169
Views
20
CrossRef citations to date
0
Altmetric
Perspective

Is intranasal vaccination a feasible solution for tuberculosis?

&
Pages 1341-1356 | Published online: 09 Jan 2014

References

  • World Health Organization. Global tuberculosis control: surveillance, planning financing. WHO/HTM/TB/2005. WHO Report. Geneva, Switzerland (2005).
  • World Health Organization. Global tuberculosis control: surveillance, planning, financing. WHO/HTM/TB/2008.393. WHO Report. Geneva, Switzerland (2008).
  • World Health Organization. 2007 tuberculosis facts. WHO Report. Geneva, Switzerland (2008).
  • Frothingham R, Stout JE, Hamilton CD. Current issues in global tuberculosis control. Int. J. Infect. Dis.9(6), 297–311 (2005).
  • Flynn JL, Chan J. Immunology of tuberculosis. Annu. Rev. Immunol.19, 93–129 (2001).
  • Wolf AJ, Desvignes L, Linas B et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med.205(1), 105–115 (2008).
  • Wolf AJ, Linas B, Trevejo-Nuñez GJ et al.Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol.179(4), 2509–2519 (2007).
  • Geijtenbeek T, Van Vliet SJ, Koppel EA et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med.197(1), 7–17 (2003).
  • Schorey JS, Lawrence C. The pattern recognition receptor dectin-1: from fungi to mycobacteria. Curr. Drug Targets9(2), 123–129 (2008).
  • Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell111(1), 927–930 (2002).
  • Mogensen TH, Paludan SR. Reading the viral signature by Toll-like receptors and other pattern recognition receptors. J. Mol. Med.83(1), 180–192 (2005).
  • Torrelles JB, Azad AK, Henning LN, Carlson TK, Schlesinger LS. Role of C-type lectins in mycobacterial infections.Curr. Drug Targets9(2), 102–112 (2008).
  • Quesniaux VJ, Nicolle DM, Torres D et al. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J. Immunol.172(7), 4425–4434 (2004).
  • Jones BW, TK Means, KA Heldwein et al. Different Toll-like receptor agonists induce distinct macrophage responses. J. Leukocyte Biol.69(6), 1036–1044 (2001).
  • Gilleron M, Quesniaux VF, Puzo G. Acylation state of the phosphatidyl inositol hexamannosides from Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv and its implication in TLR response. J. Biol. Chem.278(32), 29880–29889 (2003).
  • Noss EH, Pai RK, Sellati TJ et al. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19 kD lipoprotein of Mycobacterium tuberculosis. J. Immunol.167(2), 910–918 (2001).
  • Pai RK, M Convery, Hamilton TA, Boom WH, Harding CV. Inhibition of IFN-γ-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J. Immunol.171(1), 175–184 (2003).
  • Brightbill HD, Libraty DH, Krutzik SR et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science285(5428), 732–736 (1999).
  • Gehring AJ, Dobos KM, Belisle JT, Harding CV, Boom WH. Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J. Immunol.173(4), 2660–2668 (2004).
  • Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J. Immunol.177(1), 422–429 (2006).
  • Gatfield J, Pieters J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science288(5471), 1647–1650 (2000).
  • Ferrari G, Langen H, Naito M, Pieters J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell97(4), 435–447 (1999).
  • Jayachandran R, Sundaramurthy V, Combaluzier B et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell130(1), 37–50 (2007).
  • Russel DG, Dant J, Sturgill-Kaszycki S. Mycobacterium avium and Mycobacterium tuberculosis containing vacuoles are dynamic, fusion competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J. Immunol.156(12), 4764–4773 (1996).
  • Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol.160(3), 1290–1296 (1998).
  • Collins HL, Kaufman SHE. The many faces of the host response to tuberculosis. Immunology103(1), 1–9 (2001).
  • Manca C, Paul S, Barry CE, Freedman VH, Kaplan G. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun.67(1), 74–79 (1999).
  • Master SS, Rampini SK, Davis AS et al.Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe3(4), 224–232 (2008).
  • North RJ, Ryan L, LaCource R, Mogues T, Goodrich ME. Growth rate of mycobacteria in mice as an unreliable indicator of mycobacterial virulence. Infect. Immun.67(10), 5483–5485 (1999).
  • Manca C, Tsenova L, Barry CE et al.Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J. Immunol.162(11), 6740–6746 (1999).
  • Manca C, Tsenova L, Bergtold A et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. Proc. Natl Acad. Sci. USA98(10), 5752–5757 (2001).
  • Reed MB, Domenech P, Manca C et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature431(7004), 84–87 (2004).
  • Newton SM, Smith RJ, Wilkinson KA et al. A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc. Natl Acad. Sci. USA103(42), 15594–15598 (2006).
  • Dao DN, Kremer L, Guérardel Y et al.Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect. Immun.72(4), 2067–2074 (2004).
  • Neill MA, Klebanoff SJ. The effect of phenolic glycolipid-I from Mycobacterium leprae on the antimicrobial activity of human macrophages. J. Exp. Med.167(1), 30–42 (1988).
  • Russell DG. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol.5(1), 39–47 (2007).
  • Hart PD, Armstrong JA, Brown CA, Draper P. Ultrastructural study of the behavior of macrophages toward parasitic mycobacteria. Infect. Immun.5(5), 803–807 (1972).
  • Armstrong JA, Hart PD. Phagosome–lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J. Exp. Med.142(1), 1–16 (1975).
  • Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell Biol.2(1), 569–577 (2001).
  • van der Wel N, Hava D, Houben D et al.M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell129(7), 1287–1298 (2007).
  • Kaufamann SHE. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol.1(1), 20–30 (2001).
  • McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxate shunt enzme isocitrate lyase. Nature406(6797), 735–738 (2000).
  • Weber I, Fritz C, Ruttkowski, Kreft A, Bange FC. Anaerobic nitrate reductase (narGH JI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol. Microbiol.35(5), 1017–1025 (2000).
  • Behr MA, Small PM. A historical and molecular phylogeny of BCG strains. Vaccine17(7–8), 915–922 (1999).
  • Fine PE. The BCG story: lessons from the past and implications for the future. Rev. Infect. Dis.11(2), S353–359 (1989).
  • Fine PEM. Variation in protection by BCG: implications of and for heterologous immunity. Lancet346(8986), 1339–1345 (1995).
  • Colditz GA, Brewer TF, Berkey CS et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA271(9), 698–702 (1994).
  • Tuberculosis Research Center (ICMR), Chennai. Fifteen year follow up of trial of BCG South India for tuberculosis prevention. Indian J. Med. Res.110(1), 56–69 (1999).
  • Aronson NE, Santosham M, Comstock GW et al. Long-term efficacy of BCG vaccine in American Indians and Alaska Natives: a 60-year follow-up study. JAMA291(17), 2086–2091 (2004).
  • World Health Organization. Issues relating to the use of BCG in immunization programmes. WHO/V&B/99.23. WHO Report. Geneva, Switzerland (1999)
  • Brewer TF, Colditz GA. Relationship between bacille Calmette–Guérin (BCG) strains and the efficacy of BCG vaccine in the prevention of tuberculosis. Clin. Infect. Dis.20(1), 126–135 (1995).
  • Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med.178(6), 2249–2254 (1993).
  • Cooper AM, Dalton DK, Stewart TA, Griffen JP, Russell DG, Orme IM. Disseminated tuberculosis in IFN-γ gene-disrupted mice. J. Exp. Med.178(6), 2243–2247 (1993).
  • Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J. Exp. Med.186(1), 39–45 (1997).
  • Jung Y-J, LaCourse R, Ryan L, North RJ. Evidence inconsistent with a negative influence of T helper 2 cells on protection afforded by a dominant T helper 1 response against Mycobacterium tuberculosis lung infection in mice. Infect. Immun.70(11), 6436–6443 (2002).
  • Agger EM, Andersen P. Tuberculosis subunit vaccine development: on the role of interferon-γ. Vaccine19(17–19), 2298–2302 (2001).
  • Vekemans J, Lienhardt C, Sillah JS et al. Tuberculosis contacts but not patients have higher γ interferon responses to ESAT-6 than do community controls in The Gambia. Infect. Immun.69(10), 6554–6557 (2001).
  • Elias D, Akuffo H, Pawlowski A, Haile M, Schon T, Britton S. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine23(11), 1326–1334 (2005).
  • Malhotra I, Mungai P, Wamachi A et al. Helminth- and bacillus Calmette–Guerin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J. Immunol.162(1), 6843–6848 (1999).
  • Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette–Guerin (BCG) vaccination. Clin. Exp. Immunol.123(2), 219–225 (2001).
  • Colditz GA, TF Brewer, CS Berkey, ME Wilson, E Burdick, HV Fineberg et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA271, 698–702 (1994).
  • Giri PK, Sable SB, Verma I, Khuller GK. Comparative evaluation of intranasal and subcutaneous route of immunization for development of mucosal vaccine against experimental tuberculosis. FEMS Immunol. Med. Microbiol.45(1), 87–93 (2005).
  • Giri PK, Verma I, Khuller GK. Protective efficacy of intranasal vaccination with Mycobacterium bovis BCG against airway Mycobacterium tuberculosis challenge in mice. J. Infect.53(5), 350–356 (2006).
  • Giri PK, Verma I, Khuller GK. Enhanced immunoprotective potential of Mycobacterium tuberculosis Ag85 complex protein based vaccine against airway Mycobacterium tuberculosis challenge following intranasal administration. FEMS Immunol. Med. Microbiol.47(2), 233–241 (2006).
  • Källenius G, Pawlowski A, Brandtzaeg P, Svenson S. Should a new tuberculosis vaccine be administered intranasally? Tuberculosis87(4), 257–266 (2007).
  • Andersen CS, Dietrich J, Agger EM, Lycke NY, Lövgren K, Andersen P. The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior Mycobacterium bovis BCG immunity to Mycobacterium tuberculosis. Infect. Immun.75(1), 408–416 (2007).
  • Dietrich J, Andersen C, Rappuoli R, Doherty TM, Jensen CG, Andersen P. Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette–Guerin immunity. J. Immunol.177(9), 6353–6360 (2006).
  • Wang J, Thorson L, Stokes RW et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol.173(10), 6357–6365 (2004).
  • Chen L, Wang J, Zganiacz A, Xing Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared with subcutaneous vaccination against pulmonary tuberculosis. Infect. Immun.72(1), 238–246 (2004).
  • Ogra PL. Mucosal immunoprophylaxis: an introductory overview. In: Mucosal Vaccines. Russell MW, Martin MH, Wu HY, Hollingshead SK (Eds). Academic Press, London, UK 3–14 (1996).
  • Davis SS. Nasal vaccines. Adv. Drug. Deliv. Rev.51(1–3), 21–42 (2001).
  • Rudin A, Johansson EL, Bergquist C, Holmgren J. Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination of humans. Infect Immun.66(7), 3390–3396 (1998).
  • Andersen P, Doherty TM. The success and failure of BCG– implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol.3(8), 656–662 (2005).
  • Glueck R. Review of intranasal influenza vaccine. Adv. Drug Deliv. Rev.51(1–3), 203–211 (2001).
  • Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine25(30), 5467–5484 (2007).
  • Gallichan WS, Rosenthal KL. Long-lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J. Exp. Med.184(5), 1879–1890 (1996).
  • Belyakov IM, Moss B, Strober W, Berzofsky JA. Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by pre existing poxvirus immunity. Proc. Natl Acad. Sci. USA96(8), 4512–4517 (1999).
  • Flesch IE, Kaufmann SH. Attempts to characterize the mechanisms involved in mycobacterial growth inhibition by γ-interferon-activated bone marrow macrophages. Infect. Immun.56(6), 1464–1469 (1988).
  • Behar SM, Woodworth JS, Wu Y. Next generation: tuberculosis vaccines that elicit protective CD8+ T cells. Expert Rev. Vaccines6(3), 441–456 (2007).
  • Woodworth JS, Behar SM. Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity. Crit. Rev. Immunol.26(4), 317–352 (2006).
  • Boom WH, Chervenak KA, Mincek MA, Ellner JJ. Role of the mononuclear phagocyte as an antigen-presenting cell for human γ δ T cells activated by live Mycobacterium tuberculosis. Infect. Immun.60(9), 3480–3488 (1992).
  • Boom WH. γδ T cells and Mycobacterium tuberculosis. Microbes Infect.1(3), 187–195 (1999).
  • Porcelli SA, Hämmerling G. Antigen processing and recognition. Curr. Opin. Immunol.18(1), 61–63 (2006).
  • Chackerian A, Alt J, Perera V, Behar SM. Activation of NKT cells protects mice from tuberculosis. Infect. Immun.70(11), 6302–6309 (2002).
  • Gumperz JE, Brenner MB. CD1-specific T cells in microbial immunity. Curr. Opin. Immunol.13(4), 471–478 (2001).
  • Santosuosso M, Zhang X, McCormick S, Wang J, Hitt M, Xing Z. Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J. Immunol.174(12), 7986–7994 (2005).
  • Rodriguez A, Tjarnlund A, Ivanji J et al. Role of IgA in the defense against respiratory infections IgA deficient mice exhibited increased susceptibility to intranasal infection with Mycobacterium bovis BCG. Vaccine23(20), 2565–2572 (2005).
  • Williams A, Reljic R, Naylor I et al. Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology111(3), 328–333 (2004).
  • Gonzalez-Juarrero M, Orme IM. Characterization of murine lung dendritic cells infected with Mycobacterium tuberculosis. Infect. Immun.69, 1127–1133 (2001).
  • González-Juarrero M, Turner J, Basaraba RJ, Belisle JT, Orme IM. Florid pulmonary inflammatory responses in mice vaccinated with antigen-85 pulsed dendritic cells and challenged by aerosol with Mycobacterium tuberculosis. Cell. Immunol.220(1), 13–19 (2002).
  • Kunkel EJ, Campbell DJ, Butcher EC. Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation10(3–4), 313–323 (2003).
  • Mora JR, Bono MR, Manjunath N et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature424(6944), 88–93 (2003).
  • Stagg AJ, Kamm MA, Knight SC. Intestinal dendritic cells increase T cell expression of α4β7 integrin. Eur. J. Immunol.32(5), 1445–1454 (2002).
  • Vajdy M, O’Hagan DT. Microparticles for intranasal immunization. Adv. Drug Del. Rev.51(1), 127–141 (2001).
  • Vajdy M, Singh M. The role of adjuvants in the development of mucosal vaccines. Expert Opin. Biol. Ther.5(7), 953–965 (2005).
  • Wong YL, Sampson S, Germishuizen WA et al. Drying a tuberculosis vaccine without freezing. Proc. Natl Acad. Sci USA104(8), 2591–2595 (2007).
  • Bivas-Benita M, van Meijgaarden KE, Franken KL et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine22(13–14), 1609–1615 (2004).
  • Brun P, Zumbo A, Castagliuolo I et al. Intranasal delivery of DNA encoding antigens of Mycobacterium tuberculosis by non-pathogenic invasive Escherichia coli.Vaccine26(16), 1934–1941 (2008).
  • Lyadova IV, Vordermeier HM, Eruslanov EB, Khaidukov SV, Apt AS, Hewinson RG. Intranasal BCG vaccination protects BALB/c mice against virulent Mycobacterium bovis and accelerates production of IFN-γ in their lungs. Clin. Exp. Immunol.126(2), 274–279 (2001).
  • Tree JA, Williams A, Clark S, Hall G, Marsh PD, Ivanyi J. Intranasal bacille Calmette–Guerin (BCG) vaccine dosage needs balancing between protection and lung pathology. Clin. Exp. Immunol.138(3), 405–409 (2004).
  • Haile M, Hamasur B, Jaxmar T et al. Nasal boost with adjuvanted heat-killed BCG or arabinomannan-protein conjugate improves primary BCG-induced protection in C57BL/6 mice. Tuberculosis (Edinb).85(1–2), 107–114 (2005).
  • Goonetilleke NP, McShane H, Hannan CM, Anderson RJ, Brookes RH, Hill AV. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette–Guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol.171(3), 1602–1609 (2003).
  • Gonçalves ED, Bonato VL, da Fonseca DM et al. Improve protective efficacy of a TB DNA-HSP65 vaccine by BCG priming. Genet. Vaccines Ther.5, 7 (2007).
  • Santosuosso M, McCormick S, Zhang X, Zganiacz A, Xing Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect. Immun.74(8), 4634–4643 (2006).
  • Sereinig S, Stukova M, Zabolotnyh N et al. Influenza virus NS vectors expressing the Mycobacterium tuberculosis ESAT-6 protein induce CD4+ Th1 immune response and protect animals against tuberculosis challenge. Clin. Vaccine Immunol.13(8), 898–904 (2006).
  • Murphy TV, Gargiullo PM, Massoudi MS et al. Intussusception among infants given an oral rotavirus vaccine. N. Engl. J. Med.344(8), 564–572 (2001).
  • Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet. Res.37(3), 511–539 (2006).
  • Freytag LC, Clements JD. Mucosal adjuvants. Vaccine23(15), 804–813 (2005).
  • O’Hagan DT, MacKichan ML, Singh M. Recent developments in adjuvants for vaccines against infectious diseases. Biomol. Eng.18(3), 69–85 (2001).
  • Giuliani MM, Del Giudice G, Giannelli V et al. Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity. J. Exp. Med.187(7), 1123–1132 (1998).
  • Takahashi H, Sasaki K, Takahashi M et al. Mutant Escherichia coli enterotoxin as a mucosal adjuvant induces specific Th1 responses of CD4+ and CD8+ T cells to nasal killed-bacillus Calmette–Guerin in mice. Vaccine24(17), 3591–3598 (2006).
  • Jakobsen H, Schulz D, Pizza M, Rappuoli R, Jonsdottir I. Intranasal immunization with pneumococcal polysaccharide conjugate vaccines with nontoxic mutants of Escherichia coli heat-labile enterotoxins as ajuvants rotects mice against invasive pneumococcal infections. Infect. Immun.67(11), 5892–5897 (1999).
  • Ryan EJ, McNeela E, Murphy GA et al. Mutants of Escherichia coli heat-labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: differential effects of the nontoxic AB complex and enzyme activity on Th1 and Th2 cells. Infect. Immun.67(12), 6270–6280 (1999).
  • Sun JB, Mielcarek N, Lakew M et al. Intranasal administration of a Schistosoma mansoni glutathione S-transferase–cholera toxoid conjugate vaccine evokes antiparasitic and antipathological immunity in mice. J. Immunol.163(2), 1045–1052 (1999).
  • Peppoloni S, Ruggiero P, Contorni M et al. Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines. Expert. Rev. Vaccines2(2), 285–293 (2003).
  • Rodriguez A, Troye-Blomberg M, Lindroth K, Ivanyi J, Singh M, Fernandez C. B- and T-cell responses to the mycobacterium surface antigen PstS-1 in the respiratory tract and adjacent tissues. Role of adjuvants and routes of immunization. Vaccine21(5–6), 458–467 (2003).
  • Salkowski CA, Detore GR, Vogel SN. Lipopolysaccharide and monophosphoryl lipid A differentially regulate interleukin-12, γ interferon, and interleukin-10 mRNA production in murine macrophages. Infect. Immun.65(8), 3239–3247 (1997).
  • Moore A, McCarthy L, Mills KH. The adjuvant combination monophosphoryl lipid A and QS21 switches T cell responses induced with a soluble recombinant HIV protein from Th2 to Th1. Vaccine17(20–21), 2517–2527 (1999).
  • Baldridge JR, Yorgensen Y, Ward JR, Ulrich JT. Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine18(22), 2416–2425 (2000).
  • Childers NK, Miller KL, Tong G et al. Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect. Immun.68(10), 5509–5516 (2000).
  • Ulrich JT, Myers KR. Monophosphoryl lipid A as an adjuvant. Past experiences and new directions. Pharm. Biotechnol.6(1), 495–524 (1995).
  • Johnson DA, Keegan DS, Sowell CG et al. 3-O-desacyl monophosphoryl lipid A derivatives: synthesis and immunostimulant activities. J. Med. Chem.42(22), 4640–4649 (1999).
  • Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374(6522), 546–549 (1995).
  • von Meyenn F, Schaefer M, Weighardt H et al. Toll-like receptor 9 contributes to recognition of Mycobacterium bovis bacillus Calmette–Guérin by Flt3-ligand generated dendritic cells. Immunobiology211(6–8), 557–565 (2006).
  • Klinman DM. CpG oligonucleotides accelerate and boost the immune response elicited by AVA, the licensed anthrax vaccine. Expert Rev. Vaccines5(3), 365–369 (2006).
  • Kerkmann M, Lochmann D, Weyermann J et al. Immunostimulatory properties of CpG-oligonucleotides are enhanced by the use of protamine nanoparticles. Oligonucleotides16(4), 313–322 (2006).
  • Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv. Drug. Deliv. Rev.60(7), 795–804 (2008).
  • Cox E, Verdonck F, Vanrompay D et al. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet. Res.37(3), 511–539 (2006).
  • Holmgren J, Adamsson J, Anjuère F et al. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol. Lett.97(2), 181–188 (2005).
  • Juffermans NP, Leemans JC, Florquin S et al. CpG oligodeoxynucleotides enhance host defense during murine tuberculosis. Infect. Immun.70(1), 147–152 (2002).
  • Doherty TM, Dietrich J, Billeskov R. Tuberculosis subunit vaccines: from basic science to clinical testing. Expert Opin. Biol. Ther.7(10), 1539–1549 (2007).
  • Gall D. The adjuvant activity of aliphatic nitrogenous bases. Immunology11(4), 369–386 (1966).
  • Katz D, Kraaijeveld CA, Snippe H. Synthetic lipoid compounds as antigen-specific immunostimulators for improving the efficacy of killed-virus vaccines. In: The Theory and Practical Application of Adjuvants. Steward-Tull DES (Ed.). Wiley, Chichester, UK 37–50 (1995).
  • Stanfield JP, Gall D, Bracken PM. Single-dose antenatal tetanus immunisation. Lancet1(7797), 215–219 (1973).
  • Veronesi R, Correa A, Alterio D. Single dose immunization against tetanus. Promising results in human trials. Rev. Inst. Med. Trop. Sao. Paulo12(1), 46–54 (1970).
  • Klinguer C, Beck A, De-Lys P et al. Lipophilic quaternary ammonium salt acts as a mucosal adjuvant when co-administered by the nasal route with vaccine antigens. Vaccine19(30), 4236–4244 (2001).
  • Lemoine D, Francotte M, Préat V. Nasal vaccines from fundamental concepts to vaccine development. STP Pharma. Sci.8(1), 5–18 (1998).
  • Hilgers LA, Snippe H. DDA as an immunological adjuvant. Res. Immunol.143(5), 494–503 (1992).
  • Shibata Y, Honda I, Justice JP, Van Scott MR, Nakamura RM, Myrvik QN. Th1 adjuvant N-acetyl-D-glucosamine polymer up-regulates Th1 immunity but down-regulates Th2 immunity against a mycobacterial protein (MPB-59) in interleukin-10-knockout and wild-type mice. Infect. Immun.69(10), 6123–6130 (2001).
  • Shibata Y, Metzger WJ, Myrvik QN. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. J. Immunol.159(50), 2462–2467 (1997).
  • Strong P, Clark H, Reid K. Intranasal application of chitin microparticles down-regulates symptoms of allergic hypersensitivity to Dermatophagoides pteronyssinus and Aspergillus fumigatus in murine models of allergy. Clin. Exp. Allergy32(12), 1794–1800 (2002).
  • Hamajima K, Kojima Y, Matsui K et al. Chitin micro-particles (CMP): a useful adjuvant for inducing viral specific immunity when delivered intranasally with an HIV-DNA vaccine. Viral Immunol.16(4), 541–547 (2003).
  • Hasegawa H, Ichinohe T, Strong P et al. Protection against influenza virus infection by intranasal administration of hemagglutinin vaccine with chitin microparticles as an adjuvant. J. Med. Virol.75(1), 130–136 (2005).
  • Nishiyama A, Tsuji S, Yamashita M, Henriksen RA, Myrvik QN, Shibata Y.Phagocytosis of N-acetyl-D-glucosamine particles, a Th1 adjuvant, by RAW 264.7 cells results in MAPK activation and TNF-α, but not IL-10, production. Cell. Immunol.239(2), 103–112 (2006).
  • Bivas-Benita M, van Meijgaarden KE, Franken KL et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine22(13–14), 1609–1615 (2004).
  • McNeela EA, O’Connor D, Jabbal-Gill I et al. A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM(197)) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine19(9–10), 1188–1198 (2000).
  • Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int. J. Pharm.182(1), 21–32 (1999).
  • Boonyo W, Junginger HE, Waranuch N, Polnok A, Pitaksuteepong T. Chitosan and trimethyl chitosan chloride (TMC) as adjuvants for inducing immune responses to ovalbumin in mice following nasal administration. J. Control Release121(3), 168–175 (2007).
  • Otterlei M, Varum KM, Ryan L, Espevik T. Characterization of binding and TNF-α-inducing ability of chitosans on monocytes: the involvement of CD14. Vaccine12(9), 825–832 (1994).
  • Lynch JM, Briles DE, Metzger DW. Increased protection against pneumococcal disease by mucosal administration of conjugate vaccine plus interleukin-12. Infect. Immun.71(8), 4780–4788 (2003).
  • Duckett NS, Olmos S, Durrant DM, Metzger DW. Intranasal interleukin-12 treatment for protection against respiratory infection with the Francisella tularensis live vaccine strain. Infect. Immun.73(4), 2306–2311 (2005).
  • Luo Y, Yamada H, Chen X et al. Recombinant Mycobacterium bovis bacillus Calmette–Guerin (BCG) expressing mouse IL-18 augments Th1 immunity and macrophage cytotoxicity. Clin. Exp. Immunol.137(1), 24–34 (2004).
  • Wang J, Zganiacz A, Xing Z. Enhanced immunogenicity of BCG vaccine by using a viral-based GM-CSF transgene adjuvant formulation. Vaccine20(23–24), 2887–2898 (2002).
  • Murray PJ, Aldovini A, Young RA. Manipulation and potentiation of antimycobacterial immunity using recombinant bacilli Calmette–Guerin strains that secrete cytokines. Proc. Natl Acad. Sci. USA94(3), 934–939 (1996).
  • Staats HF, Bradney CP, Gwinn WM et al. Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J. Immunol.167(9), 5386–5394 (2001).
  • Lillard JW Jr, Boyaka PN, Taub DD, McGhee JR. RANTES potentiates antigen-specific mucosal immune responses. J. Immunol.166(1), 162–169 (2001).
  • Kensil CR, Soltysik S, Wheeler DA, Wu JY. Structure/function studies on QS-21, a unique immunological adjuvant from Quillaja saponaria. Adv. Exp. Med. Biol.404(1): 165–172 (1996).
  • Bangham AD, Horne RW, Glauert AM, Dingle JT, Lucy JA. Action of saponin on biological cell membranes. Nature196(4858), 952–955 (1962).
  • Sjolander A, Drane D, Maraskovsky E et al. Immune responses to ISCOM formulations in animal and primate models. Vaccine19(17–19), 2661–2665 (2001).
  • Smith RE, Donachie AM, Mowat AM. Immune stimulating complexes as mucosal vaccines. Immunol. Cell Biol.76(3) 263–269 (1998).
  • Scheerlinck JP, Gekas S, Yen HH et al. Local immune responses following nasal delivery of an adjuvanted influenza vaccine. Vaccine24(18), 3929–3936 (2006).
  • Hu KF, Elvander M, Merza M, Akerblom L, Brandenburg A, Morein B. The immunostimulating complex (ISCOM) is an efficient mucosal delivery system for respiratory syncytial virus (RSV) envelope antigens inducing high local and systemic antibody responses. Clin. Exp. Immunol.113(2), 235–243 (1998).
  • Smith RE, Donachie AM, Grdic D, Lycke N, Mowat AM. Immune-stimulating complexes induce an IL-12-dependent cascade of innate immune responses. J. Immunol.162(9), 5536–5546 (1999).
  • Cleland JL. Single-administration vaccines: controlled-release technology to mimic repeated immunizations. Trends Biotechnol.17(1), 25–29 (1999).
  • Yeh M, Chiang C. Inactive Vibrio cholerae whole-cell vaccine-loaded biodegradable microparticles: in vitro release and oral vaccination. J. Microencapsul.21(1), 91–106 (2004).
  • Vajdy M, O’Hagan DT. Microparticles for intranasal immunization. Adv. Drug. Deliv. Rev.51(1–3), 127–141 (2001).
  • Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine19(15–16), 1940–1950 (2001).
  • Carpenter ZK, Williamson ED, Eyles JE. Mucosal delivery of microparticle encapsulated ESAT-6 induces robust cell-mediated responses in the lung milieu. J. Control Release104(1), 67–77 (2005).
  • Manocha M, Pal PC, Chitralekha KT et al. Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as M cell target. Vaccine23(48–49), 5599–5617 (2005).
  • Patel GB, Zhou H, Ponce A, Chen W. Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine25(51), 8622–8636 (2007).
  • Baca-Estrada ME, Foldvari MM, Snider MM et al. Intranasal immunization with liposome-formulated Yersinia pestis vaccine enhances mucosal immune responses. Vaccine18(21), 2203–2211 (2000).
  • Harokopakis E, Hajishengallis G, Michalek SM. Effectiveness of liposomes possessing surface-linked recombinant B subunit of cholera toxin as an oral antigen delivery system. Infect. Immun.66(9), 4299–4304 (1998).
  • Rosada RS, de la Torre LG, Frantz FG et al. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol.9, 38 (2008).
  • Schröder U, Svenson SB. Nasal and parenteral immuniizations with diphtheria toxoid using monoglyceride/fatty acid lipid suspensions as adjuvants. Vaccine17(15–16), 2096–2103 (1999).
  • Hamasur B, Haile M, Pawlowski A et al.Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis. Vaccine21(25–26), 4081–4093 (2003).
  • Haile M, Schröder U, Hamasur B et al. Immunization with heat-killed Mycobacterium bovis bacille Calmette–Guerin (BCG) in Eurocine L3 adjuvant protects against tuberculosis. Vaccine22(11–12), 1498–1508 (2004).
  • Hiroi T, Iwatani K, Iijima H, Kodama S, Yanagita M, Kiyono H. Nasal immune system: distinctive Th0 and Th1/Th2 type environments in murine nasal-associated lymphoid tissues and nasal passage, respectively. Eur. J. Immunol.28(10), 3346–3353 (1998).
  • Jones HP, Hodge LM, Fujihashi K, Kiyono H, McGhee JR, Simecka JW. The pulmonary environment promotes Th2 cell responses after nasal-pulmonary immunization with antigen alone, but Th1 responses are induced during instances of intense immune stimulation. J. Immunol.167(8), 4518–4526 (2001).
  • Akbari O, Stock P, DeKruyff RH, Umetsu DT. Mucosal tolerance and immunity: regulating the development of allergic disease and asthma. Int. Arch. Allergy Immunol.130(2), 108–118 (2003).
  • Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine25(30), 5467–5484 (2007).
  • Constant SL, Brogdon JL, Piggott DA et al. Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ. J. Clin. Invest.110(10), 1441–1448 (2002).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.