429
Views
17
CrossRef citations to date
0
Altmetric
Theme: Heart Failure - Review

Novel biomarkers for heart failure

, , , , , & show all
Pages 1155-1169 | Published online: 10 Jan 2014

References

  • Go AS, Mozaffarian D, Roger VL et al. Heart disease and stroke statistics – 2013 update. A report from the American Heart Association. Circulation 127, e6–e245 (2013).
  • Weintraub LN et al. Acute heart failure syndromes: emergency department presentation, treatment, and disposition: current approaches and future aims. Circulation 122, 1975–1996 (2010).
  • Collins S P et al. Prevalence of negative chest radiography results in the emergency department patient with decompensated heart failure. Ann. Emerg. Med. 47, 13–18 (2006).
  • Parekh N, Maisel AS. Utility of B-natriuretic peptide in the evaluation of left ventricular diastolic function and diastolic heart failure. Curr. Opin. Cardiol. 24, 155–160 (2009).
  • Adams KF, Fonarow GC, Emerman CL et al. Characteristics and outcomes of patients hospitalized for heart failures in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J. 149, 209–216 (2005).
  • Fonarow GC, Heywood JT, Heidenreich PA, Lopatin M, Yancy CW. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated National Registry (ADHERE). Am. Heart J. 153, 1021–1028 (2007).
  • Biomarkers definitions working group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Therapy 69, 89–95 (2001).
  • Tateyama H, Hino J, Minamino N et al. Characterization of immunoreactive brain natriuretic peptide in human cardiac atrium. Biochem. Biophys. Res. Commun. 166, 1080–1087 (1990).
  • Yandle TG, Richards AM, Gilbert A et al. Assay of brain natriuretic peptide (BNP) in human plasma: evidence for high molecular weight BNP as a major plasma component in heart failure. J Clin Endocrinol. Metab. 76, 832–838 (1993).
  • Yoshimura M, Yasue H, Okumura K et al. Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation 87, 464–469 (1993).
  • Omland T, Aakvaag A, Bonarjee VVS et al. Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction. Circulation 93, 1963–1969 (1996).
  • Hunt PJ, Richards AM, Nicholls MG et al. Immunoreactive amino-terminal pro-brain natriuretic peptide (NT-PROBNP): a new marker of cardiac impairment. Clin. Endocrinol. (Oxf) 47, 287–296 (1997).
  • Tateyama H, Hino J, Minamino N et al. Concentrations and molecular forms of human brain natriuretic peptide in plasma. Biochem. Biophys. Res. Commun. 185, 760–767 (1992).
  • Maisel AS, Krishnaswamy P, Nowak RM et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 347, 161–167 (2002).
  • Fonarow GC, Peacock WF, Phillips CO, Givertz MM, Lopatin M. Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J. Am. Coll. Cardiol. 49, 1943–1950 (2007).
  • Januzzi JL, Camargo CA, Anwaruddin S et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am. J. Cardiol. 95, 948–954 (2005).
  • rishnaswamy P, Lubien E, Clopton P et al. Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. Am. J. Med. 111, 274–279 (2001).
  • Maisel AS, McCord J, Nowak RM et al. Bedside B-type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the breathing not properly multinational study. J. Am. Coll. Cardiol. 41, 2010–2017 (2003).
  • Donoghue MO, Chen A, Baggish AL et al. The effects of ejection fraction on N-terminal ProBNP and BNP levels in patients with acute CHF: analysis from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) study. J. Card. Fail. 11, S9–S14 (2005).
  • Wang TJ, Larson MG, Levy D et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 109(5), 594–600 (2004).
  • Clerico A, Giannoni A, Vittorini S, Emdin M. The paradox of low BNP levels in obesity. Heart Fail. Rev. 17(1), 81–96 (2012).
  • Daniels LB, Clopton P, Bhalla V et al. How obesity affects the cut-points for B-type natriuretic peptide in the diagnosis of acute heart failure. Results from the breathing not properly multinational study. Am. Heart J. 151(5), 999–1005 (2006).
  • Schou M, Dalsgaard MK, Clemmesen O et al. Kidneys extract BNP and NT-proBNP in healthy young men. J. Appl. Physiol. 99, 1676–1680 (2005).
  • Baggish AL, van Kimmenade RR, Januzzi JL. The differential diagnosis of an elevated amino-terminal pro-B-type natriuretic peptide level. Am. J. Cardiol. 101, 43–48 (2008).
  • Bayes-Genis A, Lloyd-Jones DM, van Kimmenade RR et al. Effect of body mass index on diagnostic and prognostic usefulness of amino-terminal pro-brain natriuretic peptide in patients with acute dyspnea. Arch. Intern. Med. 167, 400–407 (2007).
  • Suzuki T, Hayashi D, Yamazaki T et al. Elevated B-type natriuretic peptide levels after anthracycline administration. Am. Heart J. 136, 362–363 (1998).
  • Vesely DL. Atrial natriuretic peptide prohormone gene expression: hormones and diseases that upregulate its expression. IUBMB Life 53, 153–159 (2002).
  • Ruskoaho H. Cardiac hormones as diagnostic tools in heart failure. Endocr. Rev. 24, 341–356 (2003).
  • Cowie MR, Struthers AD, Wood DA et al. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet 350, 1349–1353 (1997).
  • Mueller C, Scholer A, Laule-Kilian K et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N. Engl. J. Med. 350, 647–654 (2004).
  • Omland T, Aakvaag A, Bonarjee VV et al. Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction. Comparison with plasma atrial natriuretic peptide and N-terminal pro-atrial natriuretic peptide. Circulation 93, 1963–1969 (1996).
  • Anand IS, Fisher LD, Chiang YT et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (VAL-HEFT). Circulation 107, 1278–1283 (2003).
  • Cheng V, Kazanagra R, Garcia A et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J. Am. Coll. Cardiol. 37, 386–391 (2001).
  • Morgenthaler NG, Struck J, Thomas B, Bergmann A. Immunoluminometric assay for the midregion of pro-atrial natriuretic peptide in human plasma. Clin. Chem. 50, 234–236 (2004).
  • Cinar O, Cevik E, Acar A et al. Evaluation of mid-regional pro-atrial natriuretic peptide, procalcitonin, and mid-regional proadrenomedullin for the diagnosis and risk stratification of dyspneic ED patients. Am. J. Emerg. Med. 30(9), 1915–1920 (2012).
  • Maisel AS, Mueller C, Nowak R et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea-results from the BACH (Biomarkers in Acute Heart Failure) Trial. J. Am. Coll. Cardiol. 55, 2062–2076 (2010).
  • Miller WL, Hartman KA, Grill DE et al. Serial measurements of mid-region proANP and copeptin in ambulatory patient with heart failure: incremental prognostic value of novel biomarkers in heart failure. Heart 98(5), 389–394 (2012).
  • Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction. J. Am. Coll. Cardiol. 50, 2173–2195 (2007).
  • Apple FS, Jesse RL, Newby LK, Wu AH, Christenson RH. National academy of clinical biochemistry and IFCC committee for standardization of markers of cardiac damage laboratory medicine practice guidelines: analytical issues for biochemical markers of acute coronary syndromes. Circulation 115, e352–e355 (2007).
  • Wu AH, Ford L. Release of cardiac troponin in acute coronary syndromes: ischemia or necrosis? Clin. Chim. Acta 284, 161–174 (1999).
  • Jaffe AS, Ravkilde J, Roberts R et al. It’s time for a change to a troponin standard. Circulation 102, 1216–1220 (2000).
  • Apple FS, Ler R, Murakami MM. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin. Chem. 58, 1574–1581 (2012).
  • Sabatine MS, Morrow DA, de Lemos JA, Jarolim P, Braunwald E. Detection of acute changes in circulating troponin in the setting of transient stress test-induced myocardial ischemia using an ultrasensitivity assay: results from TIMI 35. Eur. Heart J. 30, 162–169 (2009).
  • Saunders JT, Nambi V, de Lemos JA et al. Cardiac troponin T measured by a high sensitivity assay predicts coronary heart disease, heart failure, and mortality in the ARIC study. Circulation. 123(13), 1367–1376 (2011).
  • White HD. Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J. Am. Coll. Cardiol. 57(24), 2406–2408 (2011).
  • Wallace TW, Abdullah SM, Drazner MH et al. Prevalence and determinants of troponin T elevation in the general population. Circulation 113, 1958–1965 (2006).
  • de Lemos JA, Drazner MH, Omland T et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 304, 2503–2512 (2010).
  • Lankeit M, Jimenez D, Kostrubiec M et al. Predictive value of the high-sensitivity troponin T assay and the simplified pulmonary embolism severity index in hemodynamically stable patients with acute pulmonary embolism: a prospective validation study. Circulation 124, 2716–2724 (2011).
  • Xue Y, Clopton P, Peacock WF, Maisel AS. Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur. J. Heart Fail. 13, 37–42 (2011).
  • Rosjo H, Varpula M, Hagve TA et al. Circulating high sensitivity troponin T in severe sepsis and septic shock: Distribution, associated factors, and relation to outcome. Intensive Care Med. 37, 77–85 (2011).
  • Afonso L, Bandaru H, Rathod A et al. Prevalence, determinants, and clinical significance of cardiac troponin-I elevation in individuals admitted for a hypertensive emergency. J Clin Hypertens. (Greenwich) 13, 551–556 (2011).
  • Hoiseth AD, Neukamm A, Karlsson BD, Omland T, Brekke PH, Soyseth V. Elevated high-sensitivity cardiac troponin T is associated with increased mortality after acute exacerbation of chronic obstructive pulmonary disease. Thorax 66(9), 775–781 (2011).
  • de Filippi CR, de Lemos JA, Christenson RH et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA 304, 2494–2502 (2010).
  • Kavsak PA, Wang X, Ko DT, MacRae AR, Jaffe AS. Short- and long-term risk stratification using a next-generation, high-sensitivity research cardiac troponin I (hs-cTnI) assay in an emergency department chest pain population. Clin. Chem. 55, 1809–1815 (2009).
  • Meune C, Reichlin T, Irfan A et al. How safe is the outpatient management of patients with acute chest pain and mildly increased cardiac troponin concentrations? Clin. Chem. 58, 916–924 (2012).
  • Mishra J, Dent C, Tarabishi R et al. Neutriphil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365(9466), 1231–1238 (2005).
  • Maisel AS, Mueller C, Fitzgerald R et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: The NGAL evaluation along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur. J. Heart Fail. 13(8), 846–851 (2011).
  • Collins SP, Hart KW, Lindsell CJ et al. Elevated urinary neutrophil gelatinase-associated lipocalin after acute heart failure treatment is associated with worsening renal function and adverse events. Eur. J. Heart Fail. 14(9), 1020–1029 (2012).
  • Shrestha K, Shao Z, Singh D et al. Relation of systemic and urinary neutrophil gelatinase-associated lipocalin levels to different aspects of impaired renal function in patients with acute decompensated heart failure. Am. J. Cardiol. 110(9), 1329–1335 (2012).
  • Assicot M, Gendrel D, Carsin H et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 341. 515–518 (1993).
  • Carrol ED, Thomson APJ, Hart CA. Procalcitonin as a marker of sepsis. Int. J. Antimicrob. Agents 20, 1–9 (2002).
  • Nijsten M, Olinga P, Hauw TT et al. Procalcitonin behaves as a fast responding acute phase protein in vivo and in vitro. Crit. Care Med. 28, 458–461 (2000).
  • Meisner M, Adina H, Scmidt J. Correlation of procalcitonin and C-reactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients. Crit. Care. 10(1), R1 (2006).
  • Hausfater, P, Garric S, Ayed SB, Rosenheim M, Bernard M, Riou B. Usefulness of procalcitonin as a marker of systemic infection in emergency department patients: a prospective study. Clin. Infect. Dis. 34, 895–901 (2002).
  • Thomsen RW, Kasatpibal N, Riis A et al. The impact of pre-existing heart failure on pneumonia prognosis: population-based cohort study. J. Gen. Intern. Med. 23(9), 1407–1413 (2008).
  • Corrales-Medina VF, Musher DM, Wells GA et al. Cardiac complications in patients with community-acquired pneumonia-Incidence, timing, risk-factors, and association with short-term mortality. Circulation 125, 773–781 (2012).
  • Musher DM, Rueda AM, Kaka AS, Mapara SM. The association between pneumococcal pneumonia and acute cardiac events. Clin. Infect. Dis. 45, 158–165 (2007).
  • Christ-Crain M, Muller B. Biomarkers in respiratory tract infections: diagnostic guides to antibiotic prescription, prognostic markers and mediators. Eur. Respir. J. 30, 556–573 (2007).
  • Russworm S, Wiederhold M, Oberhoffer M et al. Molecular aspects and natural source of procalcitonin. Clin. Chem. Lab. Med. 37, 789–797 (1999).
  • Ittner L, Born W, Rau B et al. Circulating Procalcitonin and cleavage products in septicemia compared with medullary thyroid carcinoma. Eur. J. Endocrinol. 147, 727–731 (2002).
  • Jin M, Khan AI. Procalcitonin: uses in the clinical laboratory for the diagnosis of sepsis. Lab. Med. 41, 173–177 (2009).
  • Müller B, Becker KL, Schächinger H et al. Precursors are reliable markers of sepsis on a medical intensive care unit. Crit. Care Med. 28, 977–983 (2000).
  • Linscheid P, Seboek D, Schaer DJ et al. Expression and secretion of procalcitonin and calcitonin gene-related peptide by adherent monocytes and by macrophage-activated adipocytes. Crit. Care Med. 32, 1715–1721 (2004).
  • Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur. J. Heart Fail. 12, 826–832 (2010).
  • Van Kimmenade RR, Januzzi JLJr, Ellinor PT et al. Utility of amino-terminal pro-brain natriuretic peptide, galecting-3, and apelin for the evaluation of patients with acute HF. J. Am. Coll. Cardiol. 48, 1217–1224 (2006).
  • Lok DJ, Van Der Meer P, de la Porte PW et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic HF: data from the DEAL-HP study. Clin. Res. Cardiol. 99, 323–328 (2012).
  • De Boer RA, Lok DJ, Jaarsma T et al. Predictive value of plasma galectin-3 levels in HF with reduced and preserved ejection fraction. Ann. Med. 43, 60–68 (2011).
  • Grandin EW, Jarolim P, Murphy SA et al. Galectin-3 and the development of HF after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22. Clin. Chem. 58, 267–273 (2012).
  • Tominaga S. A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett. 258(2), 301–304 (1989).
  • Schmitz J, Owyang A, Oldham E et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type-2-associated cytokines. Immunity 23(5), 479–490 (2005).
  • Weinberg EO, Shimpo M, De Keulenaer GW et al. T. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 106(23), 2961–2966 (2002).
  • Sanda S, Hakuno D, Higgins LJ et al. IL-33 and ST2 compirse a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117(6), 1538–1549 (2007).
  • Lassus J, Gayat E, Mueller C et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The multinational observational cohort on acute heart failure (MOCA) study. Int. J. Cardiol. S0167–S5273(13)00288-X (2013).
  • Mueller T, Dieplinger B, Gegenhuber A, Poelz W, Pacher R, Haltmayer M. Increased plasma concentrations of soluble st2 are predictive for 1-year mortality in patients with acute destabilized heart failure. Clin. Chem. 54, 752–756 (2008).
  • Adlbrecht C, Hulsmann M, Strunk G et al. Prognostic value of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients. Eur. J. Heart Fail. 11(4), 361–366 (2009).
  • Pousset F, Masson F, Chavirovskaia O et al. Plasma adrenomedullin, a new independent predictor of prognosis in patients with chronic heart failure. Eur. Heart J. 21(12), 1009–1014 (2000).
  • Nishikimi T, Saito Y, Kitamura K et al. Increased plasma levels of adrenomedullin in patients with heart failure. J. Am. College. Cardiol. 26(6), 1424–1431 (1995).
  • Richards AM, Doughty R, Nicholls MG et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. J. Am. Coll. Cardiol. 37(7), 1781–1787 (2001).
  • Meeran K, O'Shea D, Upton PD et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J. Clin. Endocrinol. Metab. 82(1), 95–100 (1997).
  • Von Haehling S, Filippatos GS, Papassotiriou J et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur. J. Heart Fail. 12(5), 484–491 (2010).
  • Maisel A, Mueller C, Nowak RM et al. Midregion prohormone adrenomedullin and prognosis in patients presenting with acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J. Am. Coll. Cardiol. 58(10), 1057–1067 (2011).
  • Shah RV, Truong QA, Gaggin HK et al. Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnea. Eur. Heart J. 33(17), 2197–2205 (2012).
  • Jougasaki M, Wei CM, McKinley LJ, Burnett JCJr. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation 92(3), 286–289 (1995).
  • Klip IT, Voors AA, Anker SD et al. Prognostic value of mid-regional pro-adrenomedullin in patients with heart failure after an acute myocardial infarction. Heart 97(11), 892–898 (2011).
  • Dhillon O, Khan S, Narayan H et al. Prognostic value of mid-regional pro-adrenomedullin levels taken on admission and discharge in non-ST elevation myocardial infarction: The LAMP II Study. J. Am. Coll. Cardiol. 56, 125–133 (2010).
  • Lotz M, Jirik F, Kabouridis P et al. B cell stimulating factor 2/interleukin 6 is a co stimulant for human thymocytes and T lymphocytes. J. Exp. Med. 167(3), 1253–1258 (1988).
  • Hirano T, Yasukawa K, Harada H et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324(6092), 73–76 (1986).
  • Loppnow H, Libby P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J. Clin. Invest. 85(3), 731–738 (1990).
  • Luger TA, Krutmann J, Kirnbauer R et al. IFN-beta 2/IL-6 augments the activity of human natural killer cells. J. Immunol. 143(4), 1206–1209 (1989).
  • Gwechenberger M, Mendoza LH, Youker KA et al. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 99(4), 546–551 (1999).
  • Deliargyris EN, Raymond RJ, Theoharides TC, Boucher WS, Tate DA, Dehmer GJ. Sites of interleukin-6 release in patients with acute coronary syndromes and in patients with congestive heart failure. Am. J. Cardiol. 86(9), 913–918 (2000).
  • Deng MC, Erren M, Lütgen A et al. Interleukin-6 correlates with hemodynamic impairment during dobutamine administration in chronic heart failure. Int. J. Cardiol. 57(2), 129–134 (1996).
  • Tsutamoto T, Hisanaga T, Wada A et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J. Am. Coll. Cardiol. 31(2), 391–398 (1998).
  • Maeda K, Tsutamoto T, Wada A et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J. Am. Coll. Cardiol. 36(5), 1587–1593 (2000).
  • Pudil R, Tichy M, Andrys C et al. Plasma interleukin-6 is associated with NT-proBNP level and predict short and long term mortality in patients with acute heart failure. Acta Medica (Hradec Kralove) 53, 225–228 (2010).
  • Koenig W, Sund M, Frohlich M et al. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99(2), 237–242 (1999).
  • Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342(12), 836–843 (2000).
  • Boekholdt SM, Hack CE, Sandhu MS et al. C-reactive protein levels and coronary artery disease incidence and mortality in apparently healthy men and women: the EPIC-Norfolk prospective population study 1993–2003. Atherosclerosis 187(2), 415–422 (2006).
  • Cesari M, Penninx BW, Newman AB et al. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation 108(19), 2317–2322 (2003).
  • Meier-Ewert HK, Ridker PM et al. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J. Am. Coll. Cardiol. 43(4), 678–683 (2004).
  • Castell JV, Gómez-Lechón MJ, David M et al. Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6. Hepatology 12(5), 1179–1186 (1990).
  • Herity NA. Interleukin 6: a message from the heart. Heart 84(1), 9–10 (2000).
  • Alonso-Martínez JL, Llorente-Diez B, Echegaray-Agara M, Olaz-Preciado F, Urbieta-Echezarreta M, González-Arencibia C. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur. J. Heart Fail. 4(3), 331–336 (2002).
  • Yin WH, Chen JW, Jen HL et al. Independent prognostic value of elevated high-sensitivity C-reactive protein in chronic heart failure. Am. Heart J. 147(5), 931–938 (2004).
  • Suleiman M, Khatib R, Agmon Y et al. Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction predictive role of C-reactive protein. J. Am. Coll. Cardiol. 47(5), 962–928 (2006).
  • Berton G, Cordiano R, Palmieri R et al. C-reactive protein in acute myocardial infarction: association with heart failure. Am. Heart J. 145(6), 1094–1101 (2003).
  • Kardys I, Knetsch AM, Bleumink GS et al C-reactive protein and risk of heart failure. The rotterdam study. Am. Heart J. 152(3), 514–220 (2006).
  • Williams ES, Shah SJ, Ali S et al. C-reactive protein, diastolic dysfunction, and risk of heart failure in patients with coronary disease: Heart and Soul Study. Eur. J. Heart Fail. 10(1), 63–69 (2008).
  • Dabla PK, Dabla V, Arora S. Co-peptin: Role as a novel biomarker in clinical practice. Clin. Chim. Acta 412, 22–28 (2011).
  • Goldsmith SR, Gheorghiade M. Vassopressin antagonism in heart failure. J. Am. Coll. Cardiol. 46, 1785–1791 (2005).
  • Szinnai G, Morgenthaler NG, Berneis K et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 92, 3973–3978 (2007).
  • Morgenthaler NG, Struck J, Alonso C, Bergman A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).
  • Stoiser B, Mörtl D, Hülsmann M et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur. J. Clin. Invest. 36, 771–778 (2006).
  • Peacock WF, Nowak R, Christenson R et al. Short-term mortality risk in emergency department acute heart failure. Acad. Emerg. Med. 18, 947–958 (2011).
  • Voors AA, von Haehling S, Anker SD et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: Results from the OPTIMAAL study. Eur. Heart J. 30, 1187–1194 (2009).
  • Kempf T, Eden M, Strelau J et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res. 98(3), 351–360 (2006).
  • Kempf T, Wollert KC. Growth-differentiation factor-15 in heart failure. Heart Fail. Clin. 5(4), 537–547 (2009).
  • Xu J, Kimball TR, Lorenz JN et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ. Res. 98, 342–350 (2006).
  • Kempf T, Von Haehling S, Peter T et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J. Am. Coll. Cardiol. 50, 1054–1060 (2007).
  • Khan SQ, Ng K, Dhillon O et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur. Heart J. 30(9), 1057–1065 (2009).
  • Yin WH, Chen JW, Feng AN et al. Multimarker approach to risk stratification among patients with advanced chronic heart failure. Clin. Cardiol. 30, 397–402 (2007).
  • Ishino M, Takeishi Y, Nitzeki T, Watanabe T, Nitobe J, Miyamoto T. Risk stratification of chronic heart failure patients with multiple biomarkers: implications of BNP, H-FABP, and PTX3. Circ. J. 72, 1800–1805 (2008).
  • Nitzeki T, Takeishi Y, Kitahara T et al. Combination of conventional biomarkers for risk stratification in chronic heart failure. J. Cardiol. 53, 179–187 (2009).
  • Tziakas D, Chalikias G, Stakos D et al. Independent and additive prognostic ability of serum carboxy-terminal telopeptide of collagen type-I in heart failure patients: a multimarker approach with high-negative predictive value to rule out long-term adverse events. Eur. J. Prev. Cordiol. 19(1), 62–71 (2012).
  • Volpe M, Francia P, Tocci G et al. Prediction of long-term survival in chronic heart failure by multiple biomarker assessment: a 15-year prospective follow-up study. Clin. Cardiol. 33, 700–707 (2010).
  • Tang WH, Shrestha K, Troughton RW, Borowski AG, Klein AL. Integrating plasma high-sensitivity C-reactive protein and Myeloperoxidase for risk prediction on chronic systolic heart failure. Congest. Heart Fail. 17, 105–109 (2011).
  • Adamcova M, Ruzickova S, Simko F. Multiplexed immunoassays for simultaneous quantification of cardiovascular biomarkers in the model of H(G)-nitro-L-arginine methylester (L-NAME) hypertensive rat. J. Physiol. Pharmacol. 64(2), 211–217 (2013).
  • Lupón J, de Antonio M, Galán A et al. Combined use of the novel biomarkers high-sensitivity troponin T and ST2 for heart failure risk stratification vs conventional assessment. Mayo Clin. Proc. 88(3), 234–43 (2013).
  • Ky B, French B, Levy WC et al. Multiple biomarkers for risk prediction in chronic heart failure. Eur. J. Heart Fail. 13(7), 718–725 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.