRef citations to date
0
Altmetric
Review

New drugs and vaccines for drug-resistant Mycobacterium tuberculosis infections

, , , &
Pages 481-497 | Published online: 09 Jan 2014

References

  • Dye C. Global epidemiology of tuberculosis. Lancet367(9514), 938–940 (2006).
  • Flynn JL, Chan J. Tuberculosis: latency and reactivation. Infect. Immun.69(7), 4195–4201 (2001).
  • Anon. Prevention of streptomycin resistance by combined chemotherapy; a Medical Research Council investigation. Br. Med. J.1(4769), 1157–1162 (1952).
  • Fox W, Wiener A, Mitchison DA, Selkon JB, Sutherland I. The prevalence of drug-resistant tubercle bacilli in untreated patients with pulmonary tuberculosis; a national survey, 1955–56. Tubercle38(2), 71–84 (1957).
  • WHO. The World Health Organization Global Tuberculosis Program. World Health Organization, Geneva, Switzerland (2003).
  • Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int. J. Tuberc. Lung Dis.4(9), 796–806 (2000).
  • Cardona PJ, Ruiz-Manzano J. On the nature of Mycobacterium tuberculosis-latent bacilli. Eur. Respir. J.24(6), 1044–1051 (2004).
  • Wayne LG. Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Infect. Dis.13(11), 908–914 (1994).
  • Wayne LG, Sohaskey CD. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol.55, 139–163 (2001).
  • Locht C, Rouanet C, Hougardy JM, Mascart F. How a different look at latency can help to develop novel diagnostics and vaccines against tuberculosis. Expert Opin. Biol. Ther.7(11), 1665–1677 (2007).
  • Hobby GL, Lenert TF. The in vitro action of antituberculous agents against multiplying and non-multiplying microbial cells. Am. Rev. Tuberc.76(6), 1031–1048 (1957).
  • McCune RM Jr, Tompsett R. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J. Exp. Med.104(5), 737–762 (1956).
  • McCune RM, Feldmann FM, Lambert HP, McDermott W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med.123(3), 445–468 (1966).
  • Wade MM, Zhang Y. Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. J. Med. Microbiol.53(Pt 8), 769–773 (2004).
  • Heifets L, Lindholm-Levy P. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am. Rev. Respir. Dis.145(5), 1223–1225 (1992).
  • Mitchison DA. The action of antituberculosis drugs in short-course chemotherapy. Tubercle66(3), 219–225 (1985).
  • Mitchison DA. Basic mechanisms of chemotherapy. Chest76(6 Suppl.), 771–781 (1979).
  • Munro SA, Lewin SA, Smith HJ, Engel ME, Fretheim A, Volmink J. Patient adherence to tuberculosis treatment: a systematic review of qualitative research. PLoS Med.4(7), e238 (2007).
  • Spigelman M, Gillespie S. Tuberculosis drug development pipeline: progress and hope. Lancet367(9514), 945–947 (2006).
  • Sharma SK, Mohan A. Multidrug-resistant tuberculosis. Indian J. Med. Res.120(4), 354–376 (2004).
  • Raviglione MC, Pio A. Evolution of WHO policies for tuberculosis control, 1948–2001. Lancet359(9308), 775–780 (2002).
  • Dye C, Watt CJ, Bleed DM, Hosseini SM, Raviglione MC. Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. JAMA293(22), 2767–2775 (2005).
  • Wright A, Bai G, Barrera L et al. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs – worldwide, 2000–2004. MMWR Morb. Mortal. Wkly Rep.55(11), 301–305 (2006).
  • Moore-Gillon J. Multidrug-resistant tuberculosis: this is the cost. Ann. NY Acad. Sci.953, 233–240 (2001).
  • Veziris N, Truffot-Pernot C, Aubry A, Jarlier V, Lounis N. Fluoroquinolone-containing third-line regimen against Mycobacterium tuberculosis in vivo. Antimicrob. Agents Chemother.47(10), 3117–3122 (2003).
  • Harries AD, Chimzizi R, Zachariah R. Safety, effectiveness, and outcomes of concomitant use of highly active antiretroviral therapy with drugs for tuberculosis in resource-poor settings. Lancet367(9514), 944–945 (2006).
  • Kwara A, Flanigan TP, Carter EJ. Highly active antiretroviral therapy (HAART) in adults with tuberculosis: current status. Int. J. Tuberc. Lung Dis.9(3), 248–257 (2005).
  • Takayama K, Kilburn JO. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother.33(9), 1493–1499 (1989).
  • Mikusova K, Slayden RA, Besra GS, Brennan PJ. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother.39(11), 2484–2489 (1995).
  • Jia L, Tomaszewski JE, Hanrahan C et al. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol.144(1), 80–87 (2005).
  • Jia L, Noker PE, Coward L, Gorman GS, Protopopova M, Tomaszewski JE. Interspecies pharmacokinetics and in vitro metabolism of SQ109. Br. J. Pharmacol.147(5), 476–485 (2006).
  • Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem.279(38), 40174–40184 (2004).
  • Wigley DB. Structure and mechanism of DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct.24, 185–208 (1995).
  • Maxwell A. DNA gyrase as a drug target. Trends Microbiol.5(3), 102–109 (1997).
  • Reece RJ, Maxwell A. DNA gyrase: structure and function. Crit. Rev. Biochem. Mol. Biol.26(3–4), 335–375 (1991).
  • Aubry A, Pan XS, Fisher LM, Jarlier V, Cambau E. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob. Agents Chemother.48(4), 1281–1288 (2004).
  • Domagala JM. Structure–activity and structure–side-effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother.33(4), 685–706 (1994).
  • Ji B, Lounis N, Maslo C, Truffot-Pernot C, Bonnafous P, Grosset J. in vitro and in vivo activities of moxifloxacin and clinafloxacin against Mycobacterium tuberculosis. Antimicrob. Agents Chemother.42(8), 2066–2069 (1998).
  • Miyazaki E, Miyazaki M, Chen JM, Chaisson RE, Bishai WR. Moxifloxacin (BAY12–8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. Antimicrob. Agents Chemother.43(1), 85–89 (1999).
  • Alvirez-Freites EJ, Carter JL, Cynamon MH. in vitro and in vivo activities of gatifloxacin against Mycobacterium tuberculosis. Antimicrob. Agents. Chemother.46(4), 1022–1025 (2002).
  • Lenaerts AJ, Gruppo V, Brooks JV, Orme IM. Rapid in vivo screening of experimental drugs for tuberculosis using g interferon gene-disrupted mice. Antimicrob. Agents Chemother.47(2), 783–785 (2003).
  • Hu Y, Coates AR, Mitchison DA. Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.47(2), 653–657 (2003).
  • Nuermberger EL, Yoshimatsu T, Tyagi S et al. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am. J. Respir. Crit. Care Med.169(3), 421–426 (2004).
  • Nuermberger EL, Yoshimatsu T, Tyagi S et al. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am. J. Respir. Crit. Care Med.170(10), 1131–1134 (2004).
  • Anon. Update: fatal and severe liver injuries associated with rifampin and pyrazinamide for latent tuberculosis infection, and revisions in American Thoracic Society/CDC recommendations – United States, 2001. Am. J. Respir. Crit. Care Med.164(7), 1319–1320 (2001).
  • Anon. Update: adverse event data and revised American Thoracic Society/CDC recommendations against the use of rifampin and pyrazinamide for treatment of latent tuberculosis infection – United States, 2003. MMWR Morb. Mortal. Wkly Rep.52(31), 735–739 (2003).
  • Johnson JL, Hadad DJ, Boom WH et al. Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int. J. Tuberc. Lung Dis.10(6), 605–612 (2006).
  • Pletz MW, De Roux A, Roth A, Neumann KH, Mauch H, Lode H. Early bactericidal activity of moxifloxacin in treatment of pulmonary tuberculosis: a prospective, randomized study. Antimicrob. Agents Chemother.48(3), 780–782 (2004).
  • Burman WJ, Goldberg S, Johnson JL et al. Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Am. J. Respir. Crit. Care Med.174(3), 331–338 (2006).
  • Sriram D, Aubry A, Yogeeswari P, Fisher LM. Gatifloxacin derivatives: synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase. Bioorg. Med. Chem. Lett.16(11), 2982–2985 (2006).
  • Andries K, Verhasselt P, Guillemont J et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science307(5707), 223–227 (2005).
  • Huitric E, Verhasselt P, Andries K, Hoffner SE. in vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob. Agents Chemother.51(11), 4202–4204 (2007).
  • Lounis N, Veziris N, Chauffour A, Truffot-Pernot C, Andries K, Jarlier V. Combinations of R207910 with drugs used to treat multidrug-resistant tuberculosis have the potential to shorten treatment duration. Antimicrob. Agents Chemother.50(11), 3543–3547 (2006).
  • Stover CK, Warrener P, VanDevanter DR et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature405(6789), 962–966 (2000).
  • Manjunatha UH, Boshoff H, Dowd CS et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA103(2), 431–436 (2006).
  • Lenaerts AJ, Gruppo V, Marietta KS et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob. Agents Chemother.49(6), 2294–2301 (2005).
  • Tyagi S, Nuermberger E, Yoshimatsu T et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob. Agents Chemother.49(6), 2289–2293 (2005).
  • Sasaki H, Haraguchi Y, Itotani M et al. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J. Med. Chem.49(26), 7854–7860 (2006).
  • Matsumoto M, Hashizume H, Tomishige T et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med.3(11), e466 (2006).
  • Kim P, Zhang YM, Shenoy G et al. Structure–activity relationships at the 5-position of thiolactomycin: an intact (5R)-isoprene unit is required for activity against the condensing enzymes from Mycobacterium tuberculosis and Escherichia coli. J. Med. Chem.49(1), 159–171 (2006).
  • Arora SK, Sinha N, Sinha RK, Uppadhayaya RS, Modak VM, Tilekar A. Synthesis and in vitro anti-mycobacterial activity of a novel anti-TB composition LL4858. 45th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, USA, 16–19 December, 2005 (Abstract F-1115).
  • Sinha RK, Arora SK, Sinha N, Modak VM. In vivo activity of LL4858 against Mycobacterium tuberculosis. 45th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, USA, 16–19 December, 2005 (Abstract F-1116).
  • Barrett JF. Linezolid Pharmacia Corp. Curr. Opin. Investig. Drugs1(2), 181–187 (2000).
  • Ashtekar DR, Costa-Periera R, Shrinivasan T, Iyyer R, Vishvanathan N, Rittel W. Oxazolidinones, a new class of synthetic antituberculosis agent. In vitro and in vivo activities of DuP-721 against Mycobacterium tuberculosis. Diagn. Microbiol. Infect. Dis.14(6), 465–471 (1991).
  • Barbachyn MR, Hutchinson DK, Brickner SJ et al. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J. Med. Chem.39(3), 680–685 (1996).
  • Cynamon MH, Klemens SP, Sharpe CA, Chase S. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob. Agents. Chemother.43(5), 1189–1191 (1999).
  • Sbardella G, Mai A, Artico M, Setzu MG, Poni G, La Colla P. New 6-nitroquinolones: synthesis and antimicrobial activities. Farmaco59(6), 463–471 (2004).
  • Shoen CM, DeStefano MS, Sklaney MR, Monica BJ, Slee AM, Cynamon MH. Short-course treatment regimen to identify potential antituberculous agents in a murine model of tuberculosis. J. Antimicrob. Chemother.53(4), 641–645 (2004).
  • Sood R, Rao M, Singhal S, Rattan A. Activity of RBx 7644 and RBx 8700, new investigational oxazolidinones, against Mycobacterium tuberculosis infected murine macrophages. Int. J. Antimicrob. Agents25(6), 464–468 (2005).
  • Fortun J, Martin-Davila P, Navas E et al. Linezolid for the treatment of multidrug-resistant tuberculosis. J. Antimicrob. Chemother.56(1), 180–185 (2005).
  • von der Lippe B, Sandven P, Brubakk O. Efficacy and safety of linezolid in multidrug resistant tuberculosis (MDR-TB) – a report of ten cases. J. Infect.52(2), 92–96 (2006).
  • Richter E, Rusch-Gerdes S, Hillemann D. First linezolid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.51(4), 1534–1536 (2007).
  • Sun Z, Zhang Y. Antituberculosis activity of certain antifungal and antihelmintic drugs. Tuber. Lung Dis.79(5), 319–320 (1999).
  • Burguiere A, Hitchen PG, Dover LG, Dell A, Besra GS. Altered expression profile of mycobacterial surface glycopeptidolipids following treatment with the antifungal azole inhibitors econazole and clotrimazole. Microbiology151(Pt 6), 2087–2095 (2005).
  • McLean KJ, Marshall KR, Richmond A et al. Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology148(Pt 10), 2937–2949 (2002).
  • Guo DA, Mangla AT, Zhou W et al. Antifungal sterol biosynthesis inhibitors. Subcell. Biochem.28, 89–116 (1997).
  • Cole ST, Brosch R, Parkhill J et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393(6685), 537–544 (1998).
  • Aoyama Y, Horiuchi T, Gotoh O, Noshiro M, Yoshida Y. CYP51-like gene of Mycobacterium tuberculosis actually encodes a P450 similar to eukaryotic CYP51. J. Biochem. (Tokyo)124(4), 694–696 (1998).
  • Bellamine A, Mangla AT, Nes WD, Waterman MR. Characterization and catalytic properties of the sterol 14a-demethylase from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA96(16), 8937–8942 (1999).
  • Guardiola-Diaz HM, Foster LA, Mushrush D, Vaz AD. Azole-antifungal binding to a novel cytochrome P450 from Mycobacterium tuberculosis: implications for treatment of tuberculosis. Biochem. Pharmacol.61(12), 1463–1470 (2001).
  • Ahmad Z, Sharma S, Khuller GK. in vitro and ex vivo antimycobacterial potential of azole drugs against Mycobacterium tuberculosis H37Rv. FEMS Microbiol. Lett.251(1), 19–22 (2005).
  • Benko I, Hernadi F, Megyeri A et al. Comparison of the toxicity of fluconazole and other azole antifungal drugs to murine and human granulocyte–macrophage progenitor cells in vitro. J. Antimicrob. Chemother.43(5), 675–681 (1999).
  • Ahmad Z, Sharma S, Khuller GK. Azole antifungals as novel chemotherapeutic agents against murine tuberculosis. FEMS Microbiol. Lett.261(2), 181–186 (2006).
  • Podust LM, Stojan J, Poulos TL, Waterman MR. Substrate recognition sites in 14a-sterol demethylase from comparative analysis of amino acid sequences and x-ray structure of Mycobacterium tuberculosis CYP51. J. Inorg. Biochem.87(4), 227–235 (2001).
  • Podust LM, Poulos TL, Waterman MR. Crystal structure of cytochrome P450 14a-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl Acad. Sci. USA98(6), 3068–3073 (2001).
  • Jones PB, Parrish NM, Houston TA et al. A new class of antituberculosis agents. J. Med. Chem.43(17), 3304–3314 (2000).
  • Parrish NM, Houston T, Jones PB, Townsend C, Dick JD. in vitro activity of a novel antimycobacterial compound, N-octanesulfonylacetamide, and its effects on lipid and mycolic acid synthesis. Antimicrob. Agents Chemother.45(4), 1143–1150 (2001).
  • Parrish NM, Ko CG, Hughes MA, Townsend CA, Dick JD. Effect of N-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG. J. Antimicrob. Chemother.54(4), 722–729 (2004).
  • FASgen Inc. F. FASgen compound FAS20013 demonstrates remarkable killing effect against TB. FASgen Inc. (2005).
  • Ratnakar P, Murthy PS. Antitubercular activity of trifluoperazine, a calmodulin antagonist. FEMS Microbiol. Lett.76(1–2), 73–76 (1992).
  • Molnar J, Beladi I, Foldes I. Studies on antituberculotic action of some phenothiazine derivatives in vitro. Zentralbl. Bakteriol. [Orig A]239(4), 521–526 (1977).
  • Kristiansen JE, Vergmann B. The antibacterial effect of selected phenothiazines and thioxanthenes on slow-growing mycobacteria. Acta Pathol. Microbiol. Immunol. Scand.94(6), 393–398 (1986).
  • Katoch VM, Saxena N, Shivannavar CT et al. Effect of trifluoperazine on in vitro ATP synthesis by Mycobacterium leprae. FEMS Immunol. Med. Microbiol.20(2), 99–102 (1998).
  • Weinstein EA, Yano T, Li LS et al. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc. Natl Acad. Sci. USA102(12), 4548–4553 (2005).
  • Kana BD, Weinstein EA, Avarbock D, Dawes SS, Rubin H, Mizrahi V. Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis. J. Bacteriol.183(24), 7076–7086 (2001).
  • Crowle AJ, Douvas GS, May MH. Chlorpromazine: a drug potentially useful for treating mycobacterial infections. Chemotherapy38(6), 410–419 (1992).
  • Reddy MV, Nadadhur G, Gangadharam PR. In-vitro and intracellular antimycobacterial activity of trifluoperazine. J. Antimicrob. Chemother.37(1), 196–197 (1996).
  • Wise R, Andrews JM, Ashby J. in vitro activities of peptide deformylase inhibitors against Gram-positive pathogens. Antimicrob. Agents Chemother.46(4), 1117–1118 (2002).
  • Apfel CM, Locher H, Evers S et al. Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob. Agents Chemother.45(4), 1058–1064 (2001).
  • Clements JM, Beckett RP, Brown A et al. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Antimicrob. Agents Chemother.45(2), 563–570 (2001).
  • Cynamon MH, Alvirez-Freites E, Yeo AE. BB-3497, a peptide deformylase inhibitor, is active against Mycobacterium tuberculosis. J. Antimicrob. Chemother.53(2), 403–405 (2004).
  • Nguyen KT, Hu X, Colton C, Chakrabarti R, Zhu MX, Pei D. Characterization of a human peptide deformylase: implications for antibacterial drug design. Biochemistry42(33), 9952–9958 (2003).
  • Chipman D, Barak Z, Schloss JV. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim. Biophys. Acta1385(2), 401–419 (1998).
  • Lee YT, Duggleby RG. Mutagenesis studies on the sensitivity of Escherichia coli acetohydroxyacid synthase II to herbicides and valine. Biochem. J.350(Pt 1), 69–73 (2000).
  • Choi KJ, Yu YG, Hahn HG, Choi JD, Yoon MY. Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library. FEBS Lett.579(21), 4903–4910 (2005).
  • Oishi H, Noto T, Sasaki H et al. Thiolactomycin, a new antibiotic. 1. Taxonomy of the producing organism, fermentation and biological properties. J. Antibiot.35(4), 391–395 (1982).
  • Kremer L, Douglas JD, Baulard AR et al. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem.275(22), 16857–16864 (2000).
  • Choi KH, Kremer L, Besra GS, Rock CO. Identification and substrate specificity of b-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem.275(36), 28201–28207 (2000).
  • Wang CLJ, Salvino JM. Total synthesis of (+/-)-thiolactomycin. Tet. Lett.25(46), 5243–5246 (1984).
  • McFadden JM, Frehywot GL, Townsend CA. A flexible route to (5R)-thiolactomycin, a naturally occurring inhibitor of fatty acid synthesis. Org. Lett.4(22), 3859–3862 (2002).
  • Kamal A, Shaik AA, Sinha R, Yadav JS, Arora SK. Antitubercular agents. Part 2: new thiolactomycin analogues active against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett.15(7), 1927–1929 (2005).
  • Senior SJ, Illarionova PA, Gurcha SS et al. Biphenyl-based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorg. Med. Chem. Lett.13(21), 3685–3688 (2003).
  • Senior SJ, Illarionov PA, Gurcha SS et al. Acetylene-based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorg. Med. Chem. Lett.14(2), 373–376 (2004).
  • Slayden RA, Lee RE, Armour JW et al. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob. Agents Chemother.40(12), 2813–2819 (1996).
  • Douglas JD, Senior SJ, Morehouse C et al. Analogues of thiolactomycin: potential drugs with enhanced anti-mycobacterial activity. Microbiology148, 3101–3109 (2002).
  • Sridharan S, Wang L, Brown AK et al. X-ray crystal structure of Mycobacterium tuberculosis b-ketoacyl acyl carrier protein synthase II (mtKasB). J. Mol. Biol.366(2), 469–480 (2007).
  • Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol.54, 881–941 (2000).
  • Quadri LE, Sello J, Keating TA, Weinreb PH, Walsh CT. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol.5(11), 631–645 (1998).
  • Krithika R, Marathe U, Saxena P, Ansari MZ, Mohanty D, Gokhale RS. A genetic locus required for iron acquisition in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA103(7), 2069–2074 (2006).
  • LaMarca BB, Zhu W, Arceneaux JE, Byers BR, Lundrigan MD. Participation of fad and mbt genes in synthesis of mycobactin in Mycobacterium smegmatis. J. Bacteriol.186(2), 374–382 (2004).
  • Rindi L, Bonanni D, Lari N, Garzelli C. Requirement of gene fadD33 for the growth of Mycobacterium tuberculosis in a hepatocyte cell line. New Microbiol.27(2), 125–131 (2004).
  • Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol.48(1), 77–84 (2003).
  • De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl Acad. Sci. USA97(3), 1252–1257 (2000).
  • Somu RV, Boshoff H, Qiao C, Bennett EM, Barry CE 3rd, Aldrich CC. Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J. Med. Chem.49(1), 31–34 (2006).
  • Ferreras JA, Ryu JS, Di Lello F, Tan DS, Quadri LE. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat. Chem. Biol.1(1), 29–32 (2005).
  • Bakkestuen AK, Gundersen LL, Langli G, Liu F, Nolsoe JM. 9-benzylpurines with inhibitory activity against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett.10(11), 1207–1210 (2000).
  • Scozzafava A, Mastrolorenzo A, Supuran CT. Antimycobacterial activity of 9-sulfonylated/sulfenylated-6-mercaptopurine derivatives. Bioorg. Med. Chem. Lett.11(13), 1675–1678 (2001).
  • Gundersen LL, Nissen-Meyer J, Spilsberg B. Synthesis and antimycobacterial activity of 6-arylpurines: the requirements for the N-9 substituent in active antimycobacterial purines. J. Med. Chem.45(6), 1383–1386 (2002).
  • Pathak AK, Pathak V, Seitz LE, Suling WJ, Reynolds RC. Antimycobacterial agents. 1. Thio analogues of purine. J. Med. Chem.47(1), 273–276 (2004).
  • Deretic V, Singh S, Master S et al.Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell. Microbiol.8(5), 719–727 (2006).
  • Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev.2(8), 569–577 (2001).
  • Flesch IE, Kaufmann SH. Activation of tuberculostatic macrophage functions by g interferon, interleukin-4, and tumor necrosis factor. Infect. Immun.58(8), 2675–2677 (1990).
  • Flynn JL, Chan J. Immunology of tuberculosis. Annu. Rev. immunol.19, 93–129 (2001).
  • Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet346(8986), 1339–1345 (1995).
  • Girard MP, Fruth U, Kieny MP. A review of vaccine research and development: tuberculosis. Vaccine23(50), 5725–5731 (2005).
  • Andersen P. Vaccine strategies against latent tuberculosis infection. Trends Microbiol.15(1), 7–13 (2007).
  • Leyten EM, Lin MY, Franken KL et al. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect.8(8), 2052–2060 (2006).
  • Lin MY, Geluk A, Smith SG et al. Lack of immune responses to Mycobacterium tuberculosis DosR regulon proteins following Mycobacterium bovis BCG vaccination. Infect. Immun.75(7), 3523–3530 (2007).
  • Skeiky YA, Sadoff JC. Advances in tuberculosis vaccine strategies. Nat. Rev. Microbiol.4(6), 469–476 (2006).
  • Horwitz MA, Harth G. A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect. Immun.71(4), 1672–1679 (2003).
  • Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant bacillus Calmette–Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl Acad. Sci. USA97(25), 13853–13858 (2000).
  • Pym AS, Brodin P, Majlessi L et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med.9(5), 533–539 (2003).
  • Schaible UE, Winau F, Sieling PA et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med.9(8), 1039–1046 (2003).
  • Kornfeld H, Mancino G, Colizzi V. The role of macrophage cell death in tuberculosis. Cell Death Differ.6(1), 71–78 (1999).
  • Riendeau CJ, Kornfeld H. THP-1 cell apoptosis in response to mycobacterial infection. Infect. Immun.71(1), 254–259 (2003).
  • Hess J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH. Mycobacterium bovis bacille Calmette–Guerin strains secreting listeriolysin of Listeria monocytogenes. Proc. Natl Acad. Sci. USA95(9), 5299–5304 (1998).
  • Hinchey J, Lee S, Jeon BY et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J. Clin. Invest.117(8), 2279–2288 (2007).
  • Behr MA, Wilson MA, Gill WP et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science284(5419), 1520–1523 (1999).
  • Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol. Microbiol.32(3), 643–655 (1999).
  • Aguilar D, Infante E, Martin C, Gormley E, Gicquel B, Hernandez Pando R. Immunological responses and protective immunity against tuberculosis conferred by vaccination of Balb/C mice with the attenuated Mycobacterium tuberculosis (phoP) SO2 strain. Clin. Exp. Immunol.147(2), 330–338 (2007).
  • Martin C, Williams A, Hernandez-Pando R et al. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine24(17), 3408–3419 (2006).
  • Sambandamurthy VK, Derrick SC, Hsu T et al.Mycobacterium tuberculosis DRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine24(37–39), 6309–6320 (2006).
  • Sambandamurthy VK, Derrick SC, Jalapathy KV et al. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect. Immun.73(2), 1196–1203 (2005).
  • Sambandamurthy VK, Wang X, Chen B et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat. Med.8(10), 1171–1174 (2002).
  • Sampson SL, Dascher CC, Sambandamurthy VK et al. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect. Immun.72(5), 3031–3037 (2004).
  • Bhatt A, Fujiwara N, Bhatt K et al. Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc. Natl Acad. Sci. USA104(12), 5157–5162 (2007).
  • Skeiky YA, Alderson MR, Ovendale PJ et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J. Immunol.172(12), 7618–7628 (2004).
  • Weinrich Olsen A, van Pinxteren LA, Meng Okkels L, Birk Rasmussen P, Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect. Immun.69(5), 2773–2778 (2001).
  • Huygen K. DNA vaccines against mycobacterial diseases. Future Microbiol.1, 63–73 (2006).
  • McShane H, Pathan AA, Sander CR et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med.10(11), 1240–1244 (2004).
  • Goonetilleke NP, McShane H, Hannan CM, Anderson RJ, Brookes RH, Hill AV. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette–Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol.171(3), 1602–1609 (2003).
  • Porcelli S, Brenner MB, Greenstein JL, Balk SP, Terhorst C, Bleicher PA. Recognition of cluster of differentiation 1 antigens by human CD4–CD8–cytolytic T lymphocytes. Nature341(6241), 447–450 (1989).
  • Porcelli S, Morita CT, Brenner MB. CD1b restricts the response of human CD4–8– T lymphocytes to a microbial antigen. Nature360(6404), 593–597 (1992).
  • Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB. Recognition of a lipid antigen by CD1-restricted ab+ T cells. Nature372(6507), 691–694 (1994).
  • Sieling PA, Chatterjee D, Porcelli SA et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science269(5221), 227–230 (1995).
  • Moody DB, Reinhold BB, Guy MR et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science278(5336), 283–286 (1997).
  • Gilleron M, Stenger S, Mazorra Z et al. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J. Exp. Med.199(5), 649–659 (2004).
  • Moody DB, Ulrichs T, Muhlecker W et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature404(6780), 884–888 (2000).
  • Moody DB, Young DC, Cheng TY et al. T cell activation by lipopeptide antigens. Science303(5657), 527–531 (2004).
  • Fischer K, Scotet E, Niemeyer M et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl Acad. Sci. USA101(29), 10685–10690 (2004).
  • Amprey JL, Im JS, Turco SJ et al. A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J. Exp. Med.200(7), 895–904 (2004).
  • Kinjo Y, Wu D, Kim G et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature434(7032), 520–525 (2005).
  • Mattner J, Debord KL, Ismail N et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature434(7032), 525–529 (2005).
  • Wu D, Xing GW, Poles MA et al. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc. Natl Acad. Sci. USA102(5), 1351–1356 (2005).
  • Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol.35(6), 1692–1701 (2005).
  • Ulrichs T, Moody DB, Grant E, Kaufmann SH, Porcelli SA. T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect. Immun.71(6), 3076–3087 (2003).
  • Roura-Mir C, Wang L, Cheng TY et al.Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J. Immunol.175(3), 1758–1766 (2005).
  • Behar SM, Porcelli SA. CD1-restricted T cells in host defense to infectious diseases. Curr. Top. Microbiol. Immunol.314, 215–250 (2007).
  • Dascher CC, Hiromatsu K, Naylor JW et al. Conservation of a CD1 multigene family in the guinea pig. J. Immunol.163(10), 5478–5488 (1999).
  • Hiromatsu K, Dascher CC, LeClair KP et al. Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. J. Immunol.169(1), 330–339 (2002).
  • Dascher CC, Hiromatsu K, Xiong X et al. Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int. Immunol.15(8), 915–925 (2003).
  • Wang F, Langley R, Gulten G et al. Mechanism of thioamide drug action against tuberculosis and leprosy. J. Exp. Med.204(1), 73–78 (2007).
  • Dover LG, Alahari A, Gratraud P et al. EthA, a common activator of thiocarbamide-containing drugs acting on different mycobacterial targets. Antimicrob. Agents Chemother.51(3), 1055–1063 (2007).
  • Alahari A, Trivelli X, Guerardel Y et al. Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria. PLoS ONE2(12), e1343 (2007).
  • Chandrasekhar S, Ratnam S. Studies on cell-wall deficient non-acid fast variants of Mycobacterium tuberculosis. Tuber. Lung Dis.73(5), 273–279 (1992).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.