256
Views
35
CrossRef citations to date
0
Altmetric
Perspective

Oral vaccine delivery: can it protect against non-mucosal pathogens?

&
Pages 729-738 | Published online: 09 Jan 2014

References

  • Silin DS, Lyubomska OV, Jirathitikal V, Bourinbaiar AS. Oral vaccination: where we are? Expert Opin. Drug Deliv.4(4), 323–340 (2007).
  • Lavelle EC, O’Hagan DT. Delivery systems and adjuvants for oral vaccines. Expert Opin. Drug Deliv.3(6), 747–762 (2006).
  • Aziz MA, Midha S, Waheed SM, Bhatnagar R. Oral vaccines: new needs, new possibilities. Bioessays29(6), 591–604 (2007).
  • Wang L, Webster DE, Wesselingh SL, Coppel RL. Orally delivered malaria vaccines: not too hard to swallow. Expert Opin. Biol. Ther.4(10), 1585–1594 (2004).
  • Hersh BS, Popovici F, Apetrei RC et al. Acquired immunodeficiency syndrome in Romania. Lancet338(8768), 645–649 (1991).
  • Stetler HC, Garbe PL, Dwyer DM et al. Outbreaks of group A streptococcal abscesses following diphtheria–tetanus toxoid–pertussis vaccination. Pediatrics75(2), 299–303 (1985).
  • Medina E, Guzman CA. Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine19(13–14), 1573–1580 (2001).
  • Mastroeni P, Chabalgoity JA, Dunstan SJ, Maskell DJ, Dougan G. Salmonella: immune responses and vaccines. Vet. J.161(2), 132–164 (2001).
  • Bumann D, Hueck C, Aebischer T, Meyer TF. Recombinant live Salmonella spp. for human vaccination against heterologous pathogens. FEMS Immunol. Med. Microbiol.27(4), 357–364 (2000).
  • Garmory HS, Brown KA, Titball RW. Salmonella vaccines for use in humans: present and future perspectives. FEMS Microbiol. Rev.26(4), 339–353 (2002).
  • Lewis GK. Live-attenuated Salmonella as a prototype vaccine vector for passenger immunogens in humans: are we there yet? Expert Rev. Vaccines6(3), 431–440 (2007).
  • Cheminay C, Hensel M. Rational design of Salmonella recombinant vaccines. Int. J. Med. Microbiol.298(1–2), 87–98 (2008).
  • Vyas SP, Gupta PN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev. Vaccines6(3), 401–418 (2007).
  • Zho F, Neutra MR. Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci. Rep.22(2), 355–369 (2002).
  • Perlin DS. Amphotericin B cochleates: a vehicle for oral delivery. Curr. Opin. Investig. Drugs5(2), 198–201 (2004).
  • Mowat AM, Smith RE, Donachie AM et al. Oral vaccination with immune stimulating complexes. Immunol. Lett.65(1–2), 133–140 (1999).
  • Pumpens P, Grens E. HBV core particles as a carrier for B cell/T cell epitopes. Intervirology44(2–3), 98–114 (2001).
  • Katz DE, DeLorimier AJ, Wolf MK et al. Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen. Vaccine21(5–6), 341–346 (2003).
  • Holmgren J, Adamsson J, Anjuere F et al. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol. Lett.97(2), 181–188 (2005).
  • Yamamoto M, McGhee JR, Hagiwara Y, Otake S, Kiyono H. Genetically manipulated bacterial toxin as a new generation mucosal adjuvant. Scand. J. Immunol.53(3), 211–217 (2001).
  • Lu X, Clements JD, Katz JM. Mutant Escherichia coli heat-labile enterotoxin [LT(R192G)] enhances protective humoral and cellular immune responses to orally administered inactivated influenza vaccine. Vaccine20(7–8), 1019–1029 (2002).
  • Nicollier-Jamot B, Ogier A, Piroth L, Pothier P, Kohli E. Recombinant virus-like particles of a norovirus (genogroup II strain) administered intranasally and orally with mucosal adjuvants LT and LT(R192G) in BALB/c mice induce specific humoral and cellular Th1/Th2-like immune responses. Vaccine22(9–10), 1079–1086 (2004).
  • Goto N, Maeyama J, Yasuda Y et al. Safety evaluation of recombinant cholera toxin B subunit produced by Bacillus brevis as a mucosal adjuvant. Vaccine18(20), 2164–2171 (2000).
  • Harandi AM, Holmgren J. CpG DNA as a potent inducer of mucosal immunity: implications for immunoprophylaxis and immunotherapy of mucosal infections. Curr. Opin. Investig. Drugs5(2), 141–145 (2004).
  • McCluskie MJ, Weeratna RD, Krieg AM, Davis HL. CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine19(7–8), 950–957 (2000).
  • Pickering RJ, Smith SD, Strugnell RA, Wesselingh SL, Webster DE. Crude saponins improve the immune response to an oral plant-made measles vaccine. Vaccine24(2), 144–150 (2006).
  • Ma JK, Barros E, Bock R et al. Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep.6(7), 593–599 (2005).
  • Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin. Emerg. Drugs10(1), 185–218 (2005).
  • Daniell H. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol. J.1(10), 1071–1079 (2006).
  • Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol.18(2), 134–141 (2007).
  • Malkin E, Dubovsky F, Moree M. Progress towards the development of malaria vaccines. Trends Parasitol.22(7), 292–295 (2006).
  • Matuschewski K, Mueller AK. Vaccines against malaria – an update. FEBS. J.274(18), 4680–4687 (2007).
  • Moorthy G, Ramasamy R. Mucosal immunisation of mice with malaria protein on lactic acid bacterial cell walls. Vaccine25(18), 3636–3645 (2007).
  • Ramasamy R, Yasawardena S, Zomer A et al. Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine24(18), 3900–3908 (2006).
  • Zhang ZH, Jiang PH, Li NJ, Shi M, Huang W. Oral vaccination of mice against rodent malaria with recombinant Lactococcus lactis expressing MSP-119. World J. Gastroenterol.11(44), 6975–6980 (2005).
  • Aponte JJ, Aide P, Renom M et al. Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled Phase I/IIb trial. Lancet370(9598), 1543–1551 (2007).
  • Sadoff JC, Ballou WR, Baron LS et al. Oral Salmonella typhimurium vaccine expressing circumsporozoite protein protects against malaria. Science240(4850), 336–338 (1988).
  • Aggarwal A, Kumar S, Jaffe R et al. Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells. J. Exp. Med.172(4), 1083–1090 (1990).
  • Flynn JL, Weiss WR, Norris KA et al. Generation of a cytotoxic T-lymphocyte response using a Salmonella antigen-delivery system. Mol. Microbiol.4(12), 2111–2118 (1990).
  • Gonzalez C, Hone D, Noriega FR et al.Salmonella typhi vaccine strain CVD 908 expressing the circumsporozoite protein of Plasmodium falciparum: strain construction and safety and immunogenicity in humans. J. Infect. Dis.169(4), 927–931 (1994).
  • Chinchilla M, Pasetti MF, Medina-Moreno S et al. Enhanced immunity to Plasmodium falciparum circumsporozoite protein (PfCSP) by using Salmonella enterica serovar Typhi expressing PfCSP and a PfCSP-encoding DNA vaccine in a heterologous prime–boost strategy. Infect. Immun.75(8), 3769–3779 (2007).
  • Gomez-Duarte OG, Pasetti MF, Santiago A et al. Expression, extracellular secretion, and immunogenicity of the Plasmodium falciparum sporozoite surface protein 2 in Salmonella vaccine strains. Infect. Immun.69(2), 1192–1198 (2001).
  • Ruiz-Perez F, Leon-Kempis R, Santiago-Machuca A et al. Expression of the Plasmodium falciparum immunodominant epitope (NANP)(4) on the surface of Salmonella enterica using the autotransporter MisL. Infect. Immun.70(7), 3611–3620 (2002).
  • Schorr J, Knapp B, Hundt E, Kupper HA, Amann E. Surface expression of malarial antigens in Salmonella typhimurium: induction of serum antibody response upon oral vaccination of mice. Vaccine9(9), 675–681 (1991).
  • Haddad D, Liljeqvist S, Kumar S et al. Surface display compared to periplasmic expression of a malarial antigen in Salmonella typhimurium and its implications for immunogenicity. FEMS Immunol. Med. Microbiol.12(3–4), 175–186 (1995).
  • Somner EA, Ogun SA, Sinha KA et al. Expression of disulphide-bridge-dependent conformational epitopes and immunogenicity of the carboxy-terminal 19 kDa domain of Plasmodium yoelii merozoite surface protein-1 in live attenuated Salmonella vaccine strains. Microbiology145(Pt 1), 221–229 (1999).
  • Wu S, Beier M, Sztein MB et al. Construction and immunogenicity in mice of attenuated Salmonella typhi expressing Plasmodium falciparum merozoite surface protein 1 (MSP-1) fused to tetanus toxin fragment C. J. Biotechnol.83(1–2), 125–135 (2000).
  • Gomez-Duarte OG, Galen J, Chatfield SN et al. Expression of fragment C of tetanus toxin fused to a carboxyl-terminal fragment of diphtheria toxin in Salmonella typhi CVD 908 vaccine strain. Vaccine13(16), 1596–1602 (1995).
  • Hoffman SL, Franke ED, Hollingdale MR, Druilhe P. Attacking the infected hepatocyte. In: Malaria Vaccine Development: A Multi-Immune Response Approach. Hoffman SL (Ed.). ASM Press, Washington, DC, USA 35–76 (1996).
  • Holder AA. Preventing merozoite invasion of erythrocytes. In: Malaria Vaccine Development: A Multi-Immune Response Approach. Hoffman SL (Ed.). ASM Press, Washington, DC, USA 77–104 (1996).
  • Kaslow DC. Transmission-blocking vaccines. In: Malaria Vaccine Development: A Multi-Immune Response Approach. Hoffman SL (Ed.). ASM Press, Washington, DC, USA 181–227 (1996).
  • Toebe CS, Clements JD, Cardenas L, Jennings GJ, Wiser MF. Evaluation of immunogenicity of an oral Salmonella vaccine expressing recombinant Plasmodium berghei merozoite surface protein-1. Am. J. Trop. Med. Hyg.56(2), 192–199 (1997).
  • Wang L, Kedzierski L, Wesselingh SL, Coppel RL. Oral immunization with a recombinant malaria protein induces conformational antibodies and protects mice against lethal malaria. Infect. Immun.71(5), 2356–2364 (2003).
  • Wang L, Goschnick MW, Coppel RL. Oral immunization with a combination of Plasmodium yoelii merozoite surface proteins 1 and 4/5 enhances protection against lethal malaria challenge. Infect. Immun.72(10), 6172–6175 (2004).
  • Kedzierski L, Black CG, Goschnick MW, Stowers AW, Coppel RL. Immunization with a combination of merozoite surface proteins 4/5 and 1 enhances protection against lethal challenge with Plasmodium yoelii. Infect. Immun.70(12), 6606–6613 (2002).
  • Wang L, Webster DE, Campbell AE et al. Immunogenicity of Plasmodium yoelii merozoite surface protein 4/5 produced in transgenic plants. Int. J. Parasitol.38(1), 103–110 (2008).
  • Arakawa T, Tsuboi T, Kishimoto A et al. Serum antibodies induced by intranasal immunization of mice with Plasmodium vivax Pvs25 co-administered with cholera toxin completely block parasite transmission to mosquitoes. Vaccine21(23), 3143–3148 (2003).
  • Arakawa T, Komesu A, Otsuki H et al. Nasal immunization with a malaria transmission-blocking vaccine candidate, Pfs25, induces complete protective immunity in mice against field isolates of Plasmodium falciparum. Infect. Immun.73(11), 7375–7380 (2005).
  • Hirunpetcharat C, Stanisic D, Liu XQ et al. Intranasal immunization with yeast-expressed 19 kD carboxyl-terminal fragment of Plasmodium yoelii merozoite surface protein-1 (yMSP119) induces protective immunity to blood stage malaria infection in mice. Parasite Immunol.20(9), 413–420 (1998).
  • Bargieri DY, Rosa DS, Lasaro MA et al. Adjuvant requirement for successful immunization with recombinant derivatives of Plasmodium vivax merozoite surface protein-1 delivered via the intranasal route. Mem. Inst. Oswaldo Cruz102(3), 313–317 (2007).
  • Carcaboso AM, Hernandez RM, Igartua M et al. Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int. J. Pharm.260(2), 273–282 (2003).
  • Amador R, Aponte JJ, Patarroyo ME. Development and field-testing of the sythetic SPf66 malaria vaccine. In: Malaria Vaccine Development: a Multi-Immune Response Approach. Hoffman, SL (Ed.). ASM Press, Washington, DC, USA 229–248 (1996).
  • Rosas JE, Pedraz JL, Hernandez RM et al. Remarkably high antibody levels and protection against P. falciparum malaria in Aotus monkeys after a single immunisation of SPf66 encapsulated in PLGA microspheres. Vaccine20(13–14), 1707–1710 (2002).
  • Carcaboso AM, Hernandez RM, Igartua M et al. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine22(11–12), 1423–1432 (2004).
  • Snounou G, Renia L. The vaccine is dead – long live the vaccine. Trends Parasitol.23(4), 129–132 (2007).
  • Kaur R, Vrati S. Development of a recombinant vaccine against Japanese encephalitis. J. Neurovirol.9(4), 421–431 (2003).
  • Ramakrishna C, Desai A, Shankar SK, Chandramuki A, Ravi V. Oral immunisation of mice with live Japanese encephalitis virus induces a protective immune response. Vaccine17(23–24), 3102–3108 (1999).
  • Rauthan M, Kaur R, Appaiahgari MB, Vrati S. Oral immunization of mice with Japanese encephalitis virus envelope protein synthesized in Escherichia coli induces anti-viral antibodies. Microbes Infect.6(14), 1305–1311 (2004).
  • Zanin MP, Webster DE, Wesselingh SL. A DNA prime, orally delivered protein boost vaccination strategy against viral encephalitis. J. Neurovirol.13(3), 284–289 (2007).
  • Streatfield SJ. Oral hepatitis B vaccine candidates produced and delivered in plant material. Immunol. Cell Biol.83(3), 257–262 (2005).
  • Schodel F, Kelly SM, Peterson D et al. Development of recombinant Salmonellae expressing hybrid hepatitis B virus core particles as candidate oral vaccines. Dev. Biol. Stand.82, 151–158 (1994).
  • Rajkannan R, Dhanaraju MD, Gopinath D, Selvaraj D, Jayakumar R. Development of hepatitis B oral vaccine using B-cell epitope loaded PLG microparticles. Vaccine24(24), 5149–5157 (2006).
  • Mason HS, Lam DM, Arntzen CJ. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl Acad. Sci. USA89(24), 11745–11749 (1992).
  • Kong Q, Richter L, Yang YF et al. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc. Natl Acad. Sci. USA98(20), 11539–11544 (2001).
  • Richter LJ, Thanavala Y, Arntzen CJ, Mason HS. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol.18(11), 1167–1171 (2000).
  • Youm JW, Won YS, Jeon JH et al. Oral immunogenicity of potato-derived HBsAg middle protein in BALB/c mice. Vaccine25(3), 577–584 (2007).
  • Kapusta J, Modelska A, Figlerowicz M et al. A plant-derived edible vaccine against hepatitis B virus. FASEB J.13(13), 1796–1799 (1999).
  • Thanavala Y, Mahoney M, Pal S et al. Immunogenicity in humans of an edible vaccine for hepatitis B. Proc. Natl Acad. Sci. USA102(9), 3378–3382 (2005).
  • Ogra PL, Faden H, Welliver RC. Vaccination strategies for mucosal immune responses. Clin. Microbiol. Rev.14(2), 430–445 (2001).
  • Mercier GT, Nehete PN, Passeri MF et al. Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules. Vaccine25(52), 8687–8701 (2007).
  • Sekaly RP. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J. Exp. Med.205(1), 7–12 (2008).
  • Matson DO. The pentavalent rotavirus vaccine, RotaTeq. Semin. Pediatr. Infect. Dis.17(4), 195–199 (2006).
  • Strobel S, Mowat AM. Immune responses to dietary antigens: oral tolerance. Immunol. Today19(4), 173–181 (1998).
  • Mestecky J, Russell MW, Elson CO. Perspectives on mucosal vaccines: is mucosal tolerance a barrier? J. Immunol.179(9), 5633–5638 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.