949
Views
4
CrossRef citations to date
0
Altmetric
Editorial

Late sodium current dysregulation as a causal factor in arrhythmia

&
Pages 545-547 | Received 04 Jan 2016, Accepted 15 Feb 2016, Published online: 16 Mar 2016

References

  • Nattel S, et al. New directions in cardiac arrhythmia management: present challenges and future solutions. Can J Cardiol. 2014;30(12 Suppl): S420–30. doi:10.1016/j.cjca.2014.09.027.
  • Frommeyer G, et al. Late sodium current inhibition: the most promising antiarrhythmic principle in the near future? Curr Med Chem. 2014;21(11):1271–1280.
  • Hund TJ, Mohler PJ. Nav channel complex heterogeneity: new targets for the treatment of arrhythmia?. Circulation. 2014;130:132–134. doi:10.1161/CIRCULATIONAHA.114.010867.
  • Coppini R, et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127(5):575–584. doi:10.1161/CIRCULATIONAHA.112.134932.
  • Glynn P, et al. Voltage-gated sodium channel phosphorylation at Ser571 regulates late current, arrhythmia, and cardiac function in vivo. Circulation. 2015;132(7):567–577. doi:10.1161/CIRCULATIONAHA.114.015218.
  • Burashnikov A, Antzelevitch C. Role of late sodium channel current block in the management of atrial fibrillation. Cardiovasc Drugs Ther. 2013;27(1):79–89. doi:10.1007/s10557-012-6421-1.
  • Scirica BM, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the Metabolic Efficiency With Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2007;116(15):1647–1652. doi:10.1161/CIRCULATIONAHA.107.724880.
  • Sossalla S, et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts–role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol. 2008;45(1):32–43. doi:10.1016/j.yjmcc.2008.03.006.
  • Maltsev VA, et al. Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation. 1998;98(23):2545–2552.
  • Toischer K, et al. Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. J Mol Cell Cardiol. 2013;61:111–122. doi:10.1016/j.yjmcc.2013.03.021.
  • Valdivia CR, et al. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol. 2005;38(3):475–483. doi:10.1016/j.yjmcc.2004.12.012.
  • Belardinelli L, et al. Cardiac late Na(+) current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm. 2015;12(2):440–448. doi:10.1016/j.hrthm.2014.11.009.
  • Shryock JC, et al. The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res. 2013;99(4):600–611. doi:10.1093/cvr/cvt145.
  • Song Y, et al. Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes. J Cardiovasc Pharmacol. 2004;44(2):192–199.
  • Undrovinas AI, et al. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol. 2006;17(Suppl 1): S169–S177. doi:10.1111/j.1540-8167.2006.00401.x.
  • Burashnikov A, et al. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation. 2007;116(13):1449–1457. doi:10.1161/CIRCULATIONAHA.107.704890.
  • Marionneau C, Abriel H. Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications. J Mol Cell Cardiol. 2015;82:36–47. doi:10.1016/j.yjmcc.2015.02.013.
  • Swaminathan PD, et al. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res. 2012;110(12):1661–1677. doi:10.1161/CIRCRESAHA.111.243956.
  • Hund TJ, et al. A betaIV spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest. 2010;120:3508–3519. doi:10.1172/JCI43621.
  • Ashpole NM, et al. Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites. J Biol Chem. 2012;287:19856–19869. doi:10.1074/jbc.M111.322537.
  • Koval OM, et al. Ca2+/calmodulin-dependent protein kinase II-based regulation of voltage-gated Na+ channel in cardiac disease. Circulation. 2012;126(17):2084–2094. doi:10.1161/CIRCULATIONAHA.112.105320.
  • Aiba T, et al. Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc Res. 2010;85:454–463. doi:10.1093/cvr/cvp324.
  • Wagner S, et al. Ca/calmodulin-dependent protein kinase II regulates cardiac Na channels. J Clin Invest. 2006;116(12):3127–3138. doi:10.1172/JCI26620.
  • Marionneau C, et al. Mass spectrometry-based identification of native cardiac Nav1.5 channel alpha subunit phosphorylation sites. J Proteome Res. 2012;11(12):5994–6007. doi:10.1021/pr300702c.
  • Herren AW, et al. CaMKII phosphorylation of NaV1.5: novel in vitro sites identified by mass spectrometry and reduced S516 phosphorylation in human heart failure. J Proteome Res. 2015;14(5):2298–2311. doi:10.1021/acs.jproteome.5b00107.
  • Hennrich ML, Gavin AC. Quantitative mass spectrometry of posttranslational modifications: keys to confidence. Sci Signal. 2015;8(371):re5. doi:10.1126/scisignal.aaa6466.
  • Wang Q, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80(5):805–811.
  • Bennett P, et al. Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995;376(Aug 24):683–685. doi:10.1038/376683a0.
  • Morotti S, et al. Atrial-selective targeting of arrhythmogenic phase-3 early afterdepolarizations in human myocytes. J Mol Cell Cardiol. 2015. doi:10.1016/j.yjmcc.2015.07.030.
  • Belardinelli L, et al. A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J Pharmacol Exp Ther. 2013;344(1):23–32. doi:10.1124/jpet.112.198887.
  • Mishra S, et al. Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts. J Physiol. 2015;593(6):1409–1427. doi:10.1113/jphysiol.2014.278259.
  • Van Oort RJ, et al. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation. 2010;122(25):2669–2679. doi:10.1161/CIRCULATIONAHA.110.982298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.