269
Views
3
CrossRef citations to date
0
Altmetric
Theme: Personalized Medicine - Review

Lipid-lowing pharmacogenomics in Chinese patients

&
Pages 985-997 | Published online: 10 Jan 2014

References

  • Baigent C, Keech A, Kearney PM et al.; Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493), 1267–1278 (2005).
  • Baigent C, Blackwell L, Emberson J et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376(9753), 1670–1681 (2010).
  • Athyros VG, Kakafika AI, Tziomalos K, Karagiannis A, Mikhailidis DP. Pleiotropic effects of statins–clinical evidence. Curr. Pharm. Des. 15(5), 479–489 (2009).
  • Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis 203(2), 325–330 (2009).
  • Hu M, Mak VWL, Chu TTY, Waye MMY, Tomlinson B. Pharmacogenetics of HMG-CoA reductase inhibitors: optimizing the prevention of coronary heart disease. Curr. Pharmacogenomics Personalized Med. 7(1), 1–26 (2009).
  • Sirtori CR, Mombelli G, Triolo M, Laaksonen R. Clinical response to statins: mechanism(s) of variable activity and adverse effects. Ann. Med. 44(5), 419–432 (2012).
  • Postmus I, Verschuren JJ, De Craen AJ et al. Pharmacogenetics of statins: achievements, whole-genome analyses and future perspectives. Pharmacogenomics 13(7), 831–840 (2012).
  • Giorgi MA, Caroli C, Arazi HC, Di Girolamo G. Pharmacogenomics and adverse drug reactions: the case of statins. Expert Opin. Pharmacother. 12(10), 1499–1509 (2011).
  • Lee E, Ryan S, Birmingham B et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin. Pharmacol. Ther. 78(4), 330–341 (2005).
  • Birmingham BK, Azumaya CT, Wei C, Chen Y, Mosqueda-Garcia R. Increased exposure levels of rosuvastatin, atorvastatin and simvastatin in Chinese and Japanese subjects: A class effect? Clin. Pharmacol. Ther. 83(Suppl. 1), S15 (2008).
  • Tirona RG. Ethnic differences in statin disposition. Clin. Pharmacol. Ther. 78(4), 311–316 (2005).
  • Hu M, Lui SS, Ko GT, Tomlinson B. Do the lipid responses to rosuvastatin and atorvastatin differ between Chinese and Caucasians? Comparison of the DISCOVERY-Hong Kong study with other DISCOVERY studies. Int. J. Cardiol. (2013).
  • HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart J. 34(17), 1279–1291 (2013).
  • Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin. Pharmacol. Ther. 80(6), 565–581 (2006).
  • Rodrigues AC. Efflux and uptake transporters as determinants of statin response. Expert Opin. Drug Metab. Toxicol. 6(5), 621–632 (2010).
  • Romaine SP, Bailey KM, Hall AS, Balmforth AJ. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J. 10(1), 1–11 (2010).
  • Niemi M. Transporter pharmacogenetics and statin toxicity. Clin. Pharmacol. Ther. 87(1), 130–133 (2010).
  • Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev. 63(1), 157–181 (2011).
  • Ho RH, Tirona RG, Leake BF et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130(6), 1793–1806 (2006).
  • Choi MK, Shin HJ, Choi YL, Deng JW, Shin JG, Song IS. Differential effect of genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors. Xenobiotica. 41(1), 24–34 (2011).
  • Hu M, To KK, Mak VW, Tomlinson B. The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin. Drug Metab. Toxicol. 7(1), 49–62 (2011).
  • Arai H, Yamamoto A, Matsuzawa Y et al. Polymorphisms in four genes related to triglyceride and HDL-cholesterol levels in the general Japanese population in 2000. J. Atheroscler. Thromb. 12(5), 240–250 (2005).
  • Brown WV. New therapies on the horizon. Am. J. Manag. Care. 7(5 Suppl), S148–S151 (2001).
  • Buckett L, Ballard P, Davidson R et al. Selectivity of ZD4522 for inhibition of cholesterol synthesis in hepatic versus non-hepatic cells. Atherosclerosis 151(1), 41 (2000).
  • Malinowski HJ, Westelinck A, Sato J, Ong T. Same drug, different dosing: differences in dosing for drugs approved in the United States, Europe, and Japan. J. Clin. Pharmacol. 48(8), 900–908 (2008).
  • Chowbay B, Zhou S, Lee EJ. An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab. Rev. 37(2), 327–378 (2005).
  • Pasanen MK, Neuvonen PJ, Niemi M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 9(1), 19–33 (2008).
  • Kurose K, Sugiyama E, Saito Y. Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab. Pharmacokinet. 27(1), 9–54 (2012).
  • Polimanti R, Piacentini S, Manfellotto D, Fuciarelli M. Human genetic variation of CYP450 superfamily: analysis of functional diversity in worldwide populations. Pharmacogenomics 13(16), 1951–1960 (2012).
  • Xie HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharmacol. Toxicol. 41, 815–850 (2001).
  • Klein K, Zanger UM. Pharmacogenomics of Cytochrome P450 3A4: Recent Progress Toward the “Missing Heritability” Problem. Front. Genet. 4, 12 (2013).
  • Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 54(10), 1271–1294 (2002).
  • Zhang W, Chang YZ, Kan QC et al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur. J. Clin. Pharmacol. 66(1), 61–66 (2010).
  • Miura M, Satoh S, Kagaya H et al. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients. Pharmacogenomics 12(7), 977–984 (2011).
  • Gao Y, Zhang LR, Fu Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin. Eur. J. Clin. Pharmacol. 64(9), 877–882 (2008).
  • Chien KL, Wang KC, Chen YC et al. Common sequence variants in pharmacodynamic and pharmacokinetic pathway-related genes conferring LDL cholesterol response to statins. Pharmacogenomics 11(3), 309–317 (2010).
  • Hu M, Mak VW, Xiao Y, Tomlinson B. Associations between the genotypes and phenotype of CYP3A and the lipid response to simvastatin in Chinese patients with hypercholesterolemia. Pharmacogenomics 14(1), 25–34 (2013).
  • Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 11(4), 274–286 (2011).
  • Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am. J. Cardiol. 93(1), 104–107 (2004).
  • Gordon RY, Becker DJ, Rader DJ. Reduced efficacy of rosuvastatin by St. John’s Wort. Am. J. Med. 122(2), e1–e2 (2009).
  • Fiegenbaum M, Da Silveira FR, Van Der Sand CR et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin. Pharmacol. Ther. 78(5), 551–558 (2005).
  • Wang A, Yu BN, Luo CH et al. Ile118Val genetic polymorphism of CYP3A4 and its effects on lipid-lowering efficacy of simvastatin in Chinese hyperlipidemic patients. Eur. J. Clin. Pharmacol. 60(12), 843–848 (2005).
  • Elens L, Becker ML, Haufroid V et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet. Genomics 21(12), 861–866 (2011).
  • Chew SC, Singh O, Chen X et al. The effects of CYP3A4, CYP3A5, ABCB1, ABCC2, ABCG2 and SLCO1B3 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of docetaxel in nasopharyngeal carcinoma patients. Cancer Chemother. Pharmacol. 67(6), 1471–1478 (2011).
  • Klein K, Thomas M, Winter S et al. PPARA: A novel genetic determinant of CYP3A4 in vitro and in vivo. Clin. Pharmacol. Ther. 91(6), 1044–1052 (2012).
  • Hustert E, Haberl M, Burk O et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11(9), 773–779 (2001).
  • Kim KA, Park PW, Lee OJ, Kang DK, Park JY. Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J. Clin. Pharmacol. 47(1), 87–93 (2007).
  • Kivisto KT, Niemi M, Schaeffeler E et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 14(8), 523–525 (2004).
  • Thompson JF, Man M, Johnson KJ et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J. 5(6), 352–358 (2005).
  • Willrich MA, Hirata MH, Genvigir FD et al. CYP3A5*3A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin. Chim. Acta 398(1–2), 15–20 (2008).
  • Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14(1), 1–18 (2004).
  • Kuehl P, Zhang J, Lin Y et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 27(4), 383–391 (2001).
  • Li YP, Zhang LR, Jia M, Hu XJ. CYP3AP1*3 allele is associated with lipid-lowering efficacy of simvastatin and atorvastatin in Chinese women. J. Clin. Pharmacol. 51(2), 181–188 (2011).
  • Rosemary J, Adithan C. The pharmacogenetics of CYP2C9 and CYP2C19: ethnic variation and clinical significance. Curr. Clin. Pharmacol. 2(1), 93–109 (2007).
  • Scott SA, Sangkuhl K, Shuldiner AR et al. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet. Genomics 22(2), 159–165 (2012).
  • Dai DP, Xu RA, Hu LM et al. CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database. Pharmacogenomics J. (2013).
  • Kirchheiner J, Kudlicz D, Meisel C et al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin. Pharmacol. Ther. 74(2), 186–194 (2003).
  • Singer JB, Holdaas H, Jardine AG et al. Genetic analysis of fluvastatin response and dyslipidemia in renal transplant recipients. J. Lipid Res. 48(9), 2072–2078 (2007).
  • Igel M, Sudhop T, Von Bergmann K. Pharmacology of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), including rosuvastatin and pitavastatin. J. Clin. Pharmacol. 42(8), 835–845 (2002).
  • Hu M, Lui SS, Mak VW et al. Pharmacogenetic analysis of lipid responses to rosuvastatin in Chinese patients. Pharmacogenet. Genomics 20(10), 634–637 (2010).
  • Martis S, Peter I, Hulot JS, Kornreich R, Desnick RJ, Scott SA. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J. doi:10.1038/tpj.2012.10 (2012) (Epub ahead of print).
  • Lee SJ. Clinical Application of CYP2C19 Pharmacogenetics Toward More Personalized Medicine. Front. Genet. 3, 318 (2012).
  • Niemi M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics 8(7), 787–802 (2007).
  • Link E, Parish S, Armitage J et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N. Engl. J. Med. 359(8), 789–799 (2008).
  • Brunham LR, Lansberg PJ, Zhang L et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 12(3), 233–237 (2012).
  • Voora D, Shah SH, Spasojevic I et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54(17), 1609–1616 (2009).
  • Akao H, Polisecki E, Kajinami K et al. Genetic variation at the SLCO1B1 gene locus and low density lipoprotein cholesterol lowering response to pravastatin in the elderly. Atherosclerosis 220(2), 413–417 (2012).
  • Tachibana-Iimori R, Tabara Y, Kusuhara H et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab. Pharmacokinet. 19(5), 375–380 (2004).
  • Niemi M, Neuvonen PJ, Hofmann U et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet. Genomics 15(5), 303–309 (2005).
  • Zhang W, Chen BL, Ozdemir V et al. SLCO1B1 521T–>C functional genetic polymorphism and lipid-lowering efficacy of multiple-dose pravastatin in Chinese coronary heart disease patients. Br. J. Clin. Pharmacol. 64(3), 346–352 (2007).
  • Santos PC, Soares RA, Nascimento RM et al. SLCO1B1 rs4149056 polymorphism associated with statin-induced myopathy is differently distributed according to ethnicity in the Brazilian general population: Amerindians as a high risk ethnic group. BMC Med. Genet. 12, 136 (2011).
  • Hu M, Mak VW, Tomlinson B. Intronic variants in SLCO1B1 related to statin–induced myopathy are associated with the low-density lipoprotein cholesterol response to statins in Chinese patients with hyperlipidaemia. Pharmacogenet. Genomics 22(11), 803–806 (2012).
  • Zhang W, Chen BL, Ozdemir V et al. SLCO1B1 521T–>C functional genetic polymorphism and lipid-lowering efficacy of multiple-dose pravastatin in Chinese coronary heart disease patients. Br. J. Clin. Pharmacol. 64(3), 346–352 (2007).
  • Yang GP, Yuan H, Tang B et al. Lack of effect of genetic polymorphisms of SLCO1B1 on the lipid-lowering response to pitavastatin in Chinese patients. Acta. Pharmacol. Sin. 31(3), 382–386 (2010).
  • Hirano M, Maeda K, Hayashi H, Kusuhara H, Sugiyama Y. Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J. Pharmacol. Exp. Ther. 314(2), 876–882 (2005).
  • Kivistö KT, Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm. Res. 24(2), 239–247 (2007).
  • Ho RH, Leake BF, Roberts RL, Lee W, Kim RB. Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J. Biol. Chem. 279(8), 7213–7222 (2004).
  • Zhang W, Yu BN, He YJ et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin. Chim. Acta 373(1–2), 99–103 (2006).
  • Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86(2), 197–203 (2009).
  • Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 10(10), 1617–1624 (2009).
  • Hu M, Mak VWL, Chu TTY, Waye MMY, Tomlinson B. Pharmacogenetics of HMG-CoA reductase inhibitors: optimizing the prevention of coronary heart disease. Curr. Pharmacogenomics Personalized Med. 7(1), 1–26 (2009).
  • Tomlinson B, Hu M, Lee VW et al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin. Pharmacol. Ther. 87(5), 558–562 (2010).
  • Hu M, Lui SS, Mak VW et al. Pharmacogenetic analysis of lipid responses to rosuvastatin in Chinese patients. Pharmacogenet. Genomics (2010).
  • Chasman DI, Giulianini F, Macfadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ. Cardiovasc. Genet. 5(2), 257–264 (2012).
  • Tirona RG. Molecular mechanisms of drug transporter regulation. Handb. Exp. Pharmacol. 201, 373–402 (2011).
  • Hu M, Lui SS, Tam LS, Li EK, Tomlinson B. The farnesoid X receptor -1G>T polymorphism influences the lipid response to rosuvastatin. J. Lipid. Res. 53(7), 1384–1389 (2012).
  • Hodges LM, Markova SM, Chinn LW et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet. Genomics 21(3), 152–161 (2011).
  • Keskitalo JE, Kurkinen KJ, Neuvoneni PJ, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin. Pharmacol. Ther. 84(4), 457–461 (2008).
  • Keskitalo JE, Kurkinen KJ, Neuvonen M, Backman JT, Neuvonen PJ, Niemi M. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br. J. Clin. Pharmacol. 68(2), 207–213 (2009).
  • Becker ML, Visser LE, Van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Common genetic variation in the ABCB1 gene is associated with the cholesterol-lowering effect of simvastatin in males. Pharmacogenomics 10(11), 1743–1751 (2009).
  • Becker ML, Visser LE, Van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy. Pharmacoepidemiol. Drug Saf. 19(1), 75–81 (2010).
  • Mega JL, Morrow DA, Brown A, Cannon CP, Sabatine MS. Identification of genetic variants associated with response to statin therapy. Arterioscler. Thromb. Vasc. Biol. 29(9), 1310–1315 (2009).
  • Bercovich D, Friedlander Y, Korem S et al. The association of common SNPs and haplotypes in the CETP and MDR1 genes with lipids response to fluvastatin in familial hypercholesterolemia. Atherosclerosis 185(1), 97–107 (2006).
  • Deshmukh HA, Colhoun HM, Johnson T et al. Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). J. Lipid Res. 53(5), 1000–1011 (2012).
  • Hopewell JC, Parish S, Offer A et al. Impact of common genetic variation on response to simvastatin therapy among 18 705 participants in the Heart Protection Study. Eur. Heart. J. 34(13), 982–992 (2013).
  • Thompson JF, Hyde CL, Wood LS et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ. Cardiovasc. Genet. 2(2), 173–181 (2009).
  • Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP, Jr, Ridker PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 291(23), 2821–2827 (2004).
  • Kathiresan S, Melander O, Guiducci C et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40(2), 189–197 (2008).
  • Hu M, Mak VW, Tomlinson B. Polymorphisms in apolipoprotein E and apolipoprotein A-V do not influence the lipid response to rosuvastatin but are associated with baseline lipid levels in Chinese patients with hyperlipidemia. J. Clin. Lipidol. 6(6), 585–592 (2012).
  • Wilke RA, Ramsey LB, Johnson SG et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther. 92(1), 112–117 (2012).
  • Wang A, Yu BN, Luo CH et al. Ile118Val genetic polymorphism of CYP3A4 and its effects on lipid-lowering efficacy of simvastatin in Chinese hyperlipidemic patients. Eur. J. Clin. Pharmacol. 60(12), 843–848 (2005).
  • Chen L, Qin S, Xie J et al. Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics 9(6), 691–702 (2008).
  • Jada SR, Xiaochen S, Yan LY et al. Pharmacogenetics of SLCO1B1: haplotypes, htSNPs and hepatic expression in three distinct Asian populations. Eur. J. Clin. Pharmacol. 63(6), 555–563 (2007).
  • Qiu H, Dong H, Pan S, Miao K. The single nucleotide polymorphism and haplotype analysis of MDR1 in Jiangsu Han population of China. Biomed. Pharmacother. 66(6), 459–463 (2012).
  • Tavintharan S, Lim SC, Chan YH, Sum CF. Apolipoprotein E genotype affects the response to lipid-lowering therapy in Chinese patients with type 2 diabetes mellitus. Diabetes. Obes. Metab. 9(1), 81–86 (2007).
  • Ying S, Sun YM, Liu XM, An CY, Gao YY. Effect of ScrF I polymorphism in the 2nd intron of the HMGCR gene on lipid-lowering response to simvastatin in Chinese diabetic patients. Biochem. Biophys. Res. Commun. 363(2), 395–398 (2007).
  • Wei KK, Zhang LR, Zhang Y, Hu XJ. Interactions between CYP7A1 A-204C and ABCG8 C1199A polymorphisms on lipid lowering with atorvastatin. J. Clin. Pharm. Ther. 36(6), 725–733 (2011).
  • Jiang XY, Zhang Q, Chen P et al. CYP7A1 polymorphism influences the LDL cholesterol-lowering response to atorvastatin. J. Clin. Pharm. Ther. 37(6), 719–723 (2012).
  • Fu R, Sun YM, Su Y, Wu Y, Luan Y. Effect of statin therapy on plasma high-density lipoprotein-cholesterol levels is modified by paraoxonase 1 in Chinese patients with coronary heart disease. Clin. Exp. Pharmacol. Physiol. 35(8), 982–983 (2008).
  • Sun YM, Wang LF, Li J, Li ZQ, Pan W. The 223A>G polymorphism of the leptin receptor gene and lipid-lowering efficacy of simvastatin in Chinese patients with coronary heart disease. Eur. J. Clin. Pharmacol. 65(2), 157–161 (2009).
  • Li J, Wang LF, Li ZQ, Pan W. Effect of R219K polymorphism of the ABCA1 gene on the lipid-lowering effect of pravastatin in Chinese patients with coronary heart disease. Clin. Exp. Pharmacol. Physiol. 36(5–6), 567–570 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.