358
Views
90
CrossRef citations to date
0
Altmetric
Review

Heat-shock proteins as powerful weapons in vaccine development

&
Pages 1185-1199 | Published online: 09 Jan 2014

References

  • Burdon RH. Heat shock and the heat shock proteins. Biochem. J.240, 313–324 (1986).
  • Pockley AG. Heat shock proteins as regulators of the immune response. Lancet362(9382), 469–476 (2003).
  • Mizzen L. Immune responses to stress proteins: applications to infectious disease and cancer. Biotherapy10, 173–189 (1998).
  • Singh-Jasuja H, Hilf N, Arnold-Schild D, Schild H. The role of heat shock proteins and their receptors in the activation of the immune system. Biol. Chem.382, 629–636 (2001).
  • Guzhova I, Margulis B. Hsp70 chaperone as a survival factor in cell pathology. Int. Rev. Cytol.254, 101–149 (2006).
  • Pockley AG. Heat shock proteins in health and disease: therapeutic targets or therapeutic agents? Expert Rev. Mol. Med.3, 1–21 (2001).
  • Hu Y, Mivechi NF. HSF1 interacts with Ral binding protein 1 (RalBP1) in a stress-responsive multi-protein complex with HSP90 in vivo. J. Biol. Chem.278(19), 17299–17306 (2003).
  • Bagatell R, Paine-Murrieta GD, Taylor CW et al. Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of Hsp90-binding agents. Clin. Cancer Res.6, 3312–3318 (2000).
  • Ali A, Bharadwaj S, O’Carroll R, Ovsenek N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol. Cell. Biol.18(9), 4949–4960 (1998).
  • Bharadwaj S, Ali A, Ovsenek N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol. Cell. Biol.19(10), 8033–8041 (1999).
  • Eden W, Zee R, Prakken B. Heat-shock proteins induce T cell regulation of chronic inflammation. Nat. Rev. Immunol.5, 318–330 (2005).
  • Facciponte JG, Wang XY, MacDonald IJ et al. Heat shock proteins HSP70 and Gp96: structural insights. Cancer Immunol. Immunother.55, 339–346 (2006).
  • Robert J. Evolution of heat shock protein and immunity. Dev. Comp. Immunol.27, 449–464 (2003).
  • Ciupitu AM. Hsp70 in immunotherapy: a potential vector in cancer and viral vaccines. Stockholm (Thesis), 2000.
  • Easton DP, Kaneko Y, Subjeck JR. The Hsp110 and Grp170 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones5(4), 276–290 (2000).
  • Fan CY, Lee S, Cyr DM. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones8(4), 309–316 (2003).
  • Yang Y, Li Z. Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Mol. Cells20(2), 173–182 (2005).
  • Meng SD, Song J, Rao Z, Tien P, Gao GF. Three-step purification of gp96 from human liver tumor tissues suitable for isolation of gp96-bound peptides. J. Immunol. Methods264, 29–35 (2002).
  • Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function and clinical applications: a comprehensive review. Pharmacol. Ther.79(2), 129–168 (1998).
  • Baker-LePain JC, Sarzotti M, Fields TA, Li CY, Nicchitta CV. GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue non-restricted tumor suppression. J. Exp. Med.196, 1447–1459 (2002).
  • Li H, Zhou M, Han J et al. Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. J. Immunol.174, 195–204 (2005).
  • Linderoth NA, Popowicz A, Sastry S. Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J. Biol. Chem.275(8), 5472–5477 (2000).
  • Soldano KL, Jivan A, Nicchitta CV, Gewirth DT. Structure of the N-terminal domain of GRP94. J. Biol. Chem.279(48), 48330–48338 (2003).
  • Li Z, Srivastava PK. Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J.12(8), 3143–3151 (1993).
  • Menoret A, Li Z, Niswonger ML, Altmeyer A, Srivastava PK. An endoplasmic reticulum protein implicated in chaperoning peptides to major histocompatibility of class I is an aminopeptidase. J. Biol. Chem.276(36), 33313–33318 (2001).
  • Parmiani G, Testori A, Maio M et al. Heat shock proteins and their use as anticancer vaccines. Clin. Cancer Res.10, 8142–8146 (2004).
  • Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr. Opin. Immunol.14, 45–51 (2002).
  • Chen DX, Su YR, Shao GZ, Qian ZC. Purification of heat shock protein 70-associated tumor peptides and its anti-tumor immunity on hepatoma in mice. World J. Gastroenterol.10(3), 361–365 (2004).
  • Nicchitta CV, Carrick DM, Baker-LePain JC. The messenger and the message: gp96 (GRP94)–peptide interactions in cellular immunity. Cell Stress Chaperones9(4), 325–331(2004).
  • Blachere NE, Li Z, Chandawarkar RY et al. Heat shock protein–peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med.186(8), 1315–1322 (1997).
  • Singh-Jasuja H, Toes REM, Spee P et al. Cross-presentation of Gp96-associated antigens on MHC class I molecules requires receptor-mediated endocytosis. J. Exp. Med.191, 1965–1974 (2000).
  • Morales H, Muharemagic A, Gantress J, Cohen N, Robert J. Bacterial stimulation upregulates the surface expression of the stress protein gp96 on B cells in the frog Xenopus. Cell Stress Chaperones8(3), 265–271 (2003).
  • Robert J, Cohen N, Maniero GD, Goyos A, Morales H, Gantress J. Evolution of the immunomodulatory role of the heat shock protein gp96. Cell. Mol. Biol.49(2), 263–275 (2003).
  • Suriano R, Ghosh SK, Ashok BT et al. Differences in glycosylation patterns of heat shock protein, gp96: implications for prostate cancer prevention. Cancer Res.65, 6466–6475 (2005).
  • More S, Breloer M, Fleischer B, Bonin A. Activation of cytotoxic T cells in vitro by recombinant gp96 fusion proteins irrespective of the fused antigenic peptide sequence. Immunol. Lett.69(2), 275–282 (1999).
  • Baker-Lepain JC, Sarzotti M, Nicchitta CV. Glucose-regulated protein 94/ glycoprotein 96 elicits bystander activation of CD4+ T cell Th1 cytokine production in vivo. J. Immunol.172, 4195–4203 (2004).
  • Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc. Natl Acad. Sci. USA101(16), 6128–6133 (2004).
  • Stebbing J, Gazzard B, Kim L et al. The heat-shock protein receptor CD91 is up-regulated in monocytes of HIV-1-infected “true” long-term nonprogressors. Blood101(10), 4000–4004 (2003).
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70 and calreticulin. Immunity14, 303–313 (2001).
  • Binder RJ, Karimeddini D, Srivastava PK. Adjuvanticity of α2-macroglobulin, an independent ligand for the heat shock protein receptor CD91. J. Immunol.166, 4968–4972 (2001).
  • Singh-Jasuja H, Scherer HU, Hilf N et al. The heat shock protein Gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur. J. Immunol.30, 2211–2215 (2000).
  • Singh-Jasuja H, Hilf N, Scherer HU et al. The heat shock protein Gp96- a receptor- targeted cross-priming carrier and activator of dendritic cells. Cell Stress Chaperones5, 462–470 (2001).
  • Binder RJ, Vatner R, Srivastava P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens64, 442–451 (2004).
  • Demine R, Walden P. Testing the role of gp96 as peptide chaperone in antigen processing. J. Biol. Chem.280(18), 17573–17578 (2005).
  • Asea A. Chaperokine-induced signal transduction pathways. Exerc. Immunol. Rev.9, 25–33 (2003).
  • Asea A. Stress proteins and initiation of immune response: chaperokine activity of Hsp72. Exerc. Immunol. Rev.11, 34–45 (2005).
  • Warger T, Hilf N, Rechtsteiner G et al. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J. Biol. Chem.281(32), 22545–22553 (2006).
  • Segal BH, Wang XY, Dennis CG et al. Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discov.Today11(11/12), 534–540 (2006).
  • Rahman QK. Heat shock proteins as vaccine adjuvants. Stockholm (thesis), 2005.
  • Wallin RPA, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol.23, 130–135 (2002).
  • Bendz H, Ruhland SC, Pandya MJ et al. Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J. Biol. Chem.282, 31688–31702 (2007).
  • Ye Z, Gan YH. Flagellin contamination of recombinant heat shock protein 70 is responsible for its activity on T cells. J. Biol. Chem.282(7), 4479–4484 (2007).
  • Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P. Immune modulation with high-dose heat shock protein Gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int. Immunol.16(4), 615–624 (2004).
  • Radons J, Multhoff G. Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc. Immunol. Rev.11, 17–33 (2005).
  • Multhoff G. Heat shock proteins in immunity. Handb. Exp. Pharmacol.172, 279–304 (2006).
  • Gross C, Hansch D, Gastpar R, Multhoff G. Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol. Chem.384, 267–279 (2003).
  • Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J. Biol. Chem.278, 41173–41181 (2003).
  • Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J. Immunol.168, 2997–3003 (2002).
  • Hauser H, Chen SY. Augmentation of DNA vaccine potency through secretory heat shock protein-mediated antigen targeting. Methods31, 225–231 (2003).
  • Hsu KF, Hung CF, Cheng WF et al. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosisheat shock protein 70 to an antigen. Gene Ther.8, 376–383 (2001).
  • Chen CH, Wang TL, Hung CF. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res.15, 1035–1042 (2000).
  • Chu NR, Wu HB, Wu TC, Boux LJ, Siegel MI, Mizzen LA. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette–Guerin (BCG) hsp65 and HPV16 E7. Clin. Exp. Immunol.121, 216–225 (2000).
  • Huang CY, Chen CA, Lee CN. DNA vaccine encoding heat shock protein 60 co-linked to HPV-16E6 and E7 tumor antigens generates more potent immunotherapeutic effects than respective E6 or E7 tumor antigens. Gynecol. Oncol.107(3), 404–412 (2007).
  • Rapp UK, Kaufmann SHE. DNA vaccination with gp96-peptide fusion proteins induces protection against an intracellular bacterial pathogen. Int. Immunol.16(4), 597–605 (2004).
  • Reimann J, Schirmbeck R. DNA vaccines expressing antigens with a stress protein-capturing domain display enhanced immunogenicity. Immunol. Rev.199, 54–67 (2004).
  • Kim D, Gambhira R, Karanam B et al. Generation and characterization of a preventive and therapeutic HPV DNA vaccine. Vaccine26(3), 351–360 (2008).
  • Lowrie DB, Tascon RE, Bonato VL et al. Therapy of tuberculosis in mice by DNA vaccination. Nature400, 269–271 (1999).
  • Qazi KR, Wikman M, Vasconcelos NM, Berzins K, Stahl S, Fernandez C. Enhancement of DNA vaccine potency by linkage a Plasmodium falciparum malaria antigen gene fused with a fragment of HSP70 gene. Vaccine23(9), 1114–1125 (2005).
  • Bolhassani A, Zahedifard F, Taghikhani M, Rafati S. Enhanced immunogenicity of HPV16E7 accompanied by Gp96 as an adjuvant in two vaccination strategies. Vaccine26, 3362–3370 (2008).
  • Rafati S, Gholami E, Hassani N et al.Leishmania major heat shock protein 70 (HSP70) is not protective in murine models of cutaneous leishmaniasis and stimulates strong humoral responses in cutaneous and visceral leishmaniasis patients. Vaccine25, 4159–4169 (2007).
  • Larreta R, Soto M, Alonso C, Requena JM. Leishmania infantum: gene cloning of the GRP94 homologue, its expression as recombinant protein and analysis of antigenicity. Exp. Parasitol.96(2), 108–118 (2000).
  • Biswas C, Sriram U, Ciric B, Ostrovsky O, Gallucci S, Argon Y. The N-terminal fragment of GRP94 is sufficient for peptide presentation via professional antigen- presenting cells. Int. Immunol.18(7), 1147–1157 (2006).
  • Hilf N, Radsak M, Schild H. Host-derived adjuvants. In: Novel vaccination strategies.. Kaufmann SHE (Ed.). Weinheim, Germany, 129–145 (2004).
  • Guy B. The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol.5, 505–517 (2007).
  • Kumar S, Jones TR, Oakley MS et al. CpG oligodeoxynucleotide and montanide ISA51 adjuvant combination enhanced the protective efficacy of a subunit malaria vaccine. Infect. Immun.72(2), 949–957 (2004).
  • Doria-Rose NA, Haigwood NL. DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods31, 207–216 (2003).
  • Hauser H, Shen L, Gu QL, Krueger S, Chen SY. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther.11(11), 924–932 (2004).
  • Rico AI, Sergio OA, Alonso C, Requena JM. Immunostimulatory properties of the Leishmania infantum heat shock proteins HSP70 and HSP83. Mol. Immunol.36, 1131–1139 (1999).
  • Rico AI, Del Real G, Soto M et al. Characterization of the immunostimulatory property of L. infantum HSP70 by fusion to the E. coli MBP in normal and nu/nu BALB/c mice. Infect. Immun.66(1), 347–352 (1998).
  • Skeiky YAW, Benson DR, Guderian JA et al. Immune responses of leishmaniasis patients to heat shock proteins of Leishmania species and humans. Infection63, 4105–14 (1995).
  • Amorim AG, Cardoso de Almeida ML. Identification of the C-terminal region of 70 kDa heat shock protein from Leishmania (Viannia) braziliensis as a target for the human immune response. Cell Stress Chaperones1(3), 177–187 (1996).
  • Wallace GR, Ball AE, MacFarlane J, Safi SH, Miles MA, Kelly JM. Mapping of visceral leishmaniasis-specific immunodominant B-cell epitope of Leishmania donovani HSP70. Infect Immun.60, 2688–2693 (1992).
  • Costa SR, D’Oliveira A Jr, Bacellar O, Carvalho EM. T cell response of asymptomatic Leishmania chagasi infected subjects to recombinant Leishmania antigens. Mem. Inst. Oswaldo Cruz.94(3), 367–370 (1999).
  • Arora SK, Kaur D, Sehgal S, Datta U. Identification of sero-specific epitope of recombinant heat shock protein (HSP70) of Leishmania donovani. J. Parasitic Dis.24(1), 21–26 (2000).
  • Quijada L, Requena JM, Soto M, Alonso C. Analysis of the antigenic properties of the L. infantum HSP70: design of synthetic peptides for specific serodiagnosis of human leishmaniasis. Immunol. Lett.63, 169–174 (1998).
  • Mandic A, Vujkov T. Human papillomavirus vaccine as a new way of preventing cervical cancer: a dream or the future? Ann. Oncol.15, 197–200 (2004).
  • Lewis JJ. Therapeutic cancer vaccines: using unique antigens. Proc. Natl Acad. Sci. USA101(2), 14653–14656 (2004).
  • Qian X, Lu Y, Liu Q, Chen K, Zhao Q, Song J. Prophylactic, therapeutic and anti-metastatic effects of an HPV16mE6δ/mE7/TBhsp70δ fusion protein vaccine in an animal model. Immunol Lett.102(2), 191–201 (2006).
  • Cheng WF, Hung CF, Chen CA et al. Characterization of DNA vaccines encoding the domains of calreticulin for their ability to elicit tumor-specific immunity and antiangiogenesis. Vaccine23(29), 3864–3874 (2005).
  • Liu B, Ye D, Song X et al. A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent anti-tumor immunity and anti-angiogenesis. Vaccine26, 1387–1396 (2008).
  • Descoteaux A, Avila HA, Zhang K, Turco SJ, Beverley SM. Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO J.21(17), 4458–4469 (2002).
  • Wang XY, Chen X, Manjili MH, Repasky E, Henderson R, Subjeck JR. Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma-associated antigen gp100. Cancer Res.63, 2553–2560 (2003).
  • Nardai G, Vegh E, Prohaszka Z, Csermely P. Chaperone-related immune dysfunction: an emergent property of distorted chaperone networks. Trends Immunol.27(2), 75–79 (2006).
  • Zugel U, Kaufmann SHE. Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin. Microbiol. Rev.12(1), 19–39 (1999).
  • Gaston JSH. Are heat shock proteins involved in autoimmunity? Int. J. Clin. Lab. Res.22(1–4), 90–94 (1992).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.