69
Views
14
CrossRef citations to date
0
Altmetric
Review

Nutrient-restricted fetus and the cardio–renal connection in hypertensive offspring

, , &
Pages 227-238 | Published online: 10 Jan 2014

References

  • Barker DJ, Clark PM. Fetal undernutrition and disease in later life. Rev. Reprod. 2, 105–112 (1997).
  • Bell AW, Hay WW Jr, Ehrhardt RA. Placental transport of nutrients and its implications for fetal growth. J. Reprod. Fertil. 54(Suppl.), 401–410 (1999).
  • Giles WB, Trudinger BJ, Baird PJ. Fetal umbilical artery flow velocity waveforms and placental resistance: pathological correlation. Br. J. Obstet. Gynaecol. 92, 31–38 (1985).
  • McCowan LM, Erskine LA, Ritchie K. Umbilical artery Doppler blood flow studies in the preterm, small for gestational age fetus. Am. J. Obstet. Gynecol. 156, 655–659 (1987).
  • Snell LH, Haughey BP, Buck G, Marecki MA. Metabolic crisis: hyperemesis gravidarum. J. Perinat. Neonatal Nurs. 12, 26–37 (1998).
  • Gilbert JS, Lang AL, Grant AR, Nijland MJ. Maternal nutrient restriction in sheep: hypertension and decreased nephron number in offspring at 9 months of age. J. Physiol. 565, 137–147 (2005).
  • Vonnahme KA, Hess BW, Hansen TR et al. Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy, and increased liver weight in the fetal sheep. Biol. Reprod. 69, 133–140 (2003).
  • Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1, 1077–1081 (1986).
  • Barker DJ. In utero programming of chronic disease. Clin. Sci. (Lond) 95, 115–128 (1998).
  • Wadsworth ME, Cripps HA, Midwinter RE, Colley JR. Blood pressure in a national birth cohort at the age of 36 related to social and familial factors, smoking, and body mass. BMJ (Clin. Res. Ed.) 291, 1534–1538 (1985).
  • Forsdahl A. Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974–75. J. Epidemiol. Community Health 32, 34–37 (1978).
  • Grollman A, Grollman E. The teratogenic induction of hypertension. J. Clin. Invest. 41, 710–714 (1962).
  • Barker DJ, Osmond C, Simmonds SJ, Wield GA. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306, 422–426 (1993).
  • Rich-Edwards JW, Stampfer MJ, Manson J et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315, 396–400 (1997).
  • Jarvelin MR, Sovio U, King V et al. Early life factors and blood pressure at age 31 years in the 1966 northern Finland birth cohort. Hypertension 44, 838–846 (2004).
  • Stein CE, Fall CH, Kumaran K, Osmond C, Cox V, Barker DJ. Fetal growth and coronary heart disease in south India. Lancet 348, 1269–1273 (1996).
  • Zhao M, Shu XO, Jin F et al. Birthweight, childhood growth and hypertension in adulthood. Int. J. Epidemiol. 31, 1043–1051 (2002).
  • Cruickshank JK, Mbanya JC, Wilks R, Balkau B, McFarlane-Anderson N, Forrester T. Sick genes, sick individuals or sick populations with chronic disease? The emergence of diabetes and high blood pressure in African-origin populations. Int. J. Epidemiol. 30, 111–117 (2001).
  • Hoy WE, Mathews JD, McCredie DA et al. The multidimensional nature of renal disease: rates and associations of albuminuria in an Australian Aboriginal community. Kidney Int. 54, 1296–1304 (1998).
  • Roseboom TJ, van der Meulen JH, Osmond C et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart 84, 595–598 (2000).
  • Khan I, Dekou V, Hanson M, Poston L, Taylor P. Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation 110, 1097–1102 (2004).
  • Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr. Res. 56, 311–317 (2004).
  • McMillen IC. The sheep – an ideal model for biomedical research? ANZCCART News 14, 1–4 (2001).
  • Kind KL, Simonetta G, Clifton PM, Robinson JS, Owens JA. Effect of maternal feed restriction on blood pressure in the adult guinea pig. Exp. Physiol. 87, 469–477 (2002).
  • Langley-Evans SC, Welham SJ, Jackson AA. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci. 64, 965–974 (1999).
  • Lelievre-Pegorier M, Vilar J, Ferrier ML et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 54, 1455–1462 (1998).
  • Woodall SM, Johnston BM, Breier BH, Gluckman PD. Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr. Res. 40, 438–443 (1996).
  • Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr. Res. 49, 460–467 (2001).
  • Langley-Evans SC. Critical differences between two low protein diet protocols in the programming of hypertension in the rat. Int. J. Food Sci. Nutr. 51, 11–17 (2000).
  • Sahajpal V, Ashton N. Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin. Sci. (Lond.) 104, 607–614 (2003).
  • Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int. 59, 238–245 (2001).
  • Langley-Evans S, Jackson A. Intrauterine programming of hypertension: nutrient–hormone interactions. Nutr. Rev. 54, 163–169 (1996).
  • Gardner DS, Jackson AA, Langley-Evans SC. The effect of prenatal diet and glucocorticoids on growth and systolic blood pressure in the rat. Proc. Nutr. Soc. 57, 235–240 (1998).
  • Langley-Evans SC, Gardner DS, Jackson AA. Maternal protein restriction influences the programming of the rat hypothalamic-pituitary–adrenal axis. J. Nutr. 126, 1578–1585 (1996).
  • Langley-Evans SC, Phillips GJ, Jackson AA. Fetal exposure to low protein maternal diet alters the susceptibility of young adult rats to sulfur dioxide-induced lung injury. J. Nutr. 127, 202–209 (1997).
  • Whorwood CB, Firth KM, Budge H, Symonds ME. Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11β-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin II receptor in neonatal sheep. Endocrinology 142, 2854–2864 (2001).
  • Symonds ME, Heasman L, Clarke L, Firth K, Stephenson T. Maternal nutrition and disproportionate placental-to-fetal growth. Biochem. Soc. Trans. 26, 91–96 (1998).
  • Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 312, 410–414 (1996).
  • Ravelli AC, van der Meulen JH, Michels RP et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).
  • Reynolds LP, Redmer DA. Utero–placental vascular development and placental function. J. Anim. Sci. 73, 1839–1851 (1995).
  • Ford SP. Control of blood flow to the gravid uterus of domestic livestock species. J. Anim. Sci. 73, 1852–1860 (1995).
  • Moritz KM, Wintour EM. Functional development of the meso- and metanephros. Pediatr. Nephrol. 13, 171–178 (1999).
  • Benirschke K. Remarkable placenta. Clin. Anat. 111,1942205 (2005).
  • Schlabritz-Loutsevitch NE, Howell K, Rice K et al. Development of a system for individual feeding of baboons maintained in an outdoor group social environment. J. Med. Primatol. 33, 117–126 (2004).
  • Stewart DE, Raskin J, Garfinkel PE, MacDonald OL, Robinson GE. Anorexia nervosa, bulimia, and pregnancy. Am. J. Obstet. Gynecol. 157, 1194–1198 (1987).
  • Franko DL, Spurrell EB. Detection and management of eating disorders during pregnancy. Obstet. Gynecol. 95, 942–946 (2000).
  • King JC. The risk of maternal nutritional depletion and poor outcomes increases in early or closely spaced pregnancies. J. Nutr. 133, 1732S–1736S (2003).
  • Hickey CA, Kreauter M, Bronstein J et al. Low prenatal weight gain among adult WIC participants delivering term singleton infants: variation by maternal and program participation characteristics. Matern. Child. Health J. 3, 129–140 (1999).
  • Hurley KM, Caulfield LE, Sacco LM, Costigan KA, Dipietro JA. Psychosocial influences in dietary patterns during pregnancy. J. Am. Diet Assoc. 105, 963–966 (2005).
  • Palmer JL, Jennings GE, Massey L. Development of an assessment form: attitude toward weight gain during pregnancy. J. Am. Diet Assoc. 85, 946–949 (1985).
  • Conti J, Abraham S, Taylor A. Eating behavior and pregnancy outcome. J. Psychosom. Res. 44, 465–477 (1998).
  • Fairburn CG, Welch SL. The impact of pregnancy on eating habits and attitudes to shape and weight. Int. J. Eat. Disord. 9, 153–160 (1990).
  • Abraham S, King W, Llewellyn-Jones D. Attitudes to body weight, weight gain and eating behavior in pregnancy. J. Psychosom. Obstet. Gynaecol. 15, 189–195 (1994).
  • Henriksen T, Clausen T. The fetal origins hypothesis: placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstet. Gynecol. Scand. 81, 112–114 (2002).
  • Witlin DO, Sibai MD. Hypertension in pregnancy: current concepts of preeclampsia. Ann. Rev. Med. 48, 115–127 (1997).
  • National High Blood-Pressure Education Program Working Group. Report on high blood-pressure in pregnancy – foreword. Am. J. Obstet. Gynecol. 163, 1689 (1990).
  • Saftlas AF, Olson DR, Franks AL, Atrash HK, Pokras R. Epidemiology of preeclampsia and eclampsia in the United States, 1979–1986. Am. J. Obstet. Gynecol. 163, 460–465 (1990).
  • Alexander BT. Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension 41, 457–462 (2003).
  • Alexander BT, Hendon AE, Ferril G, Dwyer TM. Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45(4), 754–758 (2005).
  • Anderson CM, Lopez F, Zhang HY, Pavlish K, Benoit JN. Reduced uteroplacental perfusion alters uterine arcuate artery function in the pregnant Sprague-Dawley rat. Biol. Reprod. 72, 762–766 (2005).
  • Payne JA, Alexander BT, Khalil RA. Reduced endothelial vascular relaxation in growth-restricted offspring of pregnant rats with reduced uterine perfusion. Hypertension 42, 768–774 (2003).
  • Schreuder MF, Nyengaard JR, Fodor M, van Wijk JAE, Delemarre-van de Waal H. Glomerular number and function are influenced by spontaneous and induced low birth weight in rats. J. Am. Soc. Nephrol. 16, 2913–2919 (2005).
  • Veerareddy S, Campbell ME, Williams SJ, Baker PN, Davidge ST. Myogenic reactivity is enhanced in rat radial uterine arteries in a model of maternal undernutrition. Am. J. Obstet. Gynecol. 191, 334–339 (2004).
  • Torrens C, Brawley L, Barker AC, Itoh S, Poston L, Hanson MA. Maternal protein restriction in the rat impairs resistance artery but not conduit artery function in pregnant offspring. J. Physiol. (Lond.) 547, 77–84 (2003).
  • Kempley ST, Gamsu HR, Vyas S, Nicolaides K. Effects of intrauterine growth retardation on postnatal visceral and cerebral blood flow velocity. Arch. Dis. Child. 66, 1115–1118 (1991).
  • McMillen IC, Adams MB, Ross JT et al. Fetal growth restriction: adaptations and consequences. Reproduction 122, 195–204 (2001).
  • Welham SJM, Riley PR, Wade A, Hubank M, Woolf AS. Maternal diet programs embryonic kidney gene expression. Physiological Genomics 22, 48–56 (2005).
  • Shade RE, Cox L, Schlabritz-Loutsevitch N, Nijland MJ, Nathanielsz PW. Maternal nutrient restriction (NR) influences fetal renal genes related to nephrogenesis. J. Soc. Gynecol. Investig. 12, 121A–122A (2005).
  • Simmons RA, Flozak AS, Ogata ES. The effect of insulin and insulin-like growth factor-I on glucose transport in normal and small for gestational age fetal rats. Endocrinology 133, 1361–1368 (1993).
  • Schroeder RE, Doria-Medina CL, Das UG, Sivitz WI, Devaskar SU. Effect of maternal diabetes upon fetal rat myocardial and skeletal muscle glucose transporters. Pediatr. Res. 41, 11–19 (1997).
  • Sadiq HF, Das UG, Tracy TF, Devaskar SU. Intra-uterine growth restriction differentially regulates perinatal brain and skeletal muscle glucose transporters. Brain Res. 823, 96–103(1999).
  • Anderson MS, Flowers-Ziegler J, Das UG, Hay WW Jr, Devaskar SU. Glucose transporter protein responses to selective hyperglycemia or hyperinsulinemia in fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1545–R1552 (2001).
  • Dandrea J, Wilson V, Gopalakrishnan G et al. Maternal nutritional manipulation of placental growth and glucose transporter 1 (GLUT-1) abundance in sheep. Reproduction 122, 793–800 (2001).
  • Langley-Evans SC. Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J. Hypertens. 15, 537–544 (1997).
  • Corstius H, Zimanyi M, Maka N et al. Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts. Pediatr. Res. 57, 796–800 (2005).
  • Gilbert JS, Lang AL, Nijland MJ. Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression. Reprod. Biol. Endocrinol. 3, 27 (2005).
  • Han HC, Austin KJ, Nathanielsz PW, Ford SP, Nijland MJ, Hansen TR. Maternal nutrient restriction alters gene expression in the ovine fetal heart. J. Physiol. 558, 111–121 (2004).
  • Beinlich CJ, White GJ, Baker KM, Morgan HE. Angiotensin II and left ventricular growth in newborn pig heart. J. Mol. Cell Cardiol. 23, 1031–1038 (1991).
  • Beinlich CJ, Morgan HE. Control of growth in neonatal pig hearts. Mol. Cell Biochem. 119, 3–9 (1993).
  • Beinlich CJ, Rissinger CJ, Morgan HE. Mechanisms of rapid growth in the neonatal pig heart. J. Mol. Cell Cardiol. 27, 273–281 (1995).
  • Samyn ME, Petershack JA, Bedell KA, Mathews MS, Segar JL. Ontogeny and regulation of cardiac angiotensin types 1 and 2 receptors during fetal life in sheep. Pediatr. Res. 44, 323–329 (1998).
  • Segar JL, Scholz TD, Bedell KA, Smith OM, Huss DJ, Guillery EN. Angiotensin AT1 receptor blockade fails to attenuate pressure-overload cardiac hypertrophy in fetal sheep. Am. J. Physiol. 273, R1501–R1508 (1997).
  • Segar JL, Dalshaug GB, Bedell KA, Smith OM, Scholz TD. Angiotensin II in cardiac pressure-overload hypertrophy in fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R2037–R2047 (2001).
  • Sundgren NC, Giraud GD, Stork PJ, Maylie JG, Thornburg KL. Angiotensin II stimulates hyperplasia but not hypertrophy in immature ovine cardiomyocytes. J. Physiol. 548, 881–891 (2003).
  • Choi JH, Yoo KH, Cheon HW et al. Angiotensin converting enzyme inhibition decreases cell turnover in the neonatal rat heart. Pediatr. Res. 52, 325–332 (2002).
  • Vehaskari VM, Stewart T, Lafont D, Soyez C, Seth D, Manning J. Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am. J. Physiol. Renal. Physiol. 287, F262–F267 (2004).
  • McMullen S, Gardner DS, Langley-Evans SC. Prenatal programming of angiotensin II type 2 receptor expression in the rat. Br. J. Nutr. 91, 133–140 (2004).
  • Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int. 65, 1339–1348 (2004).
  • Merlet-Benichou C, Gilbert T, Muffat-Joly M, Lelievre-Pegorier M, Leroy B. Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr. Nephrol. 8, 175–180 (1994).
  • Silver LE, Decamps PJ, Korst LM, Platt LD, Castro LC. Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus. Am. J. Obstet. Gynecol. 188, 1320–1325 (2003).
  • Latini G, De Mitri B, Del Vecchio A, Chitano G, De Felice C, Zetterstrom R. Foetal growth of kidneys, liver and spleen in intrauterine growth restriction: ‘programming’ causing ‘metabolic syndrome’ in adult age. Acta Paediatr. 93, 1635–1639 (2004).
  • Hinchliffe SA, Lynch MR, Sargent PH, Howard CV, Van Velzen D. The effect of intrauterine growth retardation on the development of renal nephrons. Br. J. Obstet. Gynaecol. 99, 296–301 (1992).
  • Hughson M, Farris AB III, Douglas-Denton R, Hoy WE, Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 63, 2113–2122 (2003).
  • Moritz KM, Wintour EM, Dodic M. Fetal uninephrectomy leads to postnatal hypertension and compromised renal function. Hypertension 39, 1071–1076 (2002).
  • Woods LL. Neonatal uninephrectomy causes hypertension in adult rats. Am J. Physiol. 276, R974–R978 (1999).
  • Goldfarb DA, Matin SF, Braun WE et al. Renal outcome 25 years after donor nephrectomy. J. Urol. 166, 2043–2047 (2001).
  • Williams SL, Oler J, Jorkasky DK. Long-term renal function in kidney donors: a comparison of donors and their siblings. Ann. Intern. Med. 105, 1–8 (1986).
  • McMullen S, Langley-Evans SC. Maternal low-protein diet in rat pregnancy programs blood pressure through sex-specific mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R85–R90 (2005).
  • Dong F, Ford SP, Fang CX, Nijland MJ, Nathanielsz PW, Ren J. Maternal nutrient restriction during early to mid gestation up-regulates cardiac insulin-like growth factor (IGF) receptors associated with enlarged ventricular size in fetal sheep. Growth Horm. IGF Res. 15, 291–299 (2005).
  • Battista MC, Calvo E, Chorvatova A, Comte B, Corbeil J, Brochu M. Intrauterine growth restriction and the programming of left ventricular remodelling in female rat. J. Physiol. (Lond.) 3(1), 27 (2005).
  • Wintour EM, Moritz KM, Johnson K, Ricardo S, Samuel CS, Dodic M. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J. Physiol. 549, 929–935 (2003).
  • Woods LL, Weeks DA. Naturally occurring intrauterine growth retardation and adult blood pressure in rats. Pediatr. Res. 56, 763–767 (2004).
  • Martin H, Gazelius B, Norman M. Impaired acetylcholine-induced vascular relaxation in low birth weight infants: implications for adult hypertension? Pediatr. Res. 47, 457–462 (2000).
  • Martin H, Hu J, Gennser G, Norman M. Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation 102, 2739–2744 (2000).
  • Leeson CPM, Kattenhorn M, Morley R, Lucas A, Deanfield JE. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 103, 1264–1268 (2001).
  • Goodfellow J, Bellamy MF, Gorman ST et al. Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc. Res. 40, 600–606 (1998).
  • Payne JA, Alexander BT, Khalil RA. Decreased endothelium-dependent NO-cGMP vascular relaxation and hypertension in growth-restricted rats on a high-salt diet. Hypertension 43, 420–427 (2004).
  • Campbell ME, Williams SJ, Veerareddy S, Davidge ST. Maternal nutrient restriction reduces carotid artery constriction without increasing nitric oxide synthesis in the late gestation rat fetus. Pediatr. Res. 58, 840–844 (2005).
  • Williams SJ, Campbell ME, McMillen IC, Davidge ST. Differential effects of maternal hypoxia or nutrient restriction on carotid and femoral vascular function in neonatal rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R360–R367 (2005).
  • Anderson CM, Lopez F, Zimmer A, Benoit JN. Placental insufficiency leads to developmental hypertension and mesenteric artery dysfunction in two generations of Sprague–Dawley rat offspring. Biol. Reprod. (2005).
  • IJzerman RG, Stehouwer CDA, de Geus EJ, van Weissenbruch MM, Delemarre-van de Waal H, Boomsma DI. Low birth weight is associated with increased sympathetic activity: dependence on genetic factors. Circulation 108, 566–571 (2003).
  • Weitz G, Deckert P, Heindl S, Struck J, Perras B, Dodt C. Evidence for lower sympathetic nerve activity in young adults with low birth weight. J. Hypertens. 21, 943–950 (2003).
  • Petry CJ, Dorling MW, Wang CL, Pawlak DB, Ozanne SE. Catecholamine levels and receptor expression in low protein rat offspring. Diabet Med. 17, 848–853 (2000).
  • Bauer R, Walter B, Ihring W, Kluge H, Lampe V, Zwiener U. Altered renal function in growth-restricted newborn piglets. Pediatr. Nephrol. 14, 735–739 (2000).
  • Miller JA, Anacta LA, Cattran DC. Impact of gender on the renal response to angiotensin II. Kidney Int. 55, 278–285 (1999).
  • Hannedouche T, Chauveau P, Kalou F, Albouze G, Lacour B, Jungers P. Factors affecting progression in advanced chronic renal failure. Clin. Nephrol. 39, 312–320 (1993).
  • Jungers P, Chauveau P, Descamps-Latscha B et al. Age and gender-related incidence of chronic renal failure in a French urban area: a prospective epidemiologic study. Nephrol. Dial. Transplant. 11, 1542–1546 (1996).
  • Rinn JL, Rozowsky JS, Laurenzi IJ et al. Major molecular differences between mammalian sexes are involved in drug metabolism and renal function. Developmental Cell 6, 791–800 (2004).
  • Ahluwalia A, Clodfelter KH, Waxman DJ. Sexual dimorphism of rat liver gene expression: regulatory role of growth hormone revealed by deoxyribonucleic acid microarray analysis. Molecular Endocrinology (Baltimore, MD, USA) 18, 747–760 (2004).
  • Wiwi CA, Gupte M, Waxman DJ. Sexually dimorphic P450 gene expression in liver-specific hepatocyte nuclear factor 4α-deficient mice. Molecular Endocrinology (Baltimore, MD, USA ) 18, 1975–1987 (2004).
  • Udy GB, Towers RP, Snell RG et al. Requirement of STAT5β for sexual dimorphism of body growth rates and liver gene expression. Proc. Natl Acad. Sci. USA 94, 7239–7244 (1997).
  • Teglund S, McKay C, Schuetz E et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).
  • Mok KY, Sandberg K, Sweeny JM, Zheng W, Lee S, Mulroney SE. Growth hormone regulation of glomerular AT1 angiotensin receptors in adult uninephrectomized male rats. Am. J. Physiol. Renal Physiol. 285, F1085–F1091 (2003).
  • Hemmings DG, Williams SJ, Davidge ST. Increased myogenic tone in 7-month-old adult male but not female offspring from rat dams exposed to hypoxia during pregnancy. Am. J. Physiol. Heart Circ. Physiol. 289, H674–H682 (2005).
  • Hemmings DG, Veerareddy S, Baker PN, Davidge ST. Increased myogenic responses in uterine but not mesenteric arteries from pregnant offspring of diet-restricted rat dams. Biol. Reprod. 72, 997–1003 (2005).
  • Sampogna RV, Nigam SK. Implications of gene networks for understanding resilience and vulnerability in the kidney branching program. Physiology (Bethesda, MD, USA) 19, 339–347 (2004).
  • Gupta IR, Piscione TD, Grisaru S et al. Protein kinase A is a negative regulator of renal branching morphogenesis and modulates inhibitory and stimulatory bone morphogenetic proteins. J. Biol. Chem. 274, 26305–26314 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.