72
Views
16
CrossRef citations to date
0
Altmetric
Review

Myocardial regeneration by embryonic stem cell transplantation: present and future trends

&
Pages 375-383 | Published online: 10 Jan 2014

References

  • Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett.530(1–3), 239–243 (2002).
  • Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res.95(9), 911–921 (2004).
  • Reffelmann T, Kloner RA. Cellular cardiomyoplasty – cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc. Res.58(2), 358–368 (2003).
  • Wold LE, Dai W, Sesti C et al. Stem cell therapy for the heart. Congest. Heart Fail.10(6), 293–301 (2004).
  • Müller-Ehmsen J, Peterson KL, Kedes L et al. Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation105(14), 1720–1706 (2002).
  • Yao M, Dieterle T, Hale SL et al. Long-term outcome of fetal cell transplantation on postinfarction ventricular remodeling and function. J. Mol. Cell. Cardiol.35(6), 661–670 (2003).
  • Reffelmann T, Dow JS, Dai W, Hale SL, Simkhovich BZ, Kloner RA. Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium. J. Mol. Cell. Cardiol.35(6), 607–613 (2003).
  • Kehat I, Kenyagin-Karsenti D, Snir M et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108(3), 407–414 (2001).
  • He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res.93(1), 32–39 (2003).
  • Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res.91(6), 501–508 (2002).
  • Xue T, Cho HC, Akar FG et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation111(1), 11–20 (2005).
  • Mummery C, Ward-van Oostwaard D, Doevendans P et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation107(21), 2733–2740 (2003).
  • Solter D, Knowles BB. Immunosurgery of mouse blastocyst. Proc. Natl. Acad. Sci. USA72, 5099–5102 (1975).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science282(5391), 1145–1147 (1998).
  • Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol.18(4), 399–404 (2000).
  • Xu C, Inokuma MS, Denham J et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol.19(10), 971–974 (2001).
  • Pease S, Braghetta P, Gearing D, Grail D, Williams RL. Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev. Biol.141(2), 344–352 (1990).
  • Bader A, Al-Dubai H, Weitzer G. Leukemia inhibitory factor modulates cardiogenesis in embryoid bodies in opposite fashions. Circ. Res.86(7), 787–794 (2000).
  • Rose TM, Weiford DM, Gunderson NL, Bruce AG. Oncostatin M (OSM) inhibits the differentiation of pluripotent embryonic stem cells in vitro. Cytokine6(1), 48–54 (1994).
  • Xie X, Chan RJ, Yoder MC. Thrombopoietin acts synergistically with LIF to maintain an undifferentiated state of embryonic stem cells homozygous for a Shp-2 deletion mutation. FEBS Lett.529(2–3), 361–364 (2002).
  • Xu C, Rosler E, Jiang J et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells23(3), 315–323 (2005).
  • Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods2(3), 185–190 (2005).
  • Wang L, Li L, Menendez P, Cerdan C, Bhatia M. Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood105(12), 4598–603 (2005).
  • Beattie GM, Lopez AD, Bucay N et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells23(4), 489–495 (2005).
  • Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol.20(9), 933–936 (2002).
  • Yoo SJ, Yoon BS, Kim JM et al. Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells. Exp. Mol. Med.37(5), 399–407 (2005).
  • Xu C, Jiang J, Sottile V, McWhir J, Lebkowski J, Carpenter MK. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells22(6), 972–980 (2004).
  • Genbacev O, Krtolica A, Zdravkovic T et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil. Steril.83(5), 1517–1529 (2005).
  • Miyamoto K, Hayashi K, Suzuki T et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells. Stem Cells22(4), 433–440 (2004).
  • Cheng L, Hammond H, Ye Z, Zhan X, Dravid G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells21(2), 131–142 (2003).
  • Amit M, Margulets V, Segev H et al. Human feeder layers for human embryonic stem cells. Biol. Reprod.68(6), 2150–2156 (2003).
  • Rosler ES, Fisk GJ, Ares X et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn.229(2), 259–274 (2004).
  • Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod.70(3), 837–845 (2004).
  • Klimanskaya I, Chung Y, Meisner L, Johnson J, West MD, Lanza R. Human embryonic stem cells derived without feeder cells. Lancet365(9471), 1636–1641 (2005).
  • Mummery C, Ward-van Oostwaard D, Doevendans P et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation107(21), 2733–2740 (2003).
  • Passier R, Oostwaard DW, Snapper J et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells23(6), 772–780 (2005).
  • Baharvand H, Azarnia M, Parivar K, Ashtiani SK. The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. J. Mol. Cell. Cardiol.38(3), 495–503 (2005).
  • Singla DK, Sobel BE. Enhancement by growth factors of cardiac myocyte differentiation from embryonic stem cells: a promising foundation for cardiac regeneration. Biochem. Biophys. Res. Commun.335(3), 637–642 (2005).
  • Pal R, Khanna A. Role of hepatocyte-like cells in the differentiation of cardiomyocytes from mouse embryonic stem cells. Stem Cells Dev.14(2), 153–61 (2005).
  • Sachinidis A, Gissel C, Nierhoff D et al. Identification of platelet-derived growth factor-BB as cardiogenesis-inducing factor in mouse embryonic stem cells under serum-free conditions. Cell Physiol. Biochem.13(6), 423–429 (2003).
  • Kawai T, Takahashi T, Esaki M et al. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ. J.68(7), 691–702 (2004).
  • Kumar D, Sun B. Transforming growth factor-β2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem. Biophys. Res. Commun.332(1), 135–141 (2005).
  • Behfar A, Zingman LV, Hodgson DM et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J.16(12), 1558–1566 (2002).
  • Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development126(16), 3597–3605 (1999).
  • Takahashi T, Lord B, Schulze PC et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation107(14), 1912–1916 (2003).
  • Wobus AM, Kaomei G, Shan J et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell. Cardiol.29(6), 1525–1539 (1997).
  • Honda M, Hamazaki TS, Komazaki S, Kagechika H, Shudo K, Asashima M. RXR agonist enhances the differentiation of cardiomyocytes derived from embryonic stem cells in serum-free conditions. Biochem. Biophys. Res. Commun.333(4), 1334–1340 (2005).
  • Ventura C, Zinellu E, Maninchedda E, Maioli M. Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ. Res.92(6), 623–629 (2003).
  • Paquin J, Danalache BA, Jankowski M, McCann SM, Gutkowska J. Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc. Natl Acad. Sci. USA99(14), 9550–6555 (2002).
  • Kanno S, Kim PK, Sallam K, Lei J, Billiar TR, Shears LL II. Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA101(33), 12277–12281 (2004).
  • Sauer H, Rahimi G, Hescheler J, Wartenberg M. Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J. Cell. Biochem.75(4), 710–723 (1999).
  • Illi B, Scopece A, Nanni S et al Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ. Res.96(5), 501–508 (2005).
  • Ventura C, Zinellu E, Maninchedda E, Fadda M, Maioli M. Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ. Res.92(6), 617–622 (2003).
  • Parisi S, D’Andrea D, Lago CT, Adamson ED, Persico MG, Minchiotti G. Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells. J. Cell. Biol.163(2), 303–314 (2003).
  • Puceat M, Travo P, Quinn MT, Fort P. A dual role of the GTPase Rac in cardiac differentiation of stem cells. Mol. Biol. Cell.14(7), 2781–2792 (2003).
  • Foshay K, Rodriguez G, Hoel B, Narayan J, Gallicano GI. JAK2/STAT3 directs cardiomyogenesis within murine embryonic stem cells in vitro. Stem Cells23(4), 530–343 (2005).
  • Puceat M, Jaconi M. Ca(2+) signalling in cardiogenesis. Cell Calcium.38(3–4), 383–389 (2005).
  • Terami H, Hidaka K, Katsumata T, Iio A, Morisaki T. Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem. Biophys. Res. Commun.325(3), 968–975 (2004).
  • Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol.227, 271–278 (2000).
  • Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest.98(1), 216–224 (1996).
  • Muller M, Fleischmann BK, Selbert S et al. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J.14(15), 2540–2548 (2000).
  • Zweigerdt R, Burg M, Willbold E, Abts H, Ruediger M. Generation of confluent cardiomyocyte monolayers derived from embryonic stem cells in suspension: a cell source for new therapies and screening strategies. Cytotherapy5(5), 399–413 (2003).
  • Zandstra PW, Bauwens C, Yin T et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng.9(4), 767–778 (2003).
  • Kehat I, Khimovich L, Caspi O et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22(10), 1282–1289 (2004).
  • Laflamme MA, Gold J, Xu C et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol.167(3), 663–671 (2005).
  • Hodgson DM, Behfar A, Zingman LV et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.287(2), H471–H479 (2004).
  • Min JY, Yang Y, Sullivan MF et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg.125(2), 361–369 (2003).
  • Menard C, Hagege AA, Agbulut O et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet366(9490), 1005–1012 (2005).
  • Maurel A, Azarnoush K, Sabbah L et al. Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation80(5), 660–665 (2005).
  • Thum T, Bauersachs J, Poole-Wilson PA, Volk HD, Anker SD. The dying stem cell hypothesis: immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. J. Am. Coll. Cardiol.46(10), 1799–1802 (2005).
  • Kofidis T, de Bruin JL, Yamane T et al. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells22(7), 1239–1245 (2004).
  • Yang Y, Min JY, Rana JS et al. VEGF enhances functional improvement of postinfarcted hearts by transplantation of ES cell-differentiated cells. J. Appl. Physiol.93(3), 1140–1151 (2002).
  • Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation112(9 Suppl.), I173–I177 (2005).
  • Kofidis T, de Bruin JL, Hoyt G et al. Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J. Heart Lung Transplant.24(6), 737–744 (2005).
  • Kofidis T, deBruin JL, Tanaka M et al. They are not stealthy in the heart: embryonic stem cells trigger cell infiltration, humoral and T-lymphocyte-based host immune response. Eur. J. Cardiothorac. Surg.28(3), 461–466 (2005).
  • Swijnenburg RJ, Tanaka M, Vogel H et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation112(9 Suppl.), I166–I172 (2005).
  • Li L, Baroja ML, Majumdar A et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells22(4), 448–456 (2004).
  • Drukker M, Katchman H, Katz G et al. Human embryonic stem cells and their differentiated derivatives are less susceptible for immune rejection than adult cells. Stem Cells24(2), 221–229 (2006).
  • Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science292(5517), 740–743 (2001).
  • Lanza R, Moore MAS, Wakayama T et al. Regeneration of the infracted heart with stem cells derived by nuclear transplantation. Circ. Res.94, 820–827 (2004).
  • Zhang YM, Hartzell C, Narlow M, Dudley SC Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation106(10), 1294–1299 (2002).
  • van Kempen M, van Ginneken A, de Grijs I et al. Expression of the electrophysiological system during murine embryonic stem cell cardiac differentiation. Cell Physiol. Biochem.13(5), 263–270 (2003).
  • Gepstein L, Feld Y, Yankelson L. Somatic gene and cell therapy strategies for the treatment of cardiac arrhythmias. Am. J. Physiol. Heart Circ. Physiol.286, H815–H822 (2004).
  • Dow J, Simkhovich BZ, Kedes L, Kloner RA. Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc. Res.67(2), 301–307 (2005).

Website

  • National Institutes of Health – Embryonic Stem Cell Registry – Stem Cell Registry http://stemcells.nih.gov/research/registry/ DefaultPage.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.