127
Views
10
CrossRef citations to date
0
Altmetric
Review

Effects of PPARα on cardiac glucose metabolism: a transcriptional equivalent of the glucose-fatty acid cycle?

Pages 161-171 | Published online: 10 Jan 2014

References

  • Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 414(6865), 782–787 (2001).
  • Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16(2), 434–444 (1993).
  • Koskinen P, Manttari M, Manninen V et al. Coronary heart disease incidence in NIDDM patients in the Helsinki Heart Study. Diabetes Care 15(7), 820–825 (1992).
  • Miettinen H, Lehto S, Salomaa V et al. Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care 21(1), 69–75 (1998).
  • Cho E, Rimm EB, Stampfer MJ, Willett WC, Hu FB. The impact of diabetes mellitus and prior myocardial infarction on mortality from all causes and from coronary heart disease in men. J. Am. Coll. Cardiol. 40(5), 954–960 (2002).
  • Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20(5), 649–688 (1999).
  • Gilde AJ, van der Lee KA, Willemsen PH et al. Peroxisome proliferator-activated receptor (PPAR)α and PPARβ/δ, but not PPARγ, modulate the expression of genes involved in cardiac lipid metabolism. Circ. Res. 92(5), 518–524 (2003).
  • Aasum E, Cooper M, Severson DL, Larsen TS. Effect of BM 17.0744, a PPARα ligand, on the metabolism of perfused hearts from control and diabetic mice. Can. J. Physiol. Pharmacol. 83(2), 183–190 (2005).
  • Cook WS, Yeldandi AV, Rao MS, Hashimoto T, Reddy JK. Less extrahepatic induction of fatty acid β-oxidation enzymes by PPARα. Biochem. Biophys. Res. Commun. 278(1), 250–257 (2000).
  • Finck BN, Bernal-Mizrachi C, Han DH et al. A potential link between muscle peroxisome proliferator-activated receptor-α signaling and obesity-related diabetes. Cell Metab. 1(2), 133–144 (2005).
  • Finck BN, Lehman JJ, Leone TC et al. The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109(1), 121–130 (2002).
  • Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor a (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. Proc. Natl Acad. Sci. USA 96(13), 7473–7478 (1999).
  • Kersten S, Seydoux J, Peters JM et al. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin. Invest. 103(11), 1489–1498 (1999).
  • Watanabe K, Fujii H, Takahashi T et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor α associated with age-dependent cardiac toxicity. J. Biol. Chem. 275(29), 22293–22299 (2000).
  • Finck BN, Han X, Courtois M et al. A critical role for PPARα-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc. Natl Acad. Sci. USA 100(3), 1226–1231 (2003).
  • Luptak I, Balschi JA, Xing Y et al. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-α-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112(15), 2339–2346 (2005).
  • Campbell FM, Kozak R, Wagner A et al. A role for peroxisome proliferator-activated receptor α (PPARα) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARα are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J. Biol. Chem. 277(6), 4098–4103 (2002).
  • Tordjman K, Bernal-Mizrachi C, Zemany L et al. PPARα deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J. Clin. Invest. 107(8), 1025–1034 (2001).
  • Guerre-Millo M, Rouault C, Poulain P et al. PPAR-α-null mice are protected from high-fat diet-induced insulin resistance. Diabetes 50(12), 2809–2014 (2001).
  • Haluzik M, Gavrilova O, LeRoith D. Peroxisome proliferator-activated receptor-{α} deficiency does not alter insulin sensitivity in mice maintained on regular or high-fat diet: hyperinsulinemic-euglycemic clamp studies. Endocrinology 145(4), 1662–1667 (2004).
  • Cheng L, Ding G, Qin Q et al. Peroxisome proliferator-activated receptor δ activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem. Biophys. Res. Commun. 313(2), 277–286 (2004).
  • Luquet S, Lopez-Soriano J, Holst D et al. Peroxisome proliferator-activated receptor d controls muscle development and oxidative capability. Faseb J. 17(15), 2299–2301 (2003).
  • Wang YX, Zhang CL, Yu RT et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2(10), e294 (2004).
  • Wang YX, Lee CH, Tiep S et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113(2), 159–170 (2003).
  • Cheng L, Ding G, Qin Q et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-d deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nature Med. 10(11), 1245–1250 (2004).
  • Peters JM, Lee SS, Li W et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol. Cell Biol. 20(14), 5119–5128 (2000).
  • Barak Y, Liao D, He W et al. Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc. Natl Acad. Sci. USA 99(1), 303–308 (2002).
  • Akiyama TE, Lambert G, Nicol CJ et al. Peroxisome proliferator-activated receptor β/δ regulates very low density lipoprotein production and catabolism in mice on a Western diet. J. Biol. Chem. 279(20), 20874–20881 (2004).
  • Xu Y, Gen M, Lu L et al. PPAR-γ activation fails to provide myocardial protection in ischemia and reperfusion in pigs. Am. J. Physiol. Heart Circ. Physiol. 288(3), H1314–H1323 (2005).
  • Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-γ both induce cardiac hypertrophy in mice. Circ Res. 97(4), 372–379 (2005).
  • Barak Y, Nelson MC, Ong ES et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell. 4(4), 585–595 (1999).
  • McGarry JD. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258(5083), 766–70 (1992).
  • Petersen KF, Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am. J. Cardiol. 90(5A), 11G–8G (2002).
  • Delerive P, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors in inflammation control. J. Endocrinol. 169(3), 453–459 (2001).
  • Delerive P, Gervois P, Fruchart JC, Staels B. Induction of IκBα expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-α activators. J. Biol. Chem. 275(47), 36703–36707 (2000).
  • Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res. 49(10), 497–505 (2000).
  • Rival Y, Beneteau N, Taillandier T et al. PPARα and PPARδ activators inhibit cytokine-induced nuclear translocation of NF-kappaB and expression of VCAM-1 in EAhy926 endothelial cells. Eur. J. Pharmacol. 435(2–3), 143–151 (2002).
  • Duez H, Chao YS, Hernandez M et al. Reduction of atherosclerosis by the peroxisome proliferator-activated receptor α agonist fenofibrate in mice. J. Biol. Chem. 277(50), 48051–48057 (2002).
  • Fu T, Kashireddy P, Borensztajn J. The peroxisome-proliferator-activated receptor alpha agonist ciprofibrate severely aggravates hypercholesterolaemia and accelerates the development of atherosclerosis in mice lacking apolipoprotein E. Biochem. J. 373(Pt. 3), 941–994(2003).
  • Aasum E, Belke DD, Severson DL et al. Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-α activator. Am. J. Physiol. Heart Circ. Physiol. 283(3), H949–H947 (2002).
  • Xu Y, Lu L, Greyson C et al. The PPAR-{α} Activator, Fenofibrate, Fails to Provide Myocardial Protection in Ischemia and Reperfusion in Pigs. Am. J. Physiol. Heart Circ. Physiol. (2005).
  • Keech A, Simes RJ, Barter P et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366(9500), 1849–1861 (2005).
  • Israelian-Konaraki Z, Reaven PD. Peroxisome proliferator-activated receptor-α and atherosclerosis: from basic mechanisms to clinical implications. Cardiol. Rev. 13(5), 240–246 (2005).
  • Han SH, Quon MJ, Koh KK. Beneficial vascular and metabolic effects of peroxisome proliferator-activated receptor-{α} activators. Hypertension (2005).
  • Fredenrich A, Grimaldi PA. PPAR δ: an uncompletely known nuclear receptor. Diabetes Metab. 31(1), 23–27 (2005).
  • Fredenrich A, Grimaldi PA. Roles of peroxisome proliferator-activated receptor δ in skeletal muscle function and adaptation. Curr. Opin. Clin. Nutr. Metab. Care. 7(4), 377–381 (2004).
  • Bedu E, Wahli W, Desvergne B. Peroxisome proliferator-activated receptor β/δ as a therapeutic target for metabolic diseases. Expert Opin. Ther. Targets. 9(4), 861–873 (2005).
  • Tanaka T, Yamamoto J, Iwasaki S et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA 100(26), 15924–15929 (2003).
  • Dressel U, Allen TL, Pippal JB et al. The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17(12), 2477–93 (2003).
  • Oliver WR Jr, Shenk JL, Snaith MR et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl Acad. Sci. USA 98(9), 5306–11 (2001).
  • Chawla A, Lee CH, Barak Y et al. PPARδ is a very low-density lipoprotein sensor in macrophages. Proc. Natl Acad. Sci. USA 100(3), 1268–73 (2003).
  • Lee CH, Chawla A, Urbiztondo N et al. Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302(5644), 453–7 (2003).
  • Smith SA. Central role of the adipocyte in the insulin-sensitising and cardiovascular risk modifying actions of the thiazolidinediones. Biochimie 85(12), 1219–30 (2003).
  • DeFronzo RA. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int. J. Clin. Pract. 143 (Suppl.), 9–21 (2004).
  • Li AC, Binder CJ, Gutierrez A et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J. Clin. Invest. 114(11), 1564–76 (2004).
  • Li AC, Glass CK. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J. Lipid Res. 45(12), 2161–73 (2004).
  • Akiyama TE, Sakai S, Lambert G et al. Conditional disruption of the peroxisome proliferator-activated receptor γ gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol. Cell Biol. 22(8), 2607–19 (2002).
  • Li AC, Brown KK, Silvestre MJ et al. Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 106(4), 523–31 (2000).
  • Combs TP, Wagner JA, Berger J et al. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARγ agonists: a potential mechanism of insulin sensitization. Endocrinology 143(3), 998–1007 (2002).
  • Yang B, Brown KK, Chen L et al. Serum adiponectin as a biomarker for in vivo PPARγ activation and PPARγ a gonist-induced efficacy on insulin sensitization/lipid lowering in rats. BMC Pharmacol. 4(1), 23 (2004).
  • Moore GB, Chapman H, Holder JC et al. Differential regulation of adipocytokine mRNAs by rosiglitazone in db/db mice. Biochem. Biophys. Res. Commun. 286(4), 735–41 (2001).
  • Bouskila M, Pajvani UB, Scherer PE. Adiponectin: a relevant player in PPARγ-agonist-mediated improvements in hepatic insulin sensitivity? Int. J. Obes. (Lond) 29(Suppl. 1), S17–S23 (2005).
  • Cunard R, Ricote M, DiCampli D et al. Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. J. Immunol. 168(6), 2795–2802 (2002).
  • Pascual G, Fong AL, Ogawa S et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 437(7059), 759–763 (2005).
  • Carley AN, Semeniuk LM, Shimoni Y et al. Treatment of type 2 diabetic db/db mice with a novel PPARγ agonist improves cardiac metabolism but not contractile function. Am. J. Physiol. Endocrinol. Metab. 286(3), E449–E455 (2004).
  • Hallsten K, Virtanen KA, Lonnqvist F et al. Enhancement of insulin-stimulated myocardial glucose uptake in patients with Type 2 diabetes treated with rosiglitazone. Diabet. Med. 21(12), 1280–1287 (2004).
  • Golfman LS, Wilson CR, Sharma S et al. Activation of PPARγ enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats. Am. J. Physiol. Endocrinol. Metab. 289(2), E328–E336 (2005).
  • Frantz S, Hu K, Widder J et al. Peroxisome proliferator activated-receptor agonism and left ventricular remodeling in mice with chronic myocardial infarction. Br. J. Pharmacol. 141(1), 9–14 (2004).
  • Shiomi T, Tsutsui H, Hayashidani S et al. Pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 106(24), 3126–3132 (2002).
  • Ito H, Nakano A, Kinoshita M, Matsumori A. Pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates myocardial ischemia/reperfusion injury in a rat model. Lab Invest. 83(12), 1715–1721 (2003).
  • Cuzzocrea S. Peroxisome proliferator-activated receptors γ ligands and ischemia and reperfusion injury. Vascul. Pharmacol. 41(6), 187–195 (2004).
  • Lygate CA, Hulbert K, Monfared M et al. The PPARγ-activator rosiglitazone does not alter remodeling but increases mortality in rats post-myocardial infarction. Cardiovasc. Res. 58(3), 632–637 (2003).
  • Xu Y, Lu L, Greyson C et al. Deleterious effects of acute treatment with a peroxisome proliferator-activated receptor-γ activator in myocardial ischemia and reperfusion in pigs. Diabetes 52(5), 1187–1194 (2003).
  • Dormandy JA, Charbonnel B, Eckland DJ et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366(9493), 1279–1289 (2005).
  • Parulkar AA, Pendergrass ML, Granda-Ayal R, Lee TR, Fonseca VA. Nonhypoglycemic effects of thiazolidinediones. Ann. Intern. Med. 134(1), 61–71 (2001).
  • Staels B. Fluid retention mediated by renal PPARγ. Cell Metab. 2(2), 77–78 (2005).
  • Guan Y, Hao C, Cha DR et al. Thiazolidinediones expand body fluid volume through PPARγ stimulation of ENaC-mediated renal salt absorption. Nature Med. 11(8), 861–866 (2005).
  • Zhang H, Zhang A, Kohan DE et al. Collecting duct-specific deletion of peroxisome proliferator-activated receptor gamma blocks thiazolidinedione-induced fluid retention. Proc. Natl Acad. Sci. USA 102(26), 9406–9411 (2005).
  • Nesto RW, Bell D, Bonow RO et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care 27(1), 256–263 (2004).
  • Sambandam N, Morabito D, Wagg C et al. Chronic activation of PPAR{α} is detrimental to cardiac recovery following ischemia. Am. J. Physiol. Heart Circ. Physiol. (2005).
  • Park SY, Cho YR, Finck BN et al. Cardiac-specific overexpression of peroxisome proliferator-activated receptor-α causes insulin resistance in heart and liver. Diabetes 54(9), 2514–2524 (2005).
  • Harris IS, Treskov I, Rowley MW et al. G-protein signaling participates in the development of diabetic cardiomyopathy. Diabetes 53(12), 3082–3090 (2004).
  • Panagia M, Gibbons GF, Radda GK, Clarke K. PPAR-a activation required for decreased glucose uptake and increased susceptibility to injury during ischemia. Am. J. Physiol. Heart Circ. Physiol. 288(6), H2677–H2683 (2005).
  • Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).
  • Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL. Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J. Biol. Chem. 273(23), 14285–14292 (1998).
  • Barnes BR, Zierath JR. Role of AMP-activated protein kinase in the control of glucose homeostasis. Curr. Mol. Med. 5(3), 341–348 (2005).
  • Carling D. The AMP-activated protein kinase cascade– a unifying system for energy control. Trends. Biochem. Sci. 29(1), 18–24 (2004).
  • Holmes BF, Olson AL, Winder WW, Dohm GL. Regulation of Muscle GLUT4 Enhancer Factor and Myocyte Enhancer Factor 2 by AMP-Activated Protein Kinase. Am. J. Physiol. Endocrinol. Metab. (2005).
  • Michael LF, Wu Z, Cheatham RB et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl Acad. Sci. USA 98(7), 3820–3825 (2001).
  • Zong H, Ren JM, Young LH et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl Acad. Sci. USA 99(25), 15983–15987 (2002).
  • Ojuka EO, Jones TE, Nolte LA et al. Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca(2+). Am. J. Physiol. Endocrinol. Metab. 282(5), E1008–E1013 (2002).
  • Armoni M, Harel C, Bar-Yoseph F, Milo S, Karnieli E. Free fatty acids repress the GLUT4 gene expression in cardiac muscle via novel response elements. J. Biol. Chem. 280(41), 34786–34795 (2005).
  • Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with Type 2 diabetes mellitus. JAMA (2005).
  • Peters JM, Aoyama T, Burns AM, Gonzalez FJ. Bezafibrate is a dual ligand for PPARα and PPARβ: studies using null mice. Biochim Biophys Acta. 1632(1–3), 80–89 (2003).
  • Tenenbaum A, Motro M, Fisman EZ et al. Bezafibrate for the secondary prevention of myocardial infarction in patients with metabolic syndrome. Arch. Intern. Med. 165(10), 1154–1160 (2005).
  • Tenenbaum A, Motro M, Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc. Diabetol. 4, 14 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.