406
Views
36
CrossRef citations to date
0
Altmetric
Reviews

Electrospinning of biomimetic scaffolds for tissue-engineered vascular grafts: threading the path

&

References

  • Eagle KA, Guyton RA, Davidoff R. ACC/AHA guidelines for coronary artery bypass graft surgery. J Am Coll Cardiol 1999;34(4):1262-347
  • Gaudino M, Cellini C, Pragliola C, et al. Arterial versus venous bypass grafts in patients with in-stent restenosis. Circulation 2005;112(9 Suppl):I-265-9
  • Zilla P, Bezuidenhout D, Human P. Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 2007;28(34):5009-27
  • Walpoth BH, Bowlin GL. The daunting quest for a small diameter vascular graft. Expert Rev Med Devices 2005;2(6):647-51
  • Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282(21):2035-42
  • Holzapfel GA, Ogden RW. Constitutive modelling of arteries. Proc R Soc A 2010;466(2118):1551-97
  • Glagov S, Zarins CK, Masawa N, et al. Mechanical functional role of non-atherosclerotic intimal thickening. Fromt Med Biol Eng 1993;5(1):37-43
  • O’Connell MK, Murthy S, Phan S, et al. The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol 2008;27(3):171-81
  • Armentano RL, Levenson J, Barra JG, et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am J Physiol 1991;260(6 PART 2):H1870-7
  • Patel A, Fine B, Sandig M, Mequanint K. Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res 2006;71(1):40-9
  • Majesky MW, Dong XR, Hoglund V, et al. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol 2011;31(7):1530-9
  • Thomas LV, Lekshmi V Nair PD. Tissue engineered vascular grafts--preclinical aspects. Int J Cardiol 2013;167(4):1091-100
  • Naito Y, Shin’oka T, Duncan D, et al. Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev 2011;63(4-5):312-23
  • Peck M, Dusserre N, Mcallister TN, L’Heureux N. Tissue engineering by self-assembly. Mater Today 2011;14(5):218-24
  • L’Heureux N, Páquet S, Labbé R, et al. A completely biological tissue-engineered human blood vessel. FASEB J 1998;12:47-56
  • Mcallister TN, Maruszewski M, Garrido SA, et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009;373(9673):1440-6
  • Teebken OE, Bader A, Steinhoff G, Haverich A. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg 2000;19(4):381-6
  • Hawkins JA, Hillman ND, Lambert LM, et al. Immunogenicity of decellularized cryopreserved allografts in pediatric cardiac surgery: comparison with standard cryopreserved allografts. J Thorac Cardiovasc Surg 2003;126(1):247-52
  • Heine J, Schmiedl A, Cebotari S, et al. Preclinical assessment of a tissue-engineered vasomotive human small-calibered vessel based on a decellularized xenogenic matrix: histological and functional characterization. Tissue Eng Part A 2011;17(9-10):1253-61
  • Quint C, Arief M, Muto A, et al. Allogeneic human tissue-engineered blood vessel. J Vasc Surg 2012;55(3):790-8
  • Simon P, Kasimir MT, Seebacher G, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT™ in pediatric patients. Eur J Cardiothorac Surg 2003;23(6):1002-6
  • Naito Y, Imai Y, Shin’oka T, et al. Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. J Thorac Cardiovasc Surg 2003;125(2):419-20
  • Shin’oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 2005;129(6):1330-8
  • Hibino N, Mcgillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 2010;139(2):431-6. e431-432
  • Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986;231(4736):397-400
  • Cummings CL, Gawlitta D, Nerem RM, Stegemann JP. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 2004;25(17):3699-706
  • Tschoeke B, Flanagan TC, Koch S, et al. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng Part A 2009;15(8):1909-18
  • Koch S, Flanagan TC, Sachweh JS, et al. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 2010;31(17):4731-9
  • Kurobe H, Maxfield MW, Breuer CK, Shin’oka T. Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future. Stem Cells Transl Med 2012;1(7):566-71
  • Dvir T, Timko BP, Kohane DS, Langer RL. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 2010;6:13-22
  • Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 2010;28(3):325-47
  • Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 2004;25(5):877-86
  • Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 2007;28(11):1967-77
  • Bashur CA, Shaffer RD, Dahlgren LA, et al. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng Part A 2009;15(9):2435-45
  • Baker BM, Nathan AS, Gee AO, Mauck RL. The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials 2010;31(24):6190-200
  • Rayatpisheh S, Heath DE, Shakouri A, et al. Combining cell sheet technology and electrospun scaffolding for engineered tubular, aligned, and contractile blood vessels. Biomaterials 2014;35(9):2713-19
  • Eichorn S, Sampson WW. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface 2005;2:309-15
  • Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf) 2001;42:261-72
  • Katta P, Alessandro M, Ramsier RD, Chase GG. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 2004;4(11):2215-18
  • Shalumon KT, Chennazhi KP, Tamura H, et al. Fabrication of three-dimensional nano, micro and micro/nano scaffolds of porous poly(lactic acid) by electrospinning and comparison of cell infiltration by Z-stacking/three-dimensional projection technique. IET Nanobiotechnol 2012;6(1):16-25
  • Lowery JL, Datta N, Rutledge GC. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Biomaterials 2010;31(3):491-504
  • Telemeco TA, Ayres C, Bowlin GL, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater 2005;1(4):377-85
  • Ionescu LC, Mauck RL. Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro. Tissue Eng Part A 2013;19(3-4):538-47
  • Zhu Y, Cao Y, Pan J, Liu Y. Macro-alignment of electrospun fibers for vascular tissue engineering. J Biomed Mater Res B Appl Biomater 2010;92(2):508-16
  • Lee CH, Shin HJ, Cho IH, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 2005;26(11):1261-70
  • Wu H, Fan J, Chu CC, Wu J. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci Mater Med 2010;21(12):3207-15
  • Kim K, Luu YK, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 2004;98(1):47-56
  • Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005;26(18):3961-71
  • Dong YX, Yong T, Liao S, et al. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells. Tissue Eng Part A 2010;16(1):283-98
  • Wise SG, Byrom MJ, Waterhouse A, et al. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater 2011;7(1):295-303
  • Zandén C, Voinova M, Gold J, et al. Surface characterisation of oxygen plasma treated electrospun polyurethane fibres and their interaction with red blood cells. Eur Polymer J 2012;48(3):472-82
  • Li M, Mondrinos MJ, Gandhi MR, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 2005;26(30):5999-6008
  • Perumcherry SR, Chennazhi KP, Nair SV, et al. A novel method for the fabrication of fibrin-based electrospun nanofibrous scaffold for tissue-engineering applications. Tissue Eng Part C Methods 2011;17(11):1121-30
  • McKenna KA, Hinds MT, Sarao RC, et al. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomater 2012;8(1):225-33
  • Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials 1996;17(8):831-9
  • Sung H-J, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 2004;25(26):5735-42
  • Jockenhoevel S, Zund G, Hoerstrup SP, et al. Fibrin gel - advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 2001;19:424-36
  • Harding SI, Afoke A, Brown RA, et al. Engineering and cell attachment properties of human fibronectin-fibrinogen scaffolds for use in tissue engineered blood vessels. Bioprocess Biosyst Eng 2002;25(1):53-9
  • Telemeco TA, Ayres C, Bowlin GL, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater 2005;1(4):377-85
  • Nimni M, Harkness R. Molecular structures and functions of collagen. Collagen 1988;1:1-77
  • Matthews JA, Wnek GE, Simpson D, Bowlin G. Electrospinning of collagen nanofibers. Biomacromolecules 2002;3:232-8
  • Davis GE. Affinity of integrins for damaged extracellular matrix: αvβ3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun 1992;182(3):1025-31
  • Zeugolis DI, Khew ST, Yew ES, et al. Electro-spinning of pure collagen nano-fibres – just an expensive way to make gelatin? Biomaterials 2008;29(15):2293-305
  • White JV, Mazzacco SL. Formation and growth of aortic aneurysms induced by adventitial elastolysis. Ann N Y Acad Sci 1996;800(1):97-120
  • Weisel JW. The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem 2004;112(2-3):267-76
  • Wnek GE, Carr ME, Simpson D, Bowlin G. Electrospinning of nanofiber fibrinogen structures. Nano Lett 2003;3(2):213-16
  • Aper T, Schmidt A, Duchrow M, Bruch HP. Autologous blood vessels engineered from peripheral blood sample. Eur J Vasc Endovasc Surg 2007;33(1):33-9
  • Dietrich M, Heselhaus J, Wozniak J, et al. Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation. Tissue Eng Part C Methods 2013;19(3):216-26
  • McManus MC, Boland ED, Simpson DG, et al. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mater Res A 2007;81(2):299-309
  • McManus M, Boland E, Sell S, et al. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mater 2007;2(4):257-62
  • Zarkoob S, Eby RK, Reneker DH, et al. Structure and morphology of electrospun silk nanofibers. Polymer (Guildf) 2004;45(11):3973-7
  • Jin H, Fririkh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 2002;3:1233-9
  • Soffer L, Wang X, Zhang X, et al. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed 2008;19(5):653-64
  • Bunning TJ, Jiang H, Adams WW, et al. Applications of silk. In: Kaplan D, Adams WW, Farmer B, Viney C, editors. Silk polymers. American Chemical Society; Washington, DC: 1993. p. 353-8
  • Vaz CM, Van Tuijl S, Bouten CV, Baaijens FP. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater 2005;1(5):575-82
  • Thomas V, Zhang X, Catledge SA, Vohra YK. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater 2007;2(4):224-32
  • Nieponice A, Soletti L, Guan JJ, et al. In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A 2010;16(4):1215-23
  • Shalumon KT, Sreerekha PR, Sathish D, et al. Hierarchically designed electrospun tubular scaffolds for cardiovascular applications. J Biomed. Nanotechnol 2011;7(5):609-20
  • Asefnejad A, Khorasani MT, Behnamghader A, et al. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. Int J Nanomedicine 2011;6:2375-84
  • Rim NG, Shin CS, Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 2013;8(1):014102
  • Stitzel J, Liu J, Lee SJ, et al. Controlled fabrication of a biological vascular substitute. Biomaterials 2006;27(7):1088-94
  • McClure MJ, Sell SA, Simpson DG, et al. A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater 2010;6(7):2422-33
  • Rapoport HS, Fish J, Basu J, et al. Construction of a tubular scaffold that mimics J-shaped stress/strain mechanics using an innovative electrospinning technique. Tissue Eng Part C Methods 2012;18(8):567-74
  • Grey CP, Newton ST, Bowlin GL, et al. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter. Biomaterials 2013;34(21):4993-5006
  • Baker BM, Shah RP, Silverstein AM, et al. Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc Natl Acad Sci USA 2012;109(35):14176-81
  • Sundararaghavan HG, Burdick JA. Gradients with depth in electrospun fibrous scaffolds for directed cell behavior. Biomacromolecules 2011;12(6):2344-50
  • Lee YH, Lee JH, An IG, et al. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 2005;26(16):3165-72
  • Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 2007;13(9):2249-57
  • Kim TG, Chung HJ, Park TG. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater 2008;4(6):1611-19
  • Wright LD, Andric T, Freeman JW. Utilizing NaCl to increase the porosity of electrospun materials. Mater Sci Eng C 2011;31(1):30-6
  • Simonet M, Schneider OD, Neuenschwander P, Stark WJ. Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template. Polym Eng Sci 2007;47(12):2020-6
  • Leong MF, Rasheed MZ, Lim TC, Chian KS. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A 2009;91(1):231-40
  • Bulysheva AA, Bowlin GL, Klingelhutz AJ, Yeudall WA. Low-temperature electrospun silk scaffold for in vitro mucosal modeling. J Biomed Mater Res A 2012;100(3):757-67
  • Shabani I, Haddadi-Asl V, Seyedjafari E, Soleimani M. Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Biochem Biophys Res Commun 2012;423(1):50-4
  • Lee CH, Lim YC, Powell HM, et al. Electrospun vascular graft properties following femtosecond laser ablation. J App Polym Sci 2012;124(3):2513-23
  • Ji W, Sun Y, Yang F, et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res 2011;28(6):1259-72
  • Chen FM, Shelton RM, Jin Y, Chapple IL. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. Med Res Rev 2009;29(3):472-513
  • Han J, Farah S, Domb AJ, Lelkes PI. Electrospun rapamycin-eluting polyurethane fibers for vascular grafts. Pharm Res 2013;30(7):1735-48
  • Dong B, Smith ME, Wnek GE. Encapsulation of multiple biological compounds within a single electrospun fiber. Small 2009;5(13):1508-12
  • Yan S, Xiaoqiang L, Shuiping L, et al. Controlled release of dual drugs from emulsion electrospun nanofibrous mats. Colloids Surf B Biointerfaces 2009;73(2):376-81
  • Mickova A, Buzgo M, Benada O, et al. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 2012;13(4):952-62
  • Huang HH, He CL, Wang HS, Mo XM. Preparation of core-shell biodegradable microfibers for long-term drug delivery. J Biomed Mater Res A 2009;90(4):1243-51
  • Janairo RR, Henry JJ, Lee BL, et al. Heparin-modified small-diameter nanofibrous vascular grafts. IEEE Trans Nanobioscience 2012;11(1):22-7
  • Huang C, Wang S, Qiu L, et al. Heparin loading and pre-endothelialization in enhancing the patency rate of electrospun small-diameter vascular grafts in a canine model. ACS Appl Mater Interfaces 2013;5(6):2220-6
  • Zhai W, Qiu LJ, Mo XM, et al. Coaxial electrospinning of P(LLA-CL)/heparin biodegradable polymer nanofibers: potential vascular graft for substitution of femoral artery. J Biomed Mater Res B Appl Biomater 2013. Epub ahead of print
  • Zhang H, Jia X, Han F, et al. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials 2013;34(9):2202-12
  • Ionescu LC, Lee GC, Sennett BJ, et al. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 2010;31(14):4113-20
  • Stankus JJ, Guan J, Fujimoto K, Wagner WR. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 2006;27(5):735-44
  • Tai NR, Salacinski HJ, Edwards A, et al. Compliance properties of conduits used in vascular reconstruction. Br J Surg 2000;87(11):1516-24
  • Sarkar S, Hillery C, Seifalian A, Hamilton G. Critical parameter of burst pressure measurement in development of bypass grafts is highly dependent on methodology used. J Vasc Surg 2006;44(4):846-52
  • McClure MJ, Wolfe PS, Simpson DG, et al. The use of air-flow impedance to control fiber deposition patterns during electrospinning. Biomaterials 2012;33(3):771-9
  • McClure MJ, Simpson DG, Bowlin GL. Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: optimization of graft properties. J Mech Behav Biomed Mater 2012;10:48-61
  • Jeong SI, Kim SY, Cho SK, et al. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 2007;28(6):1115-22
  • Pektok E, Nottelet B, Tille JC, et al. Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 2008;118(24):2563-70
  • Soletti L, Nieponice A, Hong Y, et al. In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications. J Biomed Mater Res A 2011;96(2):436-48
  • Yao Y, Wang J, Cui Y, et al. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater 2014;10(6):2739-49
  • Zhou M, Qiao W, Liu Z, et al. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial cells and electrospun chitosan/poly(epsilon-caprolactone) nanofibrous scaffolds. Tissue Eng Part A 2014;20(1-2):79-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.