20
Views
8
CrossRef citations to date
0
Altmetric
Review

Involvement of cardiomyocyte survival–apoptosis balance in hypertensive cardiac remodeling

, , &
Pages 293-307 | Published online: 10 Jan 2014

References

  • Colicci W Braunwald E. Pathophysiology of heart failure. In: Heart Disease. A Textbook of Cardiovascular Medicine. 6th Edition. Braunwald E, Zippes D, Libby P (Eds). WB Saunders Company, PA, USA, 503–533 (2001).
  • Cohn JN, Ferrari R, Sharpe N. (On behalf of an International Forum on Cardiac Remodeling). Cardiac remodeling: concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling.j Am COIL Carliol 35 (3), 569–582 (2000).
  • Anversa P Myocyte death in the pathological heart. Chr. Res 86,121–124 (2000).
  • Schaper J, Elsässer A, Kostin S. The role of cell death in heart failure. Cilr. Res. 85, 867–869 (1999).
  • Neuss M, Crow MT Chesley A, Lakatta EG. Apoptosis in cardiac disease — what is it — how does it occur. Catrliovasc. Drugs Ther 15(6), 507–523 (2001).
  • Bishopric NH, Andreka F Slepak T, Webster IKA. Molecular mechanisms of apoptosis in the cardiac myocyte. Curr. Opin. Phatmacol 1(2), 141–150 (2001).
  • Takemura G, Kato S, Aoyama T et al Characterization of ultrastructure and its relation with DNA fragmentation in Fas-induced apoptosis of cultured cardiac myocytes. I Path& 193(4), 546–556 (2001).
  • Vieira HL, Kroemer G. Pathophysiology of mitochondrial cell death control. Celi. Mal Life Sci. 56(11–12), 971–976 (1999).
  • Akao M, O'Rouke B, Teshima Y, Seharaseyon J, Marbän E. Mechanistically distinct steps in the mitochondrial death pathway triggered by oxidative stress in cardiac myocytes. Chr. Res. 92(2), 186–194 (2003).
  • Sheng Z, Knowlton K, Chen J et al Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. Chem. 272(9), 5783–5791 (1997).
  • Stephanou A, Brar B, Heads R et al Cardiotrophin-1 induces heat shock protein accumulation in cultured cardiac cells and protects them from stressful stimuli. j Mal Celi. Canliol 30(4), 849–855 (1998).
  • Wollert KC, Taga T, Saito M et al Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series via gp130/1eukemia inhibitory factor receptor-dependent pathways. Biol Chem. 271(16), 9535–9545 (1996).
  • Lopez-Andres N, Ravassa S, Fortutio A, Diez J, Fortulio MA. Cardiotrophin-1 modulates the apoptotic and hypertrophic effects of angiotensin II in adult cardiomyocytes. Hypertension 40 (4), 578 (2002) (Abstract).
  • Sano M, Fukuda K, Kodama H et al Autocrineiparacrine secretion of IL-6 family cytokines causes angiotensin II-induced delayed STAT3 activation. Biochem. Biophys. Res. Commun. 269(3), 798–802 (2000).
  • Kuwahara K, Saito Y, Kishimoto I et al Cardiotrophin-1 phosphorylates akt and BAD and prolongs cell survival via a PI3K-dependent pathway in cardiac myocytes. Mol Cell Cardiol 32(8), 1385–1394 (2000).
  • Hirota H, Chen J, Betz UAK et al Loss of a gpl 30 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Ce1197, 189–198 (1999).
  • Ravassa S, Ardanaz N, Lopez B et al Involvement of cardiotrophin-1 signaling pathway in cardiac apoptosis of hypertensive rats. j Hypertens. 20\(Suppl. 4), S30 (2002) (Abstract).
  • Zolk O, Ng LL, O'Brien RJ, Weyand M, Eschenhagen T Augmented expression of cardiotrophin-1 in failing human hearts is accompanied by diminished glycoprotein 130 receptor protein abundance. Chrulation 106(12), 1442–1446 (2002).
  • Hong F, Kwon SJ, Jhun BS et al Insulin-like growth factor-1 protects H9c2 cardiac myoblasts from oxidative stress-induced apoptosis via phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Life Sci 68(10), 1095–1105 (2001).
  • Wu W, Lee WL, Wu YY et al Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. j Biol. Chem. 275(51), 40113–40119 (2000).
  • Chen DB, Wang L,Wang PH. Insulin-like growth Factor I retards apoptotic signaling induced by ethanol in cardiomyocytes. Life Sci 67(14), 1683–1693 (2000).
  • Morales MP, Galvez A, Eltit JM et al IGF-1 regulates apoptosis of cardiac myocyte induced by osmotic-stress. Biochem. Biophys. Res. Commun. 270(3), 1029–1035 (2000).
  • Foncea R, Galvez A, Perez V et al Extracellular regulated kinase but not protein kinase C, is an anti-apoptotic signal of insulin-like growth factor-1 on cultured cardiac myocytes. Biochem. Biophys. Res. Commun. 273(2), 736–744 (2000).
  • Wang L, Ma W, Markovich R, Chen JW, Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth Factor I. Cur. Res. 83(5), 516–522 (1998).
  • Buerke M, Murohara T, Skurk C et al Cardioprotective effect of insulin-like growth Factor I in myocardial ischemia followed by reperfusion. Proc. Natl Acad. Sci. USA 92(17), 8031–8035 (1995).
  • Li Q, Li B, Wang X et al Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress and cardiac hypertrophy. j Clin. Invest. 100(8), 1991–1999 (1997).
  • Li B, Setoguchi M, Wang X et al Insulin-like growth factor-1 attenuates the detrimental impact of nonocclusive coronary artery constriction on the heart. Cur. Res. 84(9), 1007–1019 (1999).
  • Palmen M, Daemen MJ, Bronsaer R et al Cardiac remodeling after myocardial infarction is impaired in IGF-1 deficient mice. Cardiovasc. Res. 50(3), 516–524 (2001).
  • Parrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the Bc1-xL gene product. Endocrinology 138(3), 1355–1358 (1997).
  • Parrizas M, Saltiel AR,LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3 --kinase and mitogen-activated protein kinase pathways. Biol Chem. 272 (1), 154–161 (1997).
  • Gassmann M, Casagranda F, Orioli D et al Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378 (6555), 390–394 (1995).
  • Lee KF, Simon H, Chen H et al Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378(6555), 394–398 (1995).
  • Rentschler S, Zander J, Meyers K et al Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc. Natl Acad. Su. USA 99(16), 10464–10469 (2002).
  • Zhao YY, Sawyer DR, Baliga RR et al Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. j Biol. Chem. 273(17), 10261–10269 (1998).
  • Seidman A, Hudis C, Pierri M et al Cardiac dysfunction in the trastuzumab clinical trials experience. j Clin. Onc. 20(5), 1215–1221 (2002).
  • Crone SA, Zhao YY, Fan L et al ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med. 8(5), 459–465. (2002).
  • Hertig CM, Kubalak SW Wang Y, Chien KR. Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis.J. Chem. 274(52), 37362–37369 (1999).
  • Cheng W Li B, Kajstura J et al Stretch-induced programmed myocyte cell death. Clin. Invest. 96(5), 2247–2259 (1995).
  • Leni A, Claudio PP, Li Q et al Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bc1-2-to-Bax protein ratio in the cell." Gun. Invest. 101(7), 1326–1342 (1998).
  • Wu CF, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J. Biol. Chem. 272(23), 14860–14866 (1997).
  • Kajstura J, Cigola E, Malhotra A et al Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. j Mal Cell Camliol. 29(3), 859–870 (1997).
  • Ravassa S, Fortufio MA, Gonzalez A et al Mechanisms of increased susceptibility to angiotensin II-induced apoptosis in ventricular cardiomyocytes of spontaneously hypertensive rats. Hypertension 36, 1065–1071 (2000).
  • Communal C, Singh K, Pimentel DR, Colucci WS. Noradrenaline stimulates apoptosis in adult rat ventricular myocytes by activation of the P-adrenergic pathway. Chrulation 98(13), 1329–1334 (1998).
  • Shizukuda Y, Bittrick PM, Geenen DL et al P-adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. Am. j Physiol 275, H961—H968 (1998).
  • Zhu W Zheng M, Koch W et al Dual modulation of cell survival and cell death by 32-adrenergic signaling in adult mouse cardiac myocytes. PNAS98, 1607–1612 (2001).
  • Badorff C, Ruetten H, Mueller S et al Fas receptor signaling inhibits glycogen synthase kinase 3 13 and induces cardiac hypertrophy following pressure overload. j Clin. Invest. 109(3), 373–381 (2002).
  • Krown I A, Page MT, Nguyen C et al Tumor necrosis factor a-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. Clin. Invest. 98(12), 2854–2865 (1996).
  • Kubota T, Miyagishima M, Frye CS et al Overexpression of tumor necrosis factor-alpha activates both anti and pro-apoptotic pathways in the myocardium. j Mal Cell Camliol 33(7), 1331–1344 (2001).
  • Bueno OF, van Rooij E, Molkentin JD, Doevendans PA, De Windt U. Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Camliovasc Res. 53 (4), 806–821. (2002)
  • Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Cim Res. 91(9), 776–781. (2002).
  • Narula J, Kolodgie FD,Virmani R. Apoptosis and cardiomyopathy. C1117: Opin. Carcliol 15(3), 183–188 (2000).
  • Fortufio MA, Ravassa S, Fortufio A, Zalba G, Diez J. Cardiomyocyte apoptotic cell death in arterial hypertension: mechanisms and potential management. Hypertension 38(6), 1406–1412 (2001).
  • Fortufio MA, Gonzalez A, Ravassa S, Lopez B, Diez J. Clinical implications of apoptosis in hypertensive heart disease. Am. .1. Physiol Heart Cim Physiol 284, (2003) (In Press)
  • Ding B, Price R, Golsmith E et al Left ventricular hypertrophy in ascending aortic stenosis mice. Anoikis and the progression to early failure. Circulation 101,2854–2862 (2000).
  • Teiger E, Than VD, Richard L et al Apoptosis in pressure overload-induced heart hypertrophy in the rat. j Clin. Invest. 97(12), 2891–2897 (1996).
  • Shiota N, Jin D, Takai S et al Chymase is activated in the hamster heart following ventricular fibrosis during the chronic stage of hypertension. FEBS Lett. 406, 301–304 (1997).
  • Li P, Zhang X, Capasso JM et al Myocyte loss and left ventricular failure characterise the long-term effects of coronary artery narrowing or renal hypertension in rats. Carcliovasc. Res. 27(6), 1066–1075 (1993).
  • Conrad CH, Brooks WW, Hayes JA et al Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91,161–170 (1995).
  • Diez J, Panizo A, Hernandez M et al Cardiomyocyte apoptosis and cardiac angiotensin-converting enzyme in spontaneously hypertensive rats. Hypertension 30(5), 1029–1034. (1997).
  • Hamet P, Richard L, Dam TV et al Apoptosis in target organs of hypertension. Hypertension 26(4), 642–648 (1995).
  • Moreau P, Tea BS, Dam TV,Hamet P. Altered balance between cell replication and apoptosis in hearts and kidneys of newborn SHR. Hypertension 30(3 Pt 2), 720–724 (1997).
  • Liu JJ, Peng L, Bradley CJ et al Increased apoptosis in the heart of genetic hypertension associated with increased fibroblasts. Camliovasc. Res. 45,729–735 (2000).
  • Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am. Physiol 272(5 Pt 2), H2313-2319 (1997).
  • Olivetti G, Melissari M, Balbi T et al Myocyte cellular hypertrophy is responsible for ventricular remodeling in the hypertrophied heart of middle aged individuals in the absence of cardiac failure. Camliovasc. Res. 28(8), 1199–1208 (1994).
  • Olivetti G, Melissari M, Balbi T et al Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans. J. AM Coll Camliol 24(1), 140–149 (1994).
  • Gonzalez A, Lopez B, Ravassa S et al Stimulation of cardiac apoptosis in essential hypertension: potential role of angiotensin II. Hypertension 39 (1), 75–80 (2002).
  • Yamamoto S, Sawada K, Shimomura H, Kawamura K, James TN. On the nature of cell death during remodeling of hypertrophied human myocardium. j Mal Cell Camliol 32,161–175 (2000).
  • Condorelli G, Morisco C, Stassi G et al Increased cardiomyocyte apoptosis and changes in proapoptotic and anti-apoptotic genes bax and bc1-2 during left ventricular adaptations to chronic pressure overload in the rat. Chrulation 99,3071–3078 (1999).
  • Fortufio MA, Ravassa S, Etayo JC, Diez J. Overexpression of Bax protein and enhanced apoptosis in the left ventricle of spontaneously hypertensive rats: effects of ATi blockade with losartan. Hypertension 32(2), 280–286 (1998).
  • Fortufio MA, Zalba G, Ravassa S et al p53-mediated upregulation of BAX gene transcription is not involved in Bax-a protein overexpression in the left ventricle of spontaneously hypertensive rats. Hypertension 30,1348–1352 (1999).
  • Tea B, Dam T, Moreau P, Hamet P, deBlois D. Apoptosis during regression of cardiac hypertrophy in spontaneously hypertensive rats. Temporal regulation and spatial heterogeneity. Hypertension 34,229–235 (1999).
  • Cigola E, Kajstura J, Li B, Meggs LG, Anversa P Angiotensin II activates programmed myocyte cell death in vitro. Exp. Cell Res. 231(2), 363–371 (1997).
  • Diep QN, El Mabrouk M, Yue P, Schiffrin EL. Effect of AT(1) receptor blockade on cardiac apoptosis in angiotensin II-induced hypertension. Am. J. Physiol Heart Circ. Physiol 282(5), H1635—H1641 (2002).
  • Suzuki J, Iwai M, Nakagami H et al Role of angiotensin II-regulated apoptosis through distinct ATI. and AT2 receptors in neointimal formation. Circulation 106(7), 847–853 (2002).
  • Bhaskaran M, Reddy K, Radhakrishnan N et al Angiotensin II induces apoptosis in renal proximal tubular cells. Arn. j Physiol Renal Physiol 14,14 (2003).
  • Moudgil R, Musat-Marcu S, Xu Y, Kumar D, Jugdutt BI. Increased AT(2)R protein expression but not increased apoptosis during cardioprotection induced by AT(1)R blockade. Can.j Carcliol 18(10), 1107–1116 (2002).
  • Kang PM,Izumo S. Apoptosis and heart failure. A critical review of the literature. CM: Res. 86,1107–1113 (2000).
  • Beltrami AP, Urbanek K, Kajstura J et al Evidence that human cardiac myocytes divide after myocardial infarction. N Engl. Med 344(23), 1750–1757 (2001).
  • Quaini F, Urbanek K, Beltrami AP et al Chimerism of the transplanted heart. N. Engl. Med 346(1), 5–15 (2002).
  • Anversa P, Leni A, Beltrami CA, Guerra S, Kajstura J. Myocyte death and growth in the failing heart. Lab. Invest. 78(7), 767–786 (1998).
  • Communal C, Sumandea M, de Tombe P et al Functional consequences of caspase activation in cardiac myocytes. Proc. Natl Acad. Sc]. USA 99(9), 6252–6256 (2002).
  • Narula J, Pandey P, Arbustini E et al Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc. Natl Acad. Sc]. USA 96(14), 8144–8149 (1999).
  • Bing OH, Ngo HQ, Humphries DE et al Localization of al (I) collagen mRNA in myocardium from the spontaneously hypertensive rat during the transition from compensated hypertrophy to failure. J. Mal Cell Camliol 29(9), 2335–2344 (1997).
  • Lopez B, Querejeta R, Varo N et al Usefulness of serum carboxy-terminal propeptide of procollagen Type Tin assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 104(3), 286–291 (2001).
  • Narula J, Haider N, Virmani R et al Apoptosis in myocytes in end stage heart failure. N Engl. J. Med 335 (16), 1182–1189 (1996).
  • Olivetti G, Abbi R, Quaini F et al Apoptosis in the failing human heart. N Engl. J. Med 336(16), 1131–1141 (1997).
  • Guerra S, Leni A, Wang X et al Myocyte death in the failing human heart is gender dependent. CM: Res. 85(9), 856–866 (1999).
  • Knaapen MW Davies MJ, De Bie M et al Apoptotic versurautophagic cell death in heart failure. Camliovasc. Res. 51(2), 304–312 2001.
  • Davidson CJ, Bonow RO. Cardiac catheterization. In: Heart Disease. A Textbook of Cardiovascular Medicine. 6th Edition. Braunwald E, Zipes DP, Libby P (Eds). WB Saunders, PA, USA, 359–386 (2001).
  • van Heerde WL, Robert-Offerman S, Dumont E et al Markers of apoptosis in cardiovascular tissues: focus on annexin V. Camliovasc. Res. 45(3), 549–559 (2000).
  • Ohno M, Takemura G, Ohno A et al Apoptotic' myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with in situ nick end-labeling. Guru/at/on 98(14), 1422–1430 (1998).
  • Kanoh M, Takemura G, Misao J et al Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: not apoptosis but DNA repair. Circulation 99(21), 2757–2764 (1999).
  • Darzynkiewicz Z, Bedner E, Traganos F, Murakami T Critical aspects in the analysis of apoptosis and necrosis. Hum. Celi. 11(1), 3–12 (1998).
  • Didenko VV, Tunstead JR, Hornsby PJ. Biotin-labeled hairpin oligonudeotides: probes to detect double-strand breaks in DNA in apoptotic cells. Am. J. Path& 152(4), 897–902 (1998).
  • Saraste A,Pulldd K. Morphologic and biochemical hallmarks of apoptosis. Camliovasc. Res. 45(3), 528–537 (2000).
  • Dumont EA, Hofstra L, van Heerde WL et al Cardiomyocyte death induced by myocardial ischaemia and reperfusion: measurement with recombinant human annexin-V in a mouse model. Circulation 102(13), 1564–1568 (2000).
  • Dumont EA, Reutelingsperger CP, Smits JF et al Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat Med 7(12), 1352–1355 (2001).
  • Hofstra L, Liem TH, Dumont EA et al Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 356(9225), 209–212 (2000).
  • Narula J, Acio ER, Narula N et al Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat. Med 7(12), 1347–1352 (2001).
  • Hofstra L, Dumont EA, Thimister PW et al In vivo detection of apoptosis in an intracardiac tumor. JAIVIA 285(14), 1841–1842 (2001).
  • Strauss HW, Narula J, Blankenberg FG. Radioimaging to identify myocardial cell death and probably injury. Lancet 356(9225), 180–181 (2000).
  • Blankenberg FG, Storrs RVV, Naumovski L, Goralski T, Spielman D. Detection of apoptotic cell death by proton nuclear magnetic resonance spectroscopy. Blood 87(5), 1951–1956 (1996).
  • Bezabeh T, Mowat MR, Jarolim L, Greenberg AH, Smith IC. Detection of drug-induced apoptosis and necrosis in human cervical carcinoma cells using (1)H NMR spectroscopy. Cell Death Differ 8(3), 219–224 (2001).
  • Blankenberg FG, Katsikis PD, Tait JF et al In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc. Natl Acad. Sc]. USA 95(11), 6349–6354 (1998).
  • Blankenberg F, Narula J, Strauss HW. In vivo detection of apoptotic cell death: a necessary measurement for evaluating therapy for myocarditis, ischaemia and heart failure.' Nur/. Camliol 6(5), 531–539 (1999).
  • Kaneko N, Matsuda R, Hosoda S, Kajita T, Ohta Y. Measurement of plasma annexin V by ELISA in the early detection of acute myocardial infarction. C/in. Chim. Acta 251(1), 65–80 (1996).
  • Renz A, Burek C, Mier W et al Cytochrome C is rapidly extruded from apoptotic cells and detectable in serum of anticancer-drug treated tumor patients. Adv. Exp. Med Biol. 495,331–334 (2001).
  • Yue T-L, Ohlstein EH, Ruffolo RR Apoptopsis: a potential target for discovering novel therapies for cardiovascular diseases. Cum Opin. Chem. Biol. 3,474–480 (1999).
  • Feuerstein GZ. Apoptosis-new opportunities for novel therapeutics for heart diseases. Camliovasc. Drugs Ther 15(6), 547–551 (2001).
  • deBlois D, Orlov SN, Hamet P Apoptosis in cardiovascular remodeling-effect of medication. Camliovasc. Drugs Ther 15(6), 539–545 (2001).
  • Yu G, Liang X, Xie X, Su M, Zhao S. Diverse effects of chronic treatment with losartan, fosinopril and amlodipine on apoptosis, angiotensin II in the left ventricle of hypertensive rats. Int. J. Cardiol 81(2–3), 123–129 (2001).
  • Der Sarkissian S, Marchand EL, Duguay D, Hamet P, deBlois D. Reversal of interstitial fibroblast hyperplasia via apoptosis in hypertensive rat heart with valsartan or enalapril. Camliovasc. Res. 57(3), 775–783. (2003).
  • Rodriguez-Feo J, Fortes J, Aceituno E et al Doxazosin modifies Bc1-2 and Bax protein expression in the left ventricle of spontaneously hypertensive rats. J. Hypertens. 18,307–315 (2000).
  • Gonzalez-Juanatey JR, Iglesias MJ, Alcaide C, Pineiro R, Lago F. Doxazosin induces apoptosis in cardiomyocytes cultured in vitro by a mechanism that is independent of ai-adrenergic blockade. Circulation 107(1), 127–131 (2003).
  • Yue TL, Ma XL, Wang X et al Possible involvement of stress-activated protein kinase signaling pathway and
  • Brocheriou V, Hagege AA, Oubenaissa A et al. Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischaemia/reperfusion injury. J. Gene Med. 2(5), 326–333 (2000).
  • Yue TL, Wang C, Romanic AM et al Staurosporine-induced apoptosis in 495–507 (1998).
  • Ing D, Zang J, Dzau V, Webster K, Bishopric N. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak and Bcl-x. Om Res. 84, 21–33 (1999).
  • Mackay K, Mochly-Rosen D. An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. J. Biol. Chem. 274(10), 6272–6279 (1999).
  • Nemoto S, Sheng Z, Lin A. Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mal Cell Biol. 18 (6), 3518–3526 (1998).
  • Hreniuk D, Garay M, Gaarde W et al Inhibition of c-Jun N-terminal kinase 1 but not c-Jun N-terminal kinase 2, supresses apoptosis induced by ischaemia/ reoxygenation in rat cardiac myocytes. Mal Phatmacol 59,867–874 (2001).
  • Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischaemia/reperfusion injury in rats by a caspase inhibitor. Chrulation 97(3), 276–281 (1998).
  • Ma X, Kumar S, Gao F et al Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischaemia and reperfusion. 01ra/ration 99, 1685–1691 (1999).
  • Laugwitz KL, Moretti A, Weig HJ et al Blocking caspase-activated apoptosis improves contractility in failing myocardium. Hum. Gene Ther 12 (17), 2051–2063 (2001).
  • Brar BK, Stephanou A, Liao Z et al Cardiotrophin-1 can protect cardiac myocytes from injury when added both prior to simulated ischaemia and at reoxygenation. Camliovasc Res. 51(2), 265–274 (2001).
  • Lee WL, Chen JW, Ting CT et al Insulin-like growth Factor I improves cardiovascular function and suppresses apoptosis of cardiomyocytes in dilated cardiomyopathy. Endoainology140(10), 4831–4840 (1999).
  • Welch S, Plank D, Witt S et al Cardiac-specific IGF-1 expression attenuates dilated cardiomyopathy in tropomodulin-overexpressing transgenic mice. Chr. Res. 90(6), 641–648 (2002).
  • Acerini CL, Harris DA, Matyka KA et al Effects of low-dose recombinant human insulin-like growth factor-I on insulin sensitivity, growth hormone and glucagon levels in young adults with insulin-dependent diabetes mellitus. Metabolism 47(12), 1481–1489 (1998).
  • Jabri N, Schalch DS, Schwartz SL et al Adverse effects of recombinant human insulin-like growth Factor I in obese insulin-resistant Type II diabetic patients. Diabetes 43(3), 369–374 (1994).
  • Fazio S, Sabatini D, Capaldo B et al A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N Engl. Med 334(13), 809–814 (1996).
  • Osterziel KJ, Strohm 0, Schuler J et al Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet351(9111), 1233–1237 (1998).
  • Sun HY, Zhao RR, Zhi JM. Insulin-like growth Factor I inhibits cardiomyocyte apoptosis and the underlying signal transduction pathways. Methods Find. Exp. Clin. Phatmacol 22(8), 601–607 (2000).
  • Datta SR, Dudek H, Tao X et al Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Ce1191(2), 231–241 (1997).
  • Kocher AA, Schuster MD, Szabolcs MJ et al Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med 7(4), 430–436 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.