51
Views
6
CrossRef citations to date
0
Altmetric
Review

Vascular engineering for bypass surgery

, , &
Pages 659-665 | Published online: 10 Jan 2014

References

  • Lopez AD, Murray CC. The global burden of disease, 1990–2020. Nature Med. 4(11), 1241–1243 (1998).
  • American Heart Association. Heart Disease and Stroke Statistics – 2005 Update. American Heart Association, Dallas, TX, USA (2005).
  • Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ. Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif. Organs 26(4), 307–320 (2002).
  • Durand E, Scoazec A, Lafont A et al. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation. Circulation 109, 2503–2506 (2004).
  • Bujan J, Garcia-Honduvilla N, Bellon JM. Engineering conduits to resemble natural vascular tissue. Biotechnol. Appl. Biochem. 39(Pt 1), 17–27 (2004).
  • Tiwari A, Salacinski H, Seifalian AM, Hamilton G. New prostheses for use in bypass grafts with special emphasis on polyurethanes. Cardiovasc. Surg. 10(3), 191–197 (2002).
  • Walpoth BH, Rogulenko R, Tikhvinskaia E et al. Improvement of patency rate in heparin-coated small synthetic vascular grafts. Circulation 98(Suppl. 19), 319–323 (1998).
  • Kiyama H, Imazeki T, Kurihara S, Yoneshima H. Long-term follow-up of polyurethane vascular grafts for hemoaccess bridge fistulas. Ann. Vasc. Surg. 17(5), 516–521 (2003).
  • Nakagawa Y, Ota K, Sato Y, Teraoka S, Agishi T. Clinical trial of new polyurethane vascular grafts for hemodialysis: compared with expanded polytetrafluoroethylene grafts. Artif. Organs 19(12), 1227–1232 (1995).
  • Gloor B, Wehrli E, Rotzer A et al. Small-caliber polyurethane arterial prosthesis: clinical and angiomorphological follow-up of 20 patients in a prospective study. Swiss Surg. Suppl. 1, 13–18 (1996).
  • Chang TM. Platelet–surface interaction: effect of albumin coating or heparin complexing on thrombogenic surfaces. Can. J. Physiol. Pharmacol. 52(2), 275–285 (1974).
  • Gott VL, Whiffen JD, Dutton RC. Heparin bonding on colloidal graphite surfaces. Science 142, 1297–1298 (1963).
  • Chen C, Ofenloch JC, Yianni YP, Hanson SR, Lumsden AB. Phosphorylcholine coating of ePTFE reduces platelet deposition and neointimal hyperplasia in arteriovenous grafts. J. Surg. Res. 77(2), 119–125 (1998).
  • Klement P, Du YJ, Berry L, Andrew M, Chan AK. Blood-compatible biomaterials by surface coating with a novel antithrombin–heparin covalent complex. Biomaterials 23(2), 527–535 (2002).
  • Christenson JT, Thulesius O, Owunwanne A, Nazzal M. Forskolin impregnation of small calibre PTFE grafts lowers early platelet graft sequestration and improves patency in a sheep model. Eur. J. Vasc. Surg. 5(3), 271–275 (1991).
  • Devine C, Hons B, McCollum C. Heparin-bonded Dacron® or polytetrafluoroethylene for femoropopliteal bypass grafting: a multicenter trial. J. Vasc. Surg. 33(3), 533–539 (2001).
  • Mansfield PB, Wechezak AR, Sauvage LR. Preventing thrombus on artifical vascular surfaces: true endothelial cell linings. Trans. Am. Soc. Artif. Intern. Organs 21, 264–272 (1975).
  • Herring M, Gardner A, Glover J. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery 84(4), 498–504 (1978).
  • Herring M, Smith J, Dalsing M et al. Endothelial seeding of polytetrafluoroethylene femoral popliteal bypasses: the failure of low-density seeding to improve patency. J. Vasc. Surg. 20(4), 650–655 (1994).
  • Hess F, Steeghs S, Jerusalem R et al. Patency and morphology of fibrous polyurethane vascular prostheses implanted in the femoral artery of dogs after seeding with subcultivated endothelial cells. Eur. J. Vasc. Surg. 7(4), 402–408 (1993).
  • Meinhart JG, Deutsch M, Fischlein T et al. Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann. Thorac. Surg. 71(Suppl. 5), S327–331 (2001).
  • Meerbaum SO, Sharp WV, Shmidt SP. Lower extremity revascularization with polytetraflouroethylen grafts seeded with microvascular endothelial cells. In: Applied cardiovascular biology. Zilla P, Fasol R, Callow A (Eds). Karger, Basel, Switzerland, 107–119 (1990).
  • Kaushal S, Amiel GE, Guleserian KJ et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nature Med. 7(9), 1035–1040 (2001).
  • Dichek DA, Anderson J, Kelly AB, Hanson SR, Harker LA. Enhanced in vivo antithrombotic effects of endothelial cells expressing recombinant plasminogen activators transduced with retroviral vectors. Circulation 93(2), 301–309 (1996).
  • Kader KN, Akella R, Ziats NP et al. eNOS-overexpressing endothelial cells inhibit platelet aggregation and smooth muscle cell proliferation in vitro. Tissue Eng. 6(3), 241–251 (2000).
  • Falk J, Townsend LE, Vogel LM et al. Improved adherence of genetically modified endothelial cells to small-diameter expanded polytetrafluoroethylene grafts in a canine model. J. Vasc. Surg. 27(5), 902–908 (1998).
  • Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736), 397–400 (1986).
  • Berglund JD, Mohseni MM, Nerem RM, Sambanis A. A biological hybrid model for collagen-based tissue engineered vascular constructs. Biomaterials 24(7), 1241–1254 (2003).
  • Hirai J, Matsuda T. Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process. Cell Transplant. 5(1), 93–105 (1996).
  • L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 12(1), 47–56 (1998).
  • L’Heureux N, Stoclet JC, Auger FA et al. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J. 15(2), 515–524 (2001).
  • Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med. 344(7), 532–533 (2001).
  • Seliktar D, Black RA, Vito RP, Nerem RM. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28(4), 351–362 (2000).
  • Niklason LE, Abbott W, Gao J et al. Morphologic and mechanical characteristics of engineered bovine arteries. J. Vasc. Surg. 33(3), 628–638 (2001).
  • Niklason LE, Gao J, Abbott WM et al. Functional arteries grown in vitro. Science 284(5413), 489–493 (1999).
  • McKee JA, Banik SS, Boyer MJ et al. Human arteries engineered in vitro. EMBO Rep. 4(6), 633–638 (2003).
  • Campbell JH, Campbell GR. Culture techniques and their applications to studies of vascular smooth muscle. Clin. Sci. (London) 85(5), 501–513 (1993).
  • Matsumura G, Miyagawa-Tomita S, Shin’oka T et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108, 1729–1734 (2003).
  • Hibino N, Shin’oka T, Matsumura G et al. The tissue-engineered vascular graft using bone marrow without culture. J. Thorac. Cardiovasc. Surg. 129(5) 1064–1070 (2005).
  • Daly CD, Campbell GR, Walker PJ, Campbell JH. In vivo engineering of blood vessels. Front. Biosci. 9, 1915–1924 (2004).
  • Clarke DR, Lust RM, Sun YS, Black KS, Ollerenshaw JD. Transformation of nonvascular acellular tissue matrices into durable vascular conduits. Ann. Thorac. Surg. 71(Suppl. 5), S433–S436 (2001).
  • Huynh T, Abraham G, Murray J et al. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nature Biotechnol. 17(11), 1083–1086 (1999).
  • Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12(3–4), 367–377 (2004).
  • Cho SW, Lim SH, Kim IK et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg. 241(3), 506–515 (2005).
  • van der Lei B, Darius H, Schror K et al. Arterial wall regeneration in small-caliber vascular grafts in rats. Neoendothelial healing and prostacyclin production. J. Thorac. Cardiovasc. Surg. 90(3), 378–386 (1985).
  • van der Lei B, Nieuwenhuis P, Molenaar I, Wildevuur CR. Long-term biologic fate of neoarteries regenerated in microporous, compliant, biodegradable, small-caliber vascular grafts in rats. Surgery 101(4), 459–467 (1987).
  • Sparks CH. Autogenous grafts made to order. Ann. Thorac. Surg. 8(2), 104–113 (1969).
  • Hallin RW, Sweetman WR. The Sparks’ mandril graft. A seven year follow-up of mandril grafts placed by Charles H Sparks and his associates. Am. J. Surg. 132(2), 221–223 (1976).
  • Christenson JT, Eklof B. Sparks mandril, velour Dacron® and autogenous saphenous vein grafts in femoropopliteal bypass. Br. J. Surg. 66(7), 514–517 (1979).
  • Tsukagoshi T, Yenidunya MO, Sasaki E, Suse T, Hosaka Y. Experimental vascular graft using small-caliber fascia-wrapped fibrocollagenous tube: short-term evaluation. J. Reconstr. Microsurg. 15(2), 127–131 (1999).
  • Nakayama Y, Ishibashi-Ueda H, Takamizawa K. In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell Transplant. 13(4), 439–449 (2004).
  • Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ. Res. 85(12), 1173–1178 (1999).
  • Chue WL, Campbell GR, Caplice N et al. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J. Vasc. Surg. 39(4), 859–867 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.