186
Views
34
CrossRef citations to date
0
Altmetric
Review

Innate sensors of influenza virus: clues to developing better intranasal vaccines

, &
Pages 1435-1445 | Published online: 09 Jan 2014

References

  • Smidt MH, Stroink H, Bruinenberg JF, Peeters M. Encephalopathy associated with influenza A. Eur. J. Paediatr. Neurol.8(5), 257–260 (2004).
  • Wada N. Influenza-associated encephalopathy. Nippon rinsho62(Suppl. 5) 456–461 (2004).
  • Ungchusak K, Auewarakul P, Dowell SF et al. Probable person-to-person transmission of avian influenza A (H5N1). N. Eng. J. Med.352(4), 333–340 (2005).
  • Evolution of H5N1 avian influenza viruses in Asia. Emerg. Infect. Dis.11(10), 1515–1521 (2005).
  • Le QM, Kiso M, Someya K et al. Avian flu: isolation of drug-resistant H5N1 virus. Nature437(7062), 1108 (2005).
  • Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nature Med.8(9), 950–954 (2002).
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413(6857), 732–738 (2001).
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303(5663), 1529–1531 (2004).
  • Lund JM, Alexopoulou L, Sato A et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA101(15), 5598–5603 (2004).
  • Lopez CB, Moltedo B, Alexopoulou L, Bonifaz L, Flavell RA, Moran TM. TLR-independent induction of dendritic cell maturation and adaptive immunity by negative-strand RNA viruses. J. Immunol.173(11), 6882–6889 (2004).
  • Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol.80(10), 5059–5064 (2006).
  • Pichlmair A, Schulz O, Tan CP et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5´-phosphates. Science314(5801), 997–1001 (2006).
  • Bracci L, Canini I, Puzelli S et al. Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine23(23), 2994–3004 (2005).
  • Heil F, Hemmi H, Hochrein H et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science303(5663), 1526–1529 (2004).
  • Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med.198(3), 513–520 (2003).
  • Asselin-Paturel C, Boonstra A, Dalod M et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol.2(12), 1144–1150 (2001).
  • Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science315(5817), 1398–1401 (2007).
  • Crozat K, Beutler B. TLR7: a new sensor of viral infection. Proc. Natl Acad. Sci. USA101(18), 6835–6836 (2004).
  • Reise Sousa C. Immunology. Eating in to avoid infection. Science315(5817), 1376–1377 (2007).
  • Iwasaki A. Role of autophagy in innate viral recognition. Autophagy3(4), 354–356 (2007).
  • Lee HK, Iwasaki A. Autophagy and antiviral immunity. Curr. Opin. Immunol.20(1), 23–29 (2008).
  • Kumagai Y, Takeuchi O, Kato H et al. Alveolar macrophages are the primary interferon-α producer in pulmonary infection with RNA viruses. Immunity27(2), 240–252 (2007).
  • Kumagai Y, Takeuchi O, Akira S. Pathogen recognition by innate receptors. J. Infect. Chemother.14(2), 86–92 (2008).
  • Guo Z, Chen LM, Zeng H et al. NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am. J. Resp. Cell Mol. Biol.36(3), 263–269 (2007).
  • Mibayashi M, Martinez-Sobrido L, Loo YM, Cardenas WB, Gale M Jr, Garcia-Sastre A. Inhibition of retinoic acid-inducible gene I-mediated induction of β interferon by the NS1 protein of influenza A virus. J. Virol.81(2), 514–524 (2007).
  • Opitz B, Rejaibi A, Dauber B et al. IFNβ induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell. Microbiol.9(4), 930–938 (2007).
  • Yoneyama M, Kikuchi M, Natsukawa T et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol.5(7), 730–737 (2004).
  • Kato H, Sato S, Yoneyama M et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity23(1), 19–28 (2005).
  • Andrejeva J, Childs KS, Young DF et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, MDA-5, and inhibit its activation of the IFN-β promoter. Proc. Natl Acad. Sci. USA101(49), 17264–17269 (2004).
  • Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB. MDA-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl Acad. Sci. USA99(2), 637–642 (2002).
  • Kawai T, Takahashi K, Sato S et al. IPS-1, an adaptor triggering RIG-I- and MDA5-mediated type I interferon induction. Nat. Immunol.6(10), 981–988 (2005).
  • Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell122(5), 669–682 (2005).
  • Meylan E, Curran J, Hofmann K et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature437(7062), 1167–1172 (2005).
  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell19(6), 727–740 (2005).
  • Moore CB, Bergstralh DT, Duncan JA et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature451(7178), 573–577 (2008).
  • Tattoli I, Carneiro LA, Jehanno M et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production. EMBO Reports9(3), 293–300 (2008).
  • Kato H, Takeuchi O, Sato S et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature441(7089), 101–105 (2006).
  • Gitlin L, Barchet W, Gilfillan S et al. Essential role of MDA-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA103(22), 8459–8464 (2006).
  • Hornung V, Ellegast J, Kim S et al. 5´-triphosphate RNA is the ligand for RIG-I. Science314(5801), 994–997 (2006).
  • Yoneyama M, Onomoto K, Fujita T. Cytoplasmic recognition of RNA. Adv. Drug. Deliv. Rev.60(7), 841–846 (2008).
  • Kato H, Takeuchi O, Mikamo-Satoh E et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med.205(7), 1601–1610 (2008).
  • Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature454(7203), 523–527 (2008).
  • Saito T, Gale M Jr. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity. J. Exp. Med.205(7), 1523–1527 (2008).
  • Koyama S, Ishii KJ, Kumar H et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol.179(7), 4711–4720 (2007).
  • Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev.1(2), 135–145 (2001).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors. Nature438(7066), 364–368 (2005).
  • McGill J, Van Rooijen N, Legge KL. Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J. Exp. Med.205(7), 1635–1646 (2008).
  • GeurtsvanKessel CH, Willart MA, van Rijt LS et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells. J. Exp. Med.205(7), 1621–1634 (2008).
  • Heer AK, Shamshiev A, Donda A et al. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J. Immunol.178(4), 2182–2191 (2007).
  • Ichinohe T, Watanabe I, Ito S et al. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J. Virol.79(5), 2910–2919 (2005).
  • Ichinohe T, Tamura S, Kawaguchi A et al. Cross-protection against H5N1 influenza virus infection is afforded by intranasal inoculation with seasonal trivalent inactivated influenza vaccine. J. Infect. Dis.196(9), 1313–1320 (2007).
  • Ichinohe T, Kawaguchi A, Tamura S et al. Intranasal immunization with H5N1 vaccine plus poly I:poly C12U, a Toll-like receptor agonist, protects mice against homologous and heterologous virus challenge. Microbes Infect.9(11), 1333–1340 (2007).
  • Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev.7(1), 31–40 (2007).
  • Ogura Y, Sutterwala FS, Flavell RA. The inflammasome: first line of the immune response to cell stress. Cell126(4), 659–662 (2006).
  • Werts C, Girardin SE, Philpott DJ. TIR, CARD and PYRIN: three domains for an antimicrobial triad. Cell Death Differ.13(5), 798–815 (2006).
  • Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature442(7098), 39–44 (2006).
  • Freche B, Reig N, van der Goot FG. The role of the inflammasome in cellular responses to toxins and bacterial effectors. Semin. Immunopathol.29(3), 249–260 (2007).
  • Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell117(5), 561–574 (2004).
  • Chamaillard M, Hashimoto M, Horie Y et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol.4(7), 702–707 (2003).
  • Keller M, Ruegg A, Werner S, Beer HD. Active caspase-1 is a regulator of unconventional protein secretion. Cell132(5), 818–831 (2008).
  • Kuida K, Lippke JA, Ku G et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 β converting enzyme. Science267(5206), 2000–2003 (1995).
  • Dinarello CA. The IL-1 family and inflammatory diseases. Clin. Exp. Rheumatol,20(5 Suppl. 27), S1–S13 (2002).
  • Schmitz J, Owyang A, Oldham E et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity23(5), 479–490 (2005).
  • Ting JP, Lovering RC, Alnemri ES et al. The NLR gene family: a standard nomenclature. Immunity28(3), 285–287 (2008).
  • Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature425(6957), 516–521 (2003).
  • Kanneganti TD, Ozoren N, Body-Malapel M et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature440(7081), 233–236 (2006).
  • Mariathasan S, Weiss DS, Newton K et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440(7081), 228–232 (2006).
  • Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440(7081), 237–241 (2006).
  • Sutterwala FS, Ogura Y, Szczepanik M et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity24(3), 317–327 (2006).
  • Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science320(5876), 674–677 (2008).
  • Walev I, Klein J, Husmann M et al. Potassium regulates IL-1 β processing via calcium-independent phospholipase A2. J. Immunol.164(10), 5120–5124 (2000).
  • Andrei C, Margiocco P, Poggi A, Lotti LV, Torrisi MR, Rubartelli A. Phospholipases C and A2 control lysosome-mediated IL-1 β secretion: implications for inflammatory processes. Proc. Natl Acad. Sci. USA101(26), 9745–9750 (2004).
  • Wewers MD. IL-1β: an endosomal exit. Proc. Natl Acad. Sci. USA101(28), 10241–10242 (2004).
  • Fernandes-Alnemri T, Wu J, Yu JW et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ.14(9), 1590–1604 (2007).
  • Saleh M, Green DR. Caspase-1 inflammasomes: choosing between death and taxis. Cell Death Differ.14(9), 1559–1560 (2007).
  • Ferrari D, Pizzirani C, Adinolfi E et al. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol.176(7), 3877–3883 (2006).
  • Kanneganti TD, Body-Malapel M, Amer A et al. Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem.281(48), 36560–36568 (2006).
  • Johnston JB, Barrett JW, Nazarian SH et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity23(6), 587–598 (2005).
  • Muruve DA, Petrilli V, Zaiss AK et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature452(7183), 103–107 (2008).
  • Vacheron F, Rudent A, Perin S, Labarre C, Quero AM, Guenounou M. Production of interleukin 1 and tumour necrosis factor activities in bronchoalveolar washings following infection of mice by influenza virus. J. Gen. Virol.71(Pt. 2), 477–479 (1990).
  • Hennet T, Ziltener HJ, Frei K, Peterhans E. A kinetic study of immune mediators in the lungs of mice infected with influenza A virus. J. Immunol.149(3), 932–939 (1992).
  • Pirhonen J, Sareneva T, Kurimoto M, Julkunen I, Matikainen S. Virus infection activates IL-1 β and IL-18 production in human macrophages by a caspase-1-dependent pathway. J. Immunol.162(12), 7322–7329 (1999).
  • Schmitz N, Kurrer M, Bachmann MF, Kopf M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J. Virol.79(10), 6441–6448 (2005).
  • Stasakova J, Ferko B, Kittel C et al. Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1β and 18. J. Gen. Virol.86(Pt. 1), 185–195 (2005).
  • Akaike T, Ando M, Oda T et al. Dependence on O2- generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J. Clin. Invest.85(3), 739–745 (1990).
  • Behrens MD, Wagner WM, Krco CJ et al. The endogenous danger signal, crystalline uric acid, signals for enhanced antibody immunity. Blood111(3), 1472–1479 (2008).
  • Tamura S, Tanimoto T, Kurata T. Mechanisms of broad cross-protection provided by influenza virus infection and their application to vaccines. Jpn. J. Infect. Dis.58(4), 195–207 (2005).
  • Asahi Y, Yoshikawa T, Watanabe I et al. Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines. J. Immunol.168(6), 2930–2938 (2002).
  • Hasegawa H, Ichinohe T, Tamura S, Kurata T. Development of a mucosal vaccine for influenza viruses: preparation for a potential influenza pandemic. Expert Rev. Vaccines6(2), 193–201 (2007).
  • Mazanec MB, Coudret CL, Fletcher DR. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J. Virol.69(2), 1339–1343 (1995).
  • Ito R, Ozaki YA, Yoshikawa T et al. Roles of anti-hemagglutinin IgA and IgG antibodies in different sites of the respiratory tract of vaccinated mice in preventing lethal influenza pneumonia. Vaccine21(19–20), 2362–2371 (2003).
  • Tamura SI, Kurata T. A proposal for safety standards for human use of cholera toxin (or Escherichia coli heat-labile enterotoxin) derivatives as an adjuvant of nasal inactivated influenza vaccine. Jpn. J. Infect. Dis.53(3), 98–106 (2000).
  • Mutsch M, Zhou W, Rhodes P et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N. Engl. J. Med.350(9), 896–903 (2004).
  • van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol.165(9), 4778–4782 (2000).
  • Ichinohe T, Nagata N, Strong P et al. Prophylactic effects of chitin microparticles on highly pathogenic H5N1 influenza virus. J. Med. Virol.79(6), 811–819 (2007).
  • Ichinohe T, Watanabe I, Tao E et al. Protection against influenza virus infection by intranasal vaccine with surf clam microparticles (SMP) as an adjuvant. J. Med. Virol.78(7), 954–963 (2006).
  • Kamijuku H, Nagata Y, Jiang X et al. Mechanism of NKT cell activation by intranasal coadministration of a-galactosylceramide, which can induce cross-protection against influenza viruses. Muc. Immunol.1(3), 208–218 (2008).
  • Asahi-Ozaki Y, Itamura S, Ichinohe T et al. Intranasal administration of adjuvant-combined recombinant influenza virus HA vaccine protects mice from the lethal H5N1 virus infection. Microbes Infect.8(12–13), 2706–2714 (2006).
  • Palese P. Making better influenza virus vaccines? Emerg. Infect. Dis.12(1), 61–65 (2006).
  • O’Hagan DT, Wack A, Podda A. MF59 is a safe and potent vaccine adjuvant for flu vaccines in humans: what did we learn during its development? Clin. Pharmacol. Ther.82(6), 740–744 (2007).
  • Hu KF, Lovgren-Bengtsson K, Morein B. Immunostimulating complexes (ISCOMs) for nasal vaccination. Adv. Drug. Deliv. Rev.51(1–3), 149–159 (2001).
  • Hartshorn KL, Crouch EC, White MR et al. Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses. J. Clin. Invest.94(1), 311–319 (1994).
  • Benne CA, Kraaijeveld CA, van Strijp JA et al. Interactions of surfactant protein A with influenza A viruses: binding and neutralization. J. Infect. Dis.171(2), 335–341 (1995).
  • Hartshorn KL, Sastry K, Brown D et al. Conglutinin acts as an opsonin for influenza A viruses. J. Immunol.151(11), 6265–6273 (1993).
  • Hartshorn KL, Sastry K, White MR et al. Human mannose-binding protein functions as an opsonin for influenza A viruses. J. Clin. Invest.91(4), 1414–1420 (1993).
  • LeVine AM, Whitsett JA. Pulmonary collectins and innate host defense of the lung. Microbes Infect.3(2), 161–166 (2001).
  • Jia W, Li H, He YW. Pattern recognition molecule mindin promotes intranasal clearance of influenza viruses. J. Immunol.180(9), 6255–6261 (2008).
  • Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J. Virol.60(3), 1068–1074 (1986).
  • Leikina E, Delanoe-Ayari H, Melikov K et al. Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nat. Immunol.6(10), 995–1001 (2005).
  • Yamamoto M, Sato S, Hemmi H et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science301(5633), 640–643 (2003).
  • Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity14(4), 461–470 (2001).
  • Le Bon A, Etchart N, Rossmann C et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol.4(10), 1009–1015 (2003).
  • Sloat BR, Cui Z. Nasal immunization with anthrax protective antigen protein adjuvanted with polyriboinosinic–polyribocytidylic acid induced strong mucosal and systemic immunities. Pharm. Res.23(6), 1217–1226 (2006).
  • Kumar H, Koyama S, Ishii KJ, Kawai T, Akira S. Cutting edge: cooperation of IPS-1- and TRIF-dependent pathways in poly IC-enhanced antibody production and cytotoxic T cell responses. J. Immunol.180(2), 683–687 (2008).
  • Robinson RA, DeVita VT, Levy HB, Baron S, Hubbard SP, Levine AS. A Phase I–II trial of multiple-dose polyriboinosic–polyribocytidylic acid in patieonts with leukemia or solid tumors. J. Natl Cancer Inst.57(3), 599–602 (1976).
  • Suhadolnik RJ, Reichenbach NL, Hitzges P et al. Changes in the 2–5A synthetase/RNase L antiviral pathway in a controlled clinical trial with poly(I)–poly(C12U) in chronic fatigue syndrome. In Vivo8(4), 599–604 (1994).
  • Ashkenazi S, Vertruyen A, Aristegui J et al. Superior relative efficacy of live attenuated influenza vaccine compared with inactivated influenza vaccine in young children with recurrent respiratory tract infections. Pediatr. Infect. Dis. J.25(10), 870–879 (2006).
  • Vesikari T, Fleming DM, Aristegui JF et al. Safety, efficacy, and effectiveness of cold-adapted influenza vaccine-trivalent against community-acquired, culture-confirmed influenza in young children attending day care. Pediatrics118(6), 2298–2312 (2006).
  • Belshe RB, Edwards KM, Vesikari T et al. Live attenuated versus inactivated influenza vaccine in infants and young children. N. Engl. J. Med.356(7), 685–696 (2007).
  • Frank AL, Taber LH, Wells CR, Wells JM, Glezen WP, Paredes A. Patterns of shedding of myxoviruses and paramyxoviruses in children. J. Infect. Dis.144(5), 433–441 (1981).
  • Hall CB, Douglas RG Jr, Geiman JM, Meagher MP. Viral shedding patterns of children with influenza B infection. J. Infect. Dis.140(4), 610–613 (1979).
  • Long CE, Hall CB, Cunningham CK et al. Influenza surveillance in community-dwelling elderly compared with children. Arch. Fam. Med.6(5), 459–465 (1997).
  • Wright PF, Ross KB, Thompson J, Karzon DT. Influenza A infections in young children. Primary natural infection and protective efficacy of live-vaccine-induced or naturally acquired immunity. N. Engl. J. Med.296(15), 829–834 (1977).
  • Talon J, Salvatore M, O’Neill RE et al. Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc. Natl Acad. Sci. USA97(8), 4309–4314 (2000).
  • Gowen BB, Wong MH, Jung KH et al. TLR3 is essential for the induction of protective immunity against Punta Toro virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not poly(I:C): differential recognition of synthetic dsRNA molecules. J. Immunol.178(8), 5200–5208 (2007).
  • Ninomiya A, Imai M, Tashiro M, Odagiri T. Inactivated influenza H5N1 whole-virus vaccine with aluminum adjuvant induces homologous and heterologous protective immunities against lethal challenge with highly pathogenic H5N1 avian influenza viruses in a mouse model. Vaccine25(18), 3554–3560 (2007).
  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453, 1122–1126 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.