3,078
Views
81
CrossRef citations to date
0
Altmetric
Review

Adiposopathy: how do diet, exercise and weight loss drug therapies improve metabolic disease in overweight patients?

, &
Pages 871-895 | Published online: 10 Jan 2014

References

  • Bays H, Abate N, Chandalia M. Adiposopathy: Sick fat causes high blood sugar, high blood pressure, and dyslipidemia. Future Cardiol.1(1), 39–59 (2005).
  • Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J. Clin.Endocrinol.Metab.89(2), 463–478 (2004).
  • Bays H, Ballantyne C. Adiposopathy: why do adiposity and obesity cause metabolic disease? Future Lipidol.1(4), 389–420 (2006).
  • Bays HE. Current and investigational antiobesity agents and obesity therapeutic treatment targets. Obes. Res.12(8), 1197–1211 (2004).
  • Bays H, Dujovne CA. Adiposopathy is a more rational treatment target for metabolic disease than obesity alone. Curr. Atheroscler. Rep.8(2), 144–156 (2006).
  • Vidal-Puig AJ, Considine RV, Jimenez-Linan M et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J. Clin. Invest99(10), 2416–2422 (1997).
  • Viguerie N, Vidal H, Arner P et al. Adipose tissue gene expression in obese subjects during low-fat and high-fat hypocaloric diets. Diabetologia48(1), 123–131 (2005).
  • Gurnell M. Peroxisome proliferator-activated receptor γ and the regulation of adipocyte function: lessons from human genetic studies. Best Pract. Res. Clin. Endocrinol. Metab.19(4), 501–523 (2005).
  • Miyazaki Y, Mahankali A, Matsuda M et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J. Clin.Endocrinol.Metab.87(6), 2784–2791 (2002).
  • Jbilo O, Ravinet-Trillou C, Arnone M et al. The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J.19(11), 1567–1569 (2005).
  • Gary-Bobo M, Elachouri G, Scatton B, Le Fur G, Oury-Donat F, Bensaid M. The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits cell proliferation and increases markers of adipocyte maturation in cultured mouse 3T3 F442A preadipocytes. Mol. Pharmacol.69(2), 471–478 (2006).
  • Osei-Hyiaman D, Harvey-White J, Batkai S, Kunos G. The role of the endocannabinoid system in the control of energy homeostasis. Int. J. Obes. (Lond) 30(Suppl. 1), S33–S38 (2006).
  • Pagotto U, Vicennati V, Pasquali R. The endocannabinoid system and the treatment of obesity. Ann. Med.37(4), 270–275 (2005).
  • Serazin V, Dieudonne MN, Morot M, de Mazancourt P, Giudicelli Y. cAMP-positive regulation of angiotensinogen gene expression and protein secretion in rat adipose tissue. Am. J. Physiol. Endocrinol. Metab.286(3), E434–E438 (2004).
  • Abate N, Garg A. Heterogeneity in adipose tissue metabolism: causes, implications and management of regional adiposity. Prog. Lipid Res.34(1), 53–70 (1995).
  • Arner P. Regional differences in protein production by human adipose tissue. Biochem. Soc. Trans.29(Pt 2), 72–75 (2001).
  • Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr. Rev.23(2), 201–229 (2002).
  • Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev.21(6), 697–738 (2000).
  • Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim. Biophys. Acta1500(1), 88–96 (2000).
  • McCarty MF. Modulation of adipocyte lipoprotein lipase expression as a strategy for preventing or treating visceral obesity. Med. Hypotheses57(2), 192–200 (2001).
  • Matsuzawa Y. Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat. Clin. Pract.3(1), 35–42 (2006).
  • Liese AD, Mayer-Davis EJ, Tyroler HA et al. Development of the multiple metabolic syndrome in the ARIC cohort: joint contribution of insulin, BMI, and WHR. Atherosclerosis risk in communities. Ann. Epidemiol.7(6), 407–416 (1997).
  • Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am. J. Clin. Nutr.79(3), 379–384 (2004).
  • Zhu S, Heymsfield SB, Toyoshima H, Wang Z, Pietrobelli A, Heshka S. Race-ethnicity-specific waist circumference cutoffs for identifying cardiovascular disease risk factors. Am. J. Clin. Nutr.81(2), 409–415 (2005).
  • Baker AR, Silva NF, Quinn DW et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc. Diabetol.5, 1 (2006).
  • Zamboni M, Armellini F, Turcato E et al. Effect of weight loss on regional body fat distribution in premenopausal women. Am. J. Clin. Nutr.58(1), 29–34 (1993).
  • Shadid S, Jensen MD. Effects of pioglitazone versus diet and exercise on metabolic health and fat distribution in upper body obesity. Diabetes Care26(11), 3148–3152 (2003).
  • Kay SJ, Fiatarone Singh MA. The influence of physical activity on abdominal fat: a systematic review of the literature. Obes. Rev.7(2), 183–200 (2006).
  • Kopelman PG. The effects of weight loss treatments on upper and lower body fat. Int. J. Obes. Relat. Metab. Disord.21(8), 619–625 (1997).
  • O’Leary VB, Marchetti CM, Krishnan RK, Stetzer BP, Gonzalez F, Kirwan JP. Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat. J. Appl. Physiol.100(5), 1584–1589 (2006).
  • Ross R, Janssen I, Dawson J et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes. Res.12(5), 789–798 (2004).
  • Larson-Meyer DE, Heilbronn LK, Redman LM et al. Effect of calorie restriction with or without exercise on insulin sensitivity, β-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care29(6), 1337–1344 (2006).
  • Miyashita Y, Koide N, Ohtsuka M et al. Beneficial effect of low carbohydrate in low calorie diets on visceral fat reduction in type 2 diabetic patients with obesity. Diabetes Res. Clin. Pract.65(3), 235–241 (2004).
  • Tiikkainen M, Bergholm R, Rissanen A et al. Effects of equal weight loss with orlistat and placebo on body fat and serum fatty acid composition and insulin resistance in obese women. Am. J. Clin. Nutr.79(1), 22–30 (2004).
  • Kelley DE, Kuller LH, McKolanis TM, Harper P, Mancino J, Kalhan S. Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes. Diabetes Care27(1), 33–40 (2004).
  • Van Gaal LF, Wauters MA, Peiffer FW, De Leeuw I. Sibutramine and fat distribution: is there a role for pharmacotherapy in abdominal/visceral fat reduction? Int. J. Obes. Relat. Metab. Disord.22(Suppl. 1), S38–S40 (1998).
  • Despres JP. Intra-abdominal obesity: an untreated risk factor for Type 2 diabetes and cardiovascular disease. J. Endocrinol. Invest.29(3 Suppl.), 77–82 (2006).
  • Roche R, Hoareau L, Bes-Houtmann S et al. Presence of the cannabinoid receptors, CB1 and CB2, in human omental and subcutaneous adipocytes. Histochem. Cell Biol.126(2), 177–187 (2006).
  • Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab.89(6), 2595–2600 (2004).
  • Wood IS, Trayhurn P. Adipokines and the signaling role of adipose tissue in inflammation and obesity. Future Lipidol.1(1), 81–89 (2006).
  • Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int. J. Obes. Relat. Metab. Disord.28(Suppl. 4) S12–S21 (2004).
  • Fagot-Campagna A, Balkau B, Simon D et al. High free fatty acid concentration: an independent risk factor for hypertension in the Paris Prospective Study. Int. J. Epidemiol.27(5), 808–813 (1998).
  • de Jongh RT, Serne EH, Ijzerman RG, de Vries G, Stehouwer CD. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes53(11), 2873–2882 (2004).
  • Egan BM. Insulin resistance and the sympathetic nervous system. Curr. Hypertens. Rep.5(3), 247–254 (2003).
  • Bays HE, McGovern ME. Once-daily niacin extended release/lovastatin combination tablet has more favorable effects on lipoprotein particle size and subclass distribution than atorvastatin and simvastatin. Prev. Cardiol.6(4), 179–188 (2003).
  • Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue. Circ. Res.96(10), 1042–1052 (2005).
  • Bryson JM, King SE, Burns CM, Baur LA, Swaraj S, Caterson ID. Changes in glucose and lipid metabolism following weight loss produced by a very low calorie diet in obese subjects. Int. J. Obes. Relat. Metab. Disord.20(4), 338–345 (1996).
  • Faraj M, Lu HL, Cianflone K. Diabetes, lipids, and adipocyte secretagogues. Biochem. Cell Biol.82(1), 170–190 (2004).
  • Seshadri P, Samaha FF, Stern L, Chicano KL, Daily DA, Iqbal N. Free fatty acids, insulin resistance, and corrected qt intervals in morbid obesity: effect of weight loss during 6 months with differing dietary interventions. Endocr. Pract.11(4), 234–239 (2005).
  • Corbi GM, Carbone S, Ziccardi P et al. FFAs and QT intervals in obese women with visceral adiposity: effects of sustained weight loss over 1 year. J. Clin. Endocrinol. Metab.87(5), 2080–2083 (2002).
  • De Glisezinski I, Moro C, Pillard F et al. Aerobic training improves exercise-induced lipolysis in SCAT and lipid utilization in overweight men. Am. J. Physiol. Endocrinol. Metab.285(5), E984–E990 (2003).
  • Esposito K, Pontillo A, Di Palo C et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA289(14), 1799–1804 (2003).
  • Marniemi J, Vuori I, Kinnunen V, Rahkila P, Vainikka M, Peltonen P. Metabolic changes induced by combined prolonged exercise and low-calorie intake in man. Eur. J. Appl. Physiol. Occup. Physiol.53(2), 121–127 (1984).
  • Noakes M, Keogh JB, Foster PR, Clifton PM. Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am. J. Clin. Nutr.81(6), 1298–1306 (2005).
  • Sasaki J, Shindo M, Tanaka H, Ando M, Arakawa K. A long-term aerobic exercise program decreases the obesity index and increases the high density lipoprotein cholesterol concentration in obese children. Int. J. Obes.11(4), 339–345 (1987).
  • Williams PT, Krauss RM, Vranizan KM, Albers JJ, Wood PD. Effects of weight-loss by exercise and by diet on apolipoproteins A-I and A-II and the particle-size distribution of high-density lipoproteins in men. Metabolism41(4), 441–449 (1992).
  • Slyper AH. Low-density lipoprotein density and atherosclerosis. Unraveling the connection. JAMA272(4), 305–308 (1994).
  • DeFronzo RA. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int. J. Clin. Pract.143(Suppl.), 9–21 (2004).
  • Boden G, Laakso M. Lipids and glucose in type 2 diabetes: what is the cause and effect? Diabetes Care27(9), 2253–2259 (2004).
  • Kiortsis DN, Filippatos TD, Elisaf MS. The effects of orlistat on metabolic parameters and other cardiovascular risk factors. Diabetes Metab.31(1), 15–22 (2005).
  • Day C, Bailey CJ. Effect of the antiobesity agent sibutramine in obese-diabetic ob/ob mice. Int. J. Obes. Relat. Metab. Disord.22(7), 619–623 (1998).
  • McLaughlin T, Abbasi F, Lamendola C, Kim HS, Reaven GM. Metabolic changes following sibutramine-assisted weight loss in obese individuals: role of plasma free fatty acids in the insulin resistance of obesity. Metabolism50(7), 819–824 (2001).
  • Ravinet Trillou C, Arnone M, Delgorge C et al. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol.284(2), R345–R353 (2003).
  • Hissin PJ, Foley JE, Wardzala LJ et al. Mechanism of insulin-resistant glucose transport activity in the enlarged adipose cell of the aged, obese rat. J. Clin. Invest.70(4), 780–790 (1982).
  • Norris SL, Zhang X, Avenell A et al. Long-term effectiveness of lifestyle and behavioral weight loss interventions in adults with type 2 diabetes: a meta-analysis. Am. J. Med.117(10), 762–774 (2004).
  • Aucott L, Poobalan A, Smith WC et al. Weight loss in obese diabetic and non-diabetic individuals and long-term diabetes outcomes--a systematic review. Diabetes Obes. Metab.6(2), 85–94 (2004).
  • Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann. Intern. Med.142(6), 403–411 (2005).
  • Bruun JM, Helge JW, Richelsen B, Stallknecht B. Diet and Exercise Reduce Low-grade Inflammation and Macrophage Infiltration in Adipose Tissue but not in Skeletal Muscle in Severely Obese Subjects. Am. J. Physiol. Endocrinol. Metab.290(5), E961–E967 (2005).
  • Straznicky NE, Louis WJ, McGrade P, Howes LG. The effects of dietary lipid modification on blood pressure, cardiovascular reactivity and sympathetic activity in man. J. Hypertens.11(4), 427–437 (1993).
  • Aucott L, Poobalan A, Smith WC, Avenell A, Jung R, Broom J. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes: a systematic review. Hypertension45(6), 1035–1041 (2005).
  • Ruano M, Silvestre V, Castro R et al. Morbid obesity, hypertensive disease and the renin-angiotensin-aldosterone axis. Obes. Surg.15(5), 670–676 (2005).
  • Stone NJ, Kushner R. Effects of dietary modification and treatment of obesity. Emphasis on improving vascular outcomes. Med. Clin. North Am.84(1), 95–122 (2000).
  • Chen AK, Roberts CK, Barnard RJ. Effect of a short-term diet and exercise intervention on metabolic syndrome in overweight children. Metabolism55(7), 871–878 (2006).
  • Dahlman I, Linder K, Arvidsson Nordstrom E et al. Changes in adipose tissue gene expression with energy-restricted diets in obese women. Am. J. Clin. Nutr.81(6), 1275–1285 (2005).
  • Kannisto K, Pietilainen KH, Ehrenborg E et al. Overexpression of 11β-hydroxysteroid dehydrogenase-1 in adipose tissue is associated with acquired obesity and features of insulin resistance: studies in young adult monozygotic twins. J. Clin. Endocrinol. Metab.89(9), 4414–4421 (2004).
  • Tomlinson JW, Moore JS, Clark PM, Holder G, Shakespeare L, Stewart PM. Weight loss increases 11β-hydroxysteroid dehydrogenase type 1 expression in human adipose tissue. J. Clin. Endocrinol. Metab.89(6), 2711–2716 (2004).
  • Valsamakis G, Anwar A, Tomlinson JW et al. 11β-hydroxysteroid dehydrogenase type 1 activity in lean and obese males with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab.89(9), 4755–4761 (2004).
  • Putignano P, Pecori Giraldi F, Cavagnini F. Tissue-specific dysregulation of 11β-hydroxysteroid dehydrogenase type 1 and pathogenesis of the metabolic syndrome. J. Endocrinol. Invest.27(10), 969–974 (2004).
  • Engeli S, Bohnke J, Feldpausch M et al. Regulation of 11β-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes. Res.12(1), 9–17 (2004).
  • Coutinho AE, Campbell JE, Fediuc S, Riddell MC. Effect of voluntary exercise on peripheral tissue glucocorticoid receptor content and the expression and activity of 11{β}-HSD1 in the Syrian hamster. J. Appl. Physiol.100(5), 1483–1488 (2005).
  • Wake DJ, Walker BR. 11 β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Mol. Cell Endocrinol.215(1–2), 45–54 (2004).
  • Masuzaki H, Yamamoto H, Kenyon CJ et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J. Clin. Invest.112(1), 83–90 (2003).
  • Morton NM, Paterson JM, Masuzaki H et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 β-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes53(4), 931–938 (2004).
  • Walker BR. 11β-hydroxysteroid dehydrogenase type 1 in obesity. Obes. Res.12(1), 1–3 (2004).
  • Masuzaki H, Flier JS. Tissue-specific glucocorticoid reactivating enzyme, 11 β-hydroxysteroid dehydrogenase type 1 (11 β-HSD1) – a promising drug target for the treatment of metabolic syndrome. Curr. Drug Targets Immune Endocr. Metabol. Disord.3(4), 255–262 (2003).
  • Cianflone K, Xia Z, Chen LY. Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim. Biophys. Acta1609(2), 127–143 (2003).
  • Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab.89(6), 2548–2556 (2004).
  • Ahren B, Havel PJ, Pacini G, Cianflone K. Acylation stimulating protein stimulates insulin secretion. Int. J. Obes. Relat. Metab. Disord.27(9), 1037–1043 (2003).
  • Havel PJ. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes53(Suppl. 1) S143–S151 (2004).
  • Faraj M, Sniderman AD, Cianflone K. ASP enhances in situ lipoprotein lipase activity by increasing fatty acid trapping in adipocytes. J. Lipid Res.45(4), 657–666 (2004).
  • Maslowska M, Wang HW, Cianflone K. Novel roles for acylation stimulating protein/C3adesArg: a review of recent in vitro and in vivo evidence. Vitam. Horm.70, 309–332 (2005).
  • Faraj M, Havel PJ, Phelis S, Blank D, Sniderman AD, Cianflone K. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J. Clin. Endocrinol. Metab.88(4), 1594–1602 (2003).
  • Sniderman AD, Cianflone KM, Eckel RH. Levels of acylation stimulating protein in obese women before and after moderate weight loss. Int. J. Obes.15(5), 333–336 (1991).
  • Schrauwen P, Hesselink MK, Jain M, Cianflone K. Acylation-stimulating protein: effect of acute exercise and endurance training. Int. J. Obes.(Lond.)29(6), 632–638 (2005).
  • Pittas AG, Joseph NA, Greenberg AS. Adipocytokines and insulin resistance. J. Clin. Endocrinol. Metab.89(2), 447–452 (2004).
  • Kopp HP, Krzyzanowska K, Mohlig M, Spranger J, Pfeiffer AF, Schernthaner G. Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women. Int. J. Obes.(Lond.)29(7), 766–771 (2005).
  • Valsamakis G, McTernan PG, Chetty R et al. Modest weight loss and reduction in waist circumference after medical treatment are associated with favorable changes in serum adipocytokines. Metabolism53(4), 430–434 (2004).
  • Balagopal P, George D, Yarandi H, Funanage V, Bayne E. Reversal of obesity-related hypoadiponectinemia by lifestyle intervention: a controlled, randomized study in obese adolescents. J. Clin. Endocrinol. Metab.90(11), 6192–6197 (2005).
  • Merl V, Peters A, Oltmanns KM et al. Serum adiponectin concentrations during a 72-hour fast in over- and normal-weight humans. Int. J. Obes.(Lond.)29(8), 998–1001 (2005).
  • Anderlova K, Kremen J, Dolezalova R et al. The influence of very-low-calorie-diet on serum leptin, soluble leptin receptor, adiponectin and resistin levels in obese women. Physiol. Res.55(3), 277–283(2005).
  • Mousavinasab F, Tahtinen T, Jokelainen J et al. Lack of increase of serum adiponectin concentrations with a moderate weight loss during six months on a high-caloric diet in military service among a young male Finnish population. Endocrine26(1), 65–69 (2005).
  • Xydakis AM, Case CC, Jones PH et al. Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction. J. Clin. Endocrinol. Metab.89(6), 2697–2703 (2004).
  • Nassis GP, Papantakou K, Skenderi K et al. Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls. Metabolism54(11), 1472–1479 (2005).
  • Huang KC, Chen CL, Chuang LM, Ho SR, Tai TY, Yang WS. Plasma adiponectin levels and blood pressures in nondiabetic adolescent females. J. Clin. Endocrinol. Metab.88(9), 4130–4134 (2003).
  • Coatmellec-Taglioni G, Ribiere C. Factors that influence the risk of hypertension in obese individuals. Curr. Opin. Nephrol. Hypertens.12(3), 305–308 (2003).
  • Rochlitz H, Akpulat S, Bobbert T et al. [Significance of biomarkers for metabolic syndrome during weight reduction]. Dtsch. Med. Wochenschr.130(17), 1061–1066 (2005).
  • Matsubara M, Maruoka S, Katayose S. Decreased plasma adiponectin concentrations in women with dyslipidemia. J. Clin. Endocrinol. Metab.87(6), 2764–2769 (2002).
  • Maslowska M, Vu H, Phelis S, Sniderman AD, Rhode BM, Blank D, Cianflone K. Plasma acylation stimulating protein, adipsin and lipids in non-obese and obese populations. Eur. J. Clin. Invest.29(8), 679–686 (1999).
  • Miner JL. The adipocyte as an endocrine cell. J. Anim. Sci.82(3), 935–941 (2004).
  • Pomeroy C, Mitchell J, Eckert E, Raymond N, Crosby R, Dalmasso AP. Effect of body weight and caloric restriction on serum complement proteins, including Factor D/adipsin: studies in anorexia nervosa and obesity. Clin. Exp. Immunol.108(3), 507–515 (1997).
  • Mavri A, Stegnar M, Krebs M, Sentocnik JT, Geiger M, Binder BR. Impact of adipose tissue on plasma plasminogen activator inhibitor-1 in dieting obese women. Arterioscler. Thromb. Vasc. Biol.19(6), 1582–1587 (1999).
  • Strazzullo P, Galletti F. Impact of the renin-angiotensin system on lipid and carbohydrate metabolism. Curr. Opin. Nephrol. Hypertens.13(3), 325–332 (2004).
  • Engeli S, Bohnke J, Gorzelniak K et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension45(3), 356–362 (2005).
  • Maeda S, Iemitsu M, Jesmin S, Miyauchi T. Acute exercise causes an enhancement of tissue renin-angiotensin system in the kidney in rats. Acta Physiol. Scand.185(1), 79–86 (2005).
  • Rauramaa R, Kuhanen R, Lakka TA et al. Physical exercise and blood pressure with reference to the angiotensinogen M235T polymorphism. Physiol. Genomics10(2), 71–77 (2002).
  • Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc. Natl Acad. Sci. USA100(24), 14211–14216 (2003).
  • Morse SA, Bravo PE, Morse MC, Reisin E. The heart in obesity-hypertension. Expert Rev. Cardiovasc. Ther.3(4), 647–658 (2005).
  • Karlsson C, Lindell K, Ottosson M, Sjostrom L, Carlsson B, Carlsson LM. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J. Clin. Endocrinol. Metab.83(11), 3925–3929 (1998).
  • Engeli S, Negrel R, Sharma AM. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension35(6), 1270–1277 (2000).
  • Ferry G, Tellier E, Try A et al. Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J. Biol. Chem.278(20), 18162–18169 (2003).
  • Boucher J, Quilliot D, Praderes JP et al. Potential involvement of adipocyte insulin resistance in obesity-associated up-regulation of adipocyte lysophospholipase D/autotaxin expression. Diabetologia48(3), 569–577 (2005).
  • Summers SA, Nelson DH. A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome. Diabetes54(3), 591–602 (2005).
  • Sawai H, Domae N, Okazaki T. Current status and perspectives in ceramide-targeting molecular medicine. Curr. Pharm. Des11(19), 2479–2487 (2005).
  • Miura A, Kajita K, Ishizawa M et al Inhibitory effect of ceramide on insulin-induced protein kinase Czeta translocation in rat adipocytes. Metabolism52(1), 19–24 (2003).
  • Long SD, Pekala PH. Lipid mediators of insulin resistance: ceramide signalling down-regulates GLUT4 gene transcription in 3T3-L1 adipocytes. Biochem. J319(Pt 1) 179–184 (1996).
  • Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J. Biol. Chem.280(20), 20148–20153 (2005).
  • Adams JM, Pratipanawatr T, Berria R et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes53(1), 25–31 (2004).
  • asimacopoulos-Jeannet F. Fat storage in pancreas and in insulin-sensitive tissues in pathogenesis of type 2 diabetes. Int. J. Obes. Relat. Metab. Disord.28(Suppl. 4) S53–S57 (2004).
  • Helge JW, Dobrzyn A, Saltin B, Gorski J. Exercise and training effects on ceramide metabolism in human skeletal muscle. Exp. Physiol.89(1), 119–127 (2004).
  • Gauthier B, Robb M, McPherson R. Cholesteryl ester transfer protein gene expression during differentiation of human preadipocytes to adipocytes in primary culture. Atherosclerosis142(2), 301–307 (1999).
  • Bays H McKenney J Davidson M. Torcetrapib/Atorvastatin combination therapy. Expert Rev. Cardiovasc. Ther.3(5), 789–820 (2005).
  • Ebenbichler CF, Laimer M, Kaser S et al. Relationship between cholesteryl ester transfer protein and atherogenic lipoprotein profile in morbidly obese women. Arterioscler. Thromb. Vasc. Biol.22(9), 1465–1469 (2002).
  • Seip RL, Moulin P, Cocke T et al. Exercise training decreases plasma cholesteryl ester transfer protein. Arterioscler. Thromb.13(9), 1359–1367 (1993).
  • Horowitz JF. Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol. Metab.14(8), 386–392 (2003).
  • Large V, Reynisdottir S, Langin D et al. Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J. Lipid Res.40(11), 2059–2066 (1999).
  • Yeaman SJ. Hormone-sensitive lipase–new roles for an old enzyme. Biochem. J379(Pt 1), 11–22 (2004).
  • Stich V, Harant I, De Glisezinski I et al. Adipose tissue lipolysis and hormone-sensitive lipase expression during very-low-calorie diet in obese female identical twins. J. Clin. Endocrinol. Metab.82(3), 739–744 (1997).
  • Li Y, Bujo H, Takahashi K et al. Visceral fat: higher responsiveness of fat mass and gene expression to calorie restriction than subcutaneous fat. Exp. Biol. Med.228(10), 1118–1123 (2003).
  • De Glisezinski I, Crampes F, Harant I et al. Endurance training changes in lipolytic responsiveness of obese adipose tissue. Am. J. Physiol.275(6 Pt 1), E951–E956 (1998).
  • Lee DL, Sturgis LC, Labazi H et al. Angiotensin II Hypertension is Attenuated in Interleukin-6 Knockout Mice. Am. J. Physiol. Heart Circ. Physiol.290(3), H935–940 (2005).
  • Orshal JM, Khalil RA. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol.286(6), R1013–R1023 (2004).
  • Garanty-Bogacka B, Syrenicz M, Syrenicz A, Gebala A, Lulka D, Walczak M. Serum markers of inflammation and endothelial activation in children with obesity-related hypertension. Neuro. Endocrinol. Lett.26(3), 242–246 (2005).
  • Monzillo LU, Hamdy O, Horton ES et al. Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance. Obes. Res.11(9), 1048–1054 (2003).
  • Bertile F, Criscuolo F, Oudart H, Le Maho Y, Raclot T. Differences in the expression of lipolytic-related genes in rat white adipose tissues. Biochem. Biophys. Res. Commun.307(3), 540–546 (2003).
  • Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes. Rev.2(4), 239–254 (2001).
  • Siddals KW, Westwood M, Gibson JM, White A. IGF-binding protein-1 inhibits IGF effects on adipocyte function: implications for insulin-like actions at the adipocyte. J. Endocrinol.174(2), 289–297 (2002).
  • Mauras N, Haymond MW. Are the metabolic effects of GH and IGF-I separable? Growth Horm. IGF Res.15(1), 19–27 (2005).
  • Engstrom BE, Burman P, Holdstock C, Ohrvall M, Sundbom M, Karlsson FA. Effects of gastric bypass on the GH/IGF-I axis in severe obesity - and a comparison with GH deficiency. Eur. J. Endocrinol.154(1), 53–59 (2006).
  • Butzow TL, Lehtovirta M, Siegberg R et al. The decrease in luteinizing hormone secretion in response to weight reduction is inversely related to the severity of insulin resistance in overweight women. J. Clin. Endocrinol. Metab.85(9), 3271–3275 (2000).
  • Daly RM, Dunstan DW, Owen N, Jolley D, Shaw JE, Zimmet PZ. Does high-intensity resistance training maintain bone mass during moderate weight loss in older overweight adults with type 2 diabetes? Osteoporos. Int.16(12), 1703–1712 (2005).
  • Havel PJ. Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance. Proc. Nutr. Soc.59(3), 359–371 (2000).
  • Yildiz BO, Haznedaroglu IC. Rethinking leptin and insulin action: Therapeutic opportunities for diabetes. Int. J. Biochem. Cell Biol.38, 820–830 (2005).
  • Persson-Sjogren S, Elmi A, Lindstrom P. Effects of leptin, acetylcholine and vasoactive intestinal polypeptide on insulin secretion in isolated ob/ob mouse pancreatic islets. Acta Diabetol.41(3), 104–112 (2004).
  • Ceddia RB, Koistinen HA, Zierath JR, Sweeney G. Analysis of paradoxical observations on the association between leptin and insulin resistance. FASEB J.16(10), 1163–1176 (2002).
  • Benomar Y, Rideau N, Crochet S, Derouet M, Taouis M. Leptin fully suppresses acetylcholine-induced insulin secretion and is reversed by tolbutamide in isolated perfused chicken pancreas. Horm. Metab. Res.35(2), 81–85 (2003).
  • Zieba DA, Amstalden M, Maciel MN et al. Divergent effects of leptin on luteinizing hormone and insulin secretion are dose dependent. Exp. Biol. Med.228(3), 325–330 (2003).
  • Frank LL, Sorensen BE, Yasui Y et al. Effects of exercise on metabolic risk variables in overweight postmenopausal women: a randomized clinical trial. Obes. Res.13(3), 615–625 (2005).
  • Rosenbaum M, Goldsmith R, Bloomfield D et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest.115(12), 3579–3586 (2005).
  • Beltowski J. Role of leptin in blood pressure regulation and arterial hypertension. J. Hypertens.24(5), 789–801 (2006).
  • Straznicky NE, Lambert EA, Lambert GW, Masuo K, Esler MD, Nestel PJ. Effects of Dietary Weight Loss on Sympathetic Activity and Cardiac Risk Factors Associated with the Metabolic Syndrome. J. Clin. Endocrinol. Metab.90(11), 5998–6005 (2005).
  • Oral EA, Simha V, Ruiz E et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med.346(8), 570–578 (2002).
  • Banks WA, Coon AB, Robinson SM et al. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes53(5), 1253–1260 (2004).
  • Lofgren IE, Herron KL, West KL et al. Weight loss favorably modifies anthropometrics and reverses the metabolic syndrome in premenopausal women. J. Am. Coll. Nutr.24(6), 486–493 (2005).
  • Stiegler P, Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med.36(3), 239–262 (2006).
  • Chu NF, Stampfer MJ, Spiegelman D, Rifai N, Hotamisligil GS, Rimm EB. Dietary and lifestyle factors in relation to plasma leptin concentrations among normal weight and overweight men. Int. J. Obes. Relat. Metab. Disord.25(1), 106–114 (2001).
  • Suviolahti E, Reue K, Cantor RM et al. Cross-species analyses implicate lipin 1 involvement in human glucose metabolism. Hum. Mol. Genet.15(3), 377–386 (2005).
  • Kern PA. Potential role of TNFα and lipoprotein lipase as candidate genes for obesity. J. Nutr.127(9), 1917S–1922S (1997).
  • Couillard C, Bergeron N, Prud’homme D et al. Postprandial triglyceride response in visceral obesity in men. Diabetes47(6), 953–960 (1998).
  • Shoji T, Nishizawa Y, Koyama H et al. Lipoprotein metabolism in normolipidemic obese women during very low calorie diet: changes in high density lipoprotein. J. Nutr. Sci. Vitaminol. (Tokyo)37(Suppl.) S57–S64 (1991).
  • Kern PA, Ong JM, Saffari B, Carty J. The effects of weight loss on the activity and expression of adipose-tissue lipoprotein lipase in very obese humans. N. Engl. J. Med.322(15), 1053–1059 (1990).
  • Berman DM, Nicklas BJ, Ryan AS, Rogus EM, Dennis KE, Goldberg AP. Regulation of lipolysis and lipoprotein lipase after weight loss in obese, postmenopausal women. Obes. Res.12(1), 32–39 (2004).
  • Patalay M, Lofgren IE, Freake HC, Koo SI, Fernandez ML. The lowering of plasma lipids following a weight reduction program is related to increased expression of the LDL receptor and lipoprotein lipase. J. Nutr.135(4), 735–739 (2005).
  • Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation98(19), 2088–2093 (1998).
  • Kolehmainen M, Vidal H, Ohisalo JJ, Pirinen E, Alhava E, Uusitupa MI. Hormone sensitive lipase expression and adipose tissue metabolism show gender difference in obese subjects after weight loss. Int. J. Obes. Relat. Metab. Disord.26(1), 6–16 (2002).
  • Gesta S, Simon MF, Rey A et al. Secretion of a lysophospholipase D activity by adipocytes: involvement in lysophosphatidic acid synthesis. J. Lipid Res.43(6), 904–910 (2002).
  • Moore HP, Silver RB, Mottillo EP, Bernlohr DA, Granneman JG. Perilipin targets a novel pool of lipid droplets for lipolytic attack by hormone-sensitive lipase. J. Biol. Chem.280(52), 43109–43120 (2005).
  • Martinez-Botas J, Anderson JB, Tessier D et al. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat.Genet.26(4), 474–479 (2000).
  • Wang Y, Sullivan S, Trujillo M et al. Perilipin expression in human adipose tissues: effects of severe obesity, gender, and depot. Obes. Res.11(8), 930–936 (2003).
  • Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes44(8), 863–870 (1995).
  • Corella D, Qi L, Sorli JV et al. Obese subjects carrying the 11482G>A polymorphism at the perilipin locus are resistant to weight loss after dietary energy restriction. J. Clin. Endocrinol. Metab.90(9), 5121–5126 (2005).
  • Franckhauser S, Munoz S, Pujol A et al. Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes51(3), 624–630 (2002).
  • Beale EG, Hammer RE, Antoine B, Forest C. Glyceroneogenesis comes of age. FASEB J.16(13), 1695–1696 (2002).
  • Huuskonen J, Olkkonen VM, Jauhiainen M, Ehnholm C. The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis155(2), 269–281 (2001).
  • Kaser S, Sandhofer A, Foger B et al. Influence of obesity and insulin sensitivity on phospholipid transfer protein activity. Diabetologia44(9), 1111–1117 (2001).
  • Schlitt A, Bickel C, Thumma P et al. High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol.23(10), 1857–1862 (2003).
  • Kaser S, Laimer M, Sandhofer A, Salzmann K, Ebenbichler CF, Patsch JR. Effects of weight loss on PLTP activity and HDL particle size. Int. J. Obes. Relat. Metab. Disord.28(10), 1280–1282 (2004).
  • Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation106(25), 3143–3421 (2002).
  • Lichtenstein AH, Ausman LM, Jalbert SM et al. Efficacy of a Therapeutic Lifestyle Change/Step 2 diet in moderately hypercholesterolemic middle-aged and elderly female and male subjects. J. Lipid Res.43(2), 264–273 (2002).
  • Takamiya T, Kadowaki T, Zaky WR et al. The determinants of plasma plasminogen activator inhibitor-1 levels differ for American and Japanese men aged 40–49. Diabetes Res. Clin. Pract.72(2), 176–182 (2005).
  • Festa A, D’Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes51(4), 1131–1137 (2002).
  • Morange PE, Lijnen HR, Alessi MC, Kopp F, Collen D, Juhan-Vague I. Influence of PAI-1 on adipose tissue growth and metabolic parameters in a murine model of diet-induced obesity. Arterioscler. Thromb. Vasc. Biol.20(4), 1150–1154 (2000).
  • Liang X, Kanjanabuch T, Mao SL et al. Plasminogen activator inhibitor-1 modulates adipocyte differentiation. Am. J. Physiol. Endocrinol. Metab.290(1), E103–E113 (2006).
  • Hamalainen H, Ronnemaa T, Virtanen A et al. Improved fibrinolysis by an intensive lifestyle intervention in subjects with impaired glucose tolerance. The Finnish Diabetes Prevention Study. Diabetologia48(11), 2248–2253 (2005).
  • Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin-the classical, resistin-the controversial, adiponectin-the promising, and more to come. Best Pract. Res. Clin. Endocrinol. Metab.19(4), 525–546 (2005).
  • Yang Q, Graham TE, Mody N et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature436(7049), 356–362 (2005).
  • Burri BJ, Neidlinger TR, Van Loan M, Keim NL. Effect of low-calorie diets on plasma retinol-binding protein concentrations in overweight women. J. Nutr. Biochem.1(9), 484–486 (1990).
  • Gillmer MD. Mechanism of action/effects of androgens on lipid metabolism. Int. J. Fertil.37(Suppl. 2) 83–92 (1992).
  • Niskanen L, Laaksonen DE, Punnonen K, Mustajoki P, Kaukua J, Rissanen A. Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes Obes. Metab.6(3), 208–215 (2004).
  • Kaukua J, Pekkarinen T, Sane T, Mustajoki P. Sex hormones and sexual function in obese men losing weight. Obes. Res.11(6), 689–694 (2003).
  • Stanik S, Dornfeld LP, Maxwell MH, Viosca SP, Korenman SG. The effect of weight loss on reproductive hormones in obese men. J. Clin. Endocrinol. Metab.53(4), 828–832 (1981).
  • Strain GW, Zumoff B, Miller LK et al. Effect of massive weight loss on hypothalamic-pituitary-gonadal function in obese men. J. Clin. Endocrinol. Metab.66(5), 1019–1023 (1988).
  • Pasquali R, Casimirri F, Melchionda N et al. Weight loss and sex steroid metabolism in massively obese man. J. Endocrinol. Invest.11(3), 205–210 (1988).
  • Escobar-Morreale HF, Botella-Carretero JI, varez-Blasco F, Sancho J, San Millan JL. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab.90(12), 6364–6369 (2005).
  • Hoeger K. Obesity and weight loss in polycystic ovary syndrome. Obstet. Gynecol. Clin. North Am.28(1), 85–97 (2001).
  • Zhang S, Kim KH. TNF-α inhibits glucose-induced insulin secretion in a pancreatic β-cell line (INS-1). FEBS Lett.377(2), 237–239 (1995).
  • Berndt J, Kloting N, Kralisch S et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes54(10), 2911–2916 (2005).
  • Kloting N, Berndt J, Kralisch S et al. Vaspin gene expression in human adipose tissue: Association with obesity and type 2 diabetes. Biochem. Biophys. Res. Commun.339(1), 430–436 (2006).
  • Hida K, Wada J, Eguchi J et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc. Natl Acad. Sci. USA102(30), 10610–10615 (2005).
  • Chen MP, Chung FM, Chang DM et al. Elevated Plasma Level of Visfatin/Pre-B Cell Colony-Enhancing Factor in Patients with Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab.91(1), 295–299 (2006).
  • Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J. Clin. Endocrinol. Metab.91(4), 1578–1581 (2006).
  • Bays HE, Dujovne CA. Adiposopathy is a more rational treatment target for metabolic disease than obesity alone. Curr. Atheroscler. Rep. (In Press) (2006).
  • Bays H, Stein EA. Pharmacotherapy for dyslipidaemia–current therapies and future agents. Expert Opin. Pharmacother.4(11), 1901–1938 (2003).
  • Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet365(9468), 1389–1397 (2005).
  • Hsieh CJ, Wang PW, Liu RT et al. Orlistat for obesity: benefits beyond weight loss. Diabetes Res. Clin. Pract.67(1), 78–83 (2005).
  • Bays HE. The melanocortin system as a therapeutic treatment target for adiposity and adiposopathy. Drugs in R & D (In Press) (2006).
  • Bartness TJ, Kay Song C, Shi H, Bowers RR, Foster MT. Brain-adipose tissue cross talk. Proc. Nutr. Soc.64(1), 53–64 (2005).
  • Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol.277(6 Pt 1), E1130–E1141 (1999).
  • Blaak EE, Wolffenbuttel BH, Saris WH, Pelsers MM, Wagenmakers AJ. Weight reduction and the impaired plasma-derived free fatty acid oxidation in type 2 diabetic subjects. J. Clin. Endocrinol. Metab.86(4), 1638–1644 (2001).
  • Kelley DE Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a re-examination. Diabetes49677–683 (2000).
  • Tomas F, Kelly M, Xiang X et al. Metabolic and hormonal interactions between muscle and adipose tissue. Proc. Nutr. Soc.63(2), 381–385 (4).
  • Finn PF, Dice JF. Proteolytic and lipolytic responses to starvation. Nutrition22(7–8), 830–844 (2006).
  • Chu CA, Sherck SM, Igawa K et al. Effects of free fatty acids on hepatic glycogenolysis and gluconeogenesis in conscious dogs. Am. J. Physiol. Endocrinol. Metab.282(2), E402–E411 (2002).
  • Arner P. Regional adipocity in man. J. Endocrinol.155(2), 191–192 (1997).
  • Wajchenberg BL, Giannella-Neto D, da Silva ME, Santos RF. Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm. Metab. Res.34(11–12), 616–621 (2002).
  • Park KG, Park KS, Kim MJ et al. Relationship between serum adiponectin and leptin concentrations and body fat distribution. Diabetes Res. Clin. Pract.63(2), 135–142 (2004).
  • Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B. Estrogen controls lipolysis by up-regulating α2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor α. Implications for the female fat distribution. J. Clin. Endocrinol. Metab.89(4), 1869–1878 (2004).
  • McCarty MF. A paradox resolved: the postprandial model of insulin resistance explains why gynoid adiposity appears to be protective. Med. Hypotheses61(2), 173–176 (2003).
  • Reynisdottir S, Dauzats M, Thorne A, Langin D. Comparison of hormone-sensitive lipase activity in visceral and subcutaneous human adipose tissue. J. Clin.Endocrinol.Metab.82(12), 4162–4166 (1997).
  • Mohamed-Ali V, Goodrick S, Rawesh A et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J. Clin.Endocrinol.Metab.82(12), 4196–4200 (1997).
  • Raz I, Eldor R, Cernea S, Shafrir E. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab. Res. Rev.21(1), 3–14 (2005).
  • Rieusset J, Auwerx J, Vidal H. Regulation of gene expression by activation of the peroxisome proliferator-activated receptor γ with rosiglitazone (BRL 49653) in human adipocytes. Biochem. Biophys. Res. Commun.265(1), 265–271 (1999).
  • Ebeling P, Teppo AM, Koistinen HA, Koivisto VA. Concentration of the complement activation product, acylation-stimulating protein, is related to C-reactive protein in patients with type 2 diabetes. Metabolism50(3), 283–287 (2001).
  • Bailey CJ. Treating insulin resistance in type 2 diabetes with metformin and thiazolidinediones. Diabetes Obes. Metab.7(6), 675–691 (2005).
  • Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol.148(3), 293–300 (2003).
  • Filippatos TD, Kiortsis DN, Liberopoulos EN, Mikhailidis DP, Elisaf MS. A review of the metabolic effects of sibutramine. Curr. Med. Res. Opin.21(3), 457–468 (2005).
  • Hung YJ, Chen YC, Pei D et al. Sibutramine improves insulin sensitivity without alteration of serum adiponectin in obese subjects with Type 2 diabetes. Diabet. Med.22(8), 1024–1030 (2005).
  • Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med.353(20), 2121–2134 (2005).
  • Wu Z, Xie Y, Morrison RF, Bucher NL, Farmer SR. PPAR-γ induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPα during the conversion of 3T3 fibroblasts into adipocytes. J. Clin. Invest.101(1), 22–32 (1998).
  • Unger RH. Lipotoxic diseases. Annu. Rev. Med.53, 319–336 (2002).
  • van Tits LJ, Rioglu-Oral E, Sweep CG, Smits P, Stalenhoef AF, Tack CJ. Anti-inflammatory effects of troglitazone in nondiabetic obese subjects independent of changes in insulin sensitivity. Neth. J. Med.63(7), 250–255 (2005).
  • Yesilbursa D, Serdar A, Heper Y et al. The effect of orlistat-induced weight loss on interleukin-6 and C-reactive protein levels in obese subjects. Acta Cardiol.60(3), 265–269 (2005).
  • Kletzien RF, Clarke SD, Ulrich RG. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol. Pharmacol.41(2), 393–398 (1992).
  • Drent ML, Popp-Snijders C, Ader HJ, Jansen JB, van der V. Lipase inhibition and hormonal status, body composition and gastrointestinal processing of a liquid high-fat mixed meal in moderately obese subjects. Obes. Res.3(6), 573–581 (1995).
  • Baranowska B, Wolinska-Witort E, Martynska L et al. Sibutramine therapy in obese women - effects on plasma neuropeptide Y (NPY), insulin, leptin and β-endorphin concentrations. Neuro. Endocrinol. Lett.26(6), 675–679 (2005).
  • Poirier B, Bidouard JP, Cadrouvele C et al. The anti-obesity effect of rimonabant is associated with an improved serum lipid profile. Diabetes Obes. Metab.7(1), 65–72 (2005).
  • Bouaboula M, Hilairet S, Marchand J, Fajas L, Le Fur G, Casellas P. Anandamide induced PPARγ transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur. J. Pharmacol.517(3), 174–181 (2005).
  • Simon MF, Daviaud D, Pradere JP et al. Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor γ2. J. Biol. Chem.280(15), 14656–14662 (2005).
  • Rissanen P, Vahtera E, Krusius T, Uusitupa M, Rissanen A. Weight change and blood coagulability and fibrinolysis in healthy obese women. Int. J. Obes. Relat. Metab. Disord.25(2), 212–218 (2001).
  • Jung HS, Youn BS, Cho YM et al. The effects of rosiglitazone and metformin on the plasma concentrations of resistin in patients with type 2 diabetes mellitus. Metabolism54(3), 314–320 (2005).
  • Costa B, Trovato AE, Colleoni M, Giagnoni G, Zarini E, Croci T. Effect of the cannabinoid CB1 receptor antagonist, SR141716, on nociceptive response and nerve demyelination in rodents with chronic constriction injury of the sciatic nerve. Pain116(1–2), 52–61 (2005).
  • Hammarstedt A, Pihlajamaki J, Sopasakis VR et al. Visfatin is an adipokine but it is not regulated by thiazolidinediones. J. Clin. Endocrinol. Metab.91(3), 1181–1184 (2006).
  • Choi KC, Ryu OH, Lee KW et al. Effect of PPAR-α and -γ agonist on the expression of visfatin, adiponectin, and TNF-α in visceral fat of OLETF rats. Biochem. Biophys. Res. Commun.336(3), 747–753 (2005).
  • Visser L, Zuurbier CJ, van Wezel HB, van der Vusse GJ, Hoek FJ. Overestimation of plasma nonesterified fatty acid concentrations in heparinized blood. Circulation110(13), E328 (2004).
  • Diep QN, El Mabrouk M, Cohn JS et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-γ. Circulation105(19), 2296–2302 (2002).
  • Cota D, Marsicano G, Tschop M et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest.112(3), 423–431 (2003).
  • Dereli D, Dereli T, Bayraktar F, Ozgen AG, Yilmaz C. Endocrine and metabolic effects of rosiglitazone in non-obese women with polycystic ovary disease. Endocr. J.52(3), 299–308 (2005).
  • Vierhapper H, Nowotny P, Waldhausl W. Reduced production rates of testosterone and dihydrotestosterone in healthy men treated with rosiglitazone. Metabolism52(2), 230–232 (2003).
  • Jayagopal V, Kilpatrick ES, Holding S, Jennings PE, Atkin SL. Orlistat is as beneficial as metformin in the treatment of polycystic ovarian syndrome. J. Clin. Endocrinol. Metab.90(2), 729–733 (2005).
  • Sabuncu T, Harma M, Harma M, Nazligul Y, Kilic F. Sibutramine has a positive effect on clinical and metabolic parameters in obese patients with polycystic ovary syndrome. Fertil. Steril.80(5), 1199–1204 (2003).
  • Pang XH, Gu W. [Association of serum sex hormone-binding globulin with type 2 diabetes]. Zhejiang. Da. Xue. Xue. Bao. Yi. Xue. Ban.33(1), 60–64 (2004).
  • Rubin GL, Zhao Y, Kalus AM, Simpson ER. Peroxisome proliferator-activated receptor γ ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res.60(6), 1604–1608 (2000).

Websites

  • Bays H. Adiposopathy causes the metabolic syndrome: the beginning or end of a controversy? IAS commentary. Home of the International Atherosclerosis Society www.athero.org
  • Bays H. Adiposopathy homepage. www.lmarc.com/Index%20Adiposopathy%20Frames.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.