76
Views
18
CrossRef citations to date
0
Altmetric
Review

Gene therapy to prevent occlusion of venous bypass grafts

, &
Pages 641-652 | Published online: 10 Jan 2014

References

  • Graham MM, Ghali WA, Faris PD, Galbraith PD, Norris CM, Knudtson ML. Survival after coronary revascularization in the elderly. Circulation105(20), 2378–2384 (2002).
  • Hata M, Sezai A, Niino T et al. What is the optimal management for preventing saphenous vein graft diseases?: early results of intravascular angioscopic assessment. Circ. J.71(2), 286–287 (2007).
  • Murphy GJ, Angelini GD. Insights into the pathogenesis of vein graft disease: lessons from intravascular ultrasound. Cardiovasc. Ultrasound2, 8 (2004).
  • Solymoss BC, Nadeau P, Millette D, Campeau L. Late thrombosis of saphenous vein coronary bypass grafts related to risk factors. Circulation78(3), I140–I143 (1988).
  • Peykar S, Angiolillo DJ, Bass TA, Costa MA. Saphenous vein graft disease. Minerva Cardioangiol.52(5), 379–390 (2004).
  • Kauhanen P, Siren V, Carpen O, Vaheri A, Lepantalo M, Lassila R. Plasminogen activator inhibitor-1 in neointima of vein grafts: its role in reduced fibrinolytic potential and graft failure. Circulation96(6), 1783–1789 (1997).
  • Gosling M, Golledge J, Turner RJ, Powell JT. Arterial flow conditions downregulate thrombomodulin on saphenous vein endothelium. Circulation99(8), 1047–1053 (1999).
  • Kim AY, Walinsky PL, Kolodgie FD et al. Early loss of thrombomodulin expression impairs vein graft thromboresistance: implications for vein graft failure. Circ. Res.90(2), 205–212 (2002).
  • Bhardwaj S, Roy H, Heikura T, Yla-Herttuala S. VEGF-A, VEGF-D and VEGF-D(DeltaNDeltaC) induced intimal hyperplasia in carotid arteries. Eur. J. Clin. Invest.35(11), 669–676 (2005).
  • Donetti E, Baetta R, Comparato C et al. Polymorphonuclear leukocyte–myocyte interaction: an early event in collar-induced rabbit carotid intimal thickening. Exp. Cell Res.274(2), 197–206 (2002).
  • Zubilewicz T, Wronski J, Bourriez A et al. Injury in vascular surgery – the intimal hyperplastic response. Med. Sci. Monit.7(2), 316–324 (2001).
  • Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ. Res.70(3), 593–599 (1992).
  • Painter TA. Myointimal hyperplasia: pathogenesis and implications. 2. Animal injury models and mechanical factors. Artif. Organs15(2), 103–118 (1991).
  • Hoffmann R, Mintz GS, Dussaillant GR et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation94(6), 1247–1254 (1996).
  • Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb. Haemost.86(1), 324–333 (2001).
  • Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res.90(3), 251–262 (2002).
  • Christen T, Verin V, Bochaton-Piallat M et al. Mechanisms of neointima formation and remodeling in the porcine coronary artery. Circulation103(6), 882–888 (2001).
  • Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries. Cardiovasc. Res.59(1), 212–221 (2003).
  • Kalan JM, Roberts WC. Morphologic findings in saphenous veins used as coronary arterial bypass conduits for longer than 1 year: necropsy analysis of 53 patients, 123 saphenous veins, and 1865 five-millimeter segments of veins. Am. Heart J.119(5), 1164–1184 (1990).
  • Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation97(9), 916–931 (1998).
  • Bryan AJ, Angelini GD. The biology of saphenous vein graft occlusion: etiology and strategies for prevention. Curr. Opin. Cardiol.9(6), 641–649 (1994).
  • Mannion JD, Ormont ML, Shi Y et al. Saphenous vein graft protection: effects of c-myc antisense. J. Thorac. Cardiovasc. Surg.115(1), 152–161 (1998).
  • Kibbe MR, Tzeng E, Gleixner SL et al. Adenovirus-mediated gene transfer of human inducible nitric oxide synthase in porcine vein grafts inhibits intimal hyperplasia. J. Vasc. Surg.34(1), 156–165 (2001).
  • George SJ, Lloyd CT, Angelini GD, Newby AC, Baker AH. Inhibition of late vein graft neointima formation in human and porcine models by adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-3. Circulation101(3), 296–304 (2000).
  • Wan S, George SJ, Nicklin SA, Yim AP, Baker AH. Overexpression of p53 increases lumen size and blocks neointima formation in porcine interposition vein grafts. Mol. Ther.9(5), 689–698 (2004).
  • Akowuah EF, Gray C, Lawrie A et al. Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Ther.12(14), 1154–1157 (2005).
  • Yuda A, Takai S, Jin D et al. Angiotensin II receptor antagonist, L-158,809, prevents intimal hyperplasia in dog grafted veins. Life Sci.68(1), 41–48 (2000).
  • Saunders PC, Pintucci G, Bizekis CS et al. Vein graft arterialization causes differential activation of mitogen-activated protein kinases. J. Thorac. Cardiovasc. Surg.127(5), 1276–1284 (2004).
  • Ulus AT, Tutun U, Zorlu F et al. Prevention of intimal hyperplasia by single-dose pre-insertion external radiation in canine-vein interposition grafts. Eur. J. Vasc. Endovasc. Surg.19(5), 456–460 (2000).
  • Shintani T, Sawa Y, Takahashi T et al. Intraoperative transfection of vein grafts with the NFκB decoy in a canine aortocoronary bypass model: a strategy to attenuate intimal hyperplasia. Ann. Thorac. Surg.74(4), 1132–1137 (2002).
  • Komori K, Yamamura S, Ishida M et al. Acceleration of impairment of endothelium-dependent responses under poor runoff conditions in canine autogenous vein grafts. Eur. J. Vasc. Endovasc. Surg.14, 475–481 (1997).
  • Matsumoto T, Komori K, Yonemitsu Y et al. Hemagglutinating virus of Japan-liposome-mediated gene transfer of endothelial cell nitric oxide synthase inhibits intimal hyperplasia of canine vein grafts under conditions of poor runoff. J. Vasc. Surg.27(1), 135–144 (1998).
  • Ehsan A, Mann MJ, Dell’Acqua G, Tamura K, Braun-Dullaeus R, Dzau VJ. Endothelial healing in vein grafts: proliferative burst unimpaired by genetic therapy of neointimal disease. Circulation105(14), 1686–1692 (2002).
  • Mann MJ, Gibbons GH, Kernoff RS et al. Genetic engineering of vein grafts resistant to atherosclerosis. Proc. Natl Acad. Sci. USA92(10), 4502–4506 (1995).
  • Fulton GJ, Davies MG, Barber L, Svendsen E, Hagen PO. Locally applied antisense oligonucleotide to proliferating cell nuclear antigen inhibits intimal thickening in experimental vein grafts. Ann. Vasc. Surg.12(5), 412–417 (1998).
  • Ohta S, Komori K, Yonemitsu Y, Onohara T, Matsumoto T, Sugimachi K. Intraluminal gene transfer of endothelial cell-nitric oxide synthase suppresses intimal hyperplasia of vein grafts in cholesterol-fed rabbit: a limited biological effect as a result of the loss of medial smooth muscle cells. Surgery131(6), 644–653 (2002).
  • West NE, Qian H, Guzik TJ et al. Nitric oxide synthase (nNOS) gene transfer modifies venous bypass graft remodeling: effects on vascular smooth muscle cell differentiation and superoxide production. Circulation104(13), 1526–1532 (2001).
  • Zou Y, Dietrich H, Hu Y, Metzler B, Wick G, Xu Q. Mouse model of venous bypass graft arteriosclerosis. Am. J. Pathol.153(4), 1301–1310 (1998).
  • Sakaguchi T, Asai T, Belov D et al. Influence of ischemic injury on vein graft remodeling: role of cyclic adenosine monophosphate second messenger pathway in enhanced vein graft preservation. J. Thorac. Cardiovasc. Surg.129(1), 129–137 (2005).
  • Hu Y, Baker AH, Zou Y, Newby AC, Xu Q. Local gene transfer of tissue inhibitor of metalloproteinase-2 influences vein graft remodeling in a mouse model. Arterioscler. Thromb. Vasc. Biol.21(8), 1275–1280 (2001).
  • Suggs WD, Olson SC, Madnani D, Patel S, Veith FJ. Antisense oligonucleotides to c-fos and c-jun inhibit intimal thickening in a rat vein graft model. Surgery126(2), 443–449 (1999).
  • Wolff RA, Ryomoto M, Stark VE et al. Antisense to transforming growth factor-beta1 messenger RNA reduces vein graft intimal hyperplasia and monocyte chemotactic protein 1. J. Vasc. Surg.41(3), 498–508 (2005).
  • Gruchala M, Roy H, Bhardwaj S, Yla-Herttuala S. Gene therapy for cardiovascular diseases. Curr. Pharm. Des.10(4), 407–423 (2004).
  • Channon KM, Annex BH. Antithrombotic strategies in gene therapy. Curr. Cardiol. Rep.2(1), 34–38 (2000).
  • Tabuchi N, Shichiri M, Shibamiya A et al. Non-viral in vivo thrombomodulin gene transfer prevents early loss of thromboresistance of grafted veins. Eur. J. Cardiothorac. Surg.26(5), 995–1001 (2004).
  • Ohno N, Itoh H, Ikeda T et al. Accelerated reendothelialization with suppressed thrombogenic property and neointimal hyperplasia of rabbit jugular vein grafts by adenovirus-mediated gene transfer of C-type natriuretic peptide. Circulation105(14), 1623–1626 (2002).
  • Zoldhelyi P, Chen ZQ, Shelat HS, McNatt JM, Willerson JT. Local gene transfer of tissue factor pathway inhibitor regulates intimal hyperplasia in atherosclerotic arteries. Proc. Natl Acad. Sci. USA98(7), 4078–4083 (2001).
  • Singh R, Pan S, Mueske CS et al. Role for tissue factor pathway in murine model of vascular remodeling. Circ. Res.89(1), 71–76 (2001).
  • Ding H, Wang R, Marcel R, Fisher DZ. Adenovirus-mediated expression of a truncated PDGFbeta receptor inhibits thrombosis and neointima formation in an avian arterial injury model. Thromb. Haemost.86(3), 914–922 (2001).
  • Rade JJ, Schulick AH, Virmani R, Dichek DA. Local adenoviral-mediated expression of recombinant hirudin reduces neointima formation after arterial injury. Nat. Med.2(3), 293–298 (1996).
  • Mann MJ, Gibbons GH, Tsao PS et al. Cell cycle inhibition preserves endothelial function in genetically engineered rabbit vein grafts. J. Clin. Invest.99(6), 1295–1301 (1997).
  • Simons M, Edelman ER, DeKeyser JL, Langer R, Rosenberg RD. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature359(6390), 67–70 (1992).
  • Morishita R, Gibbons GH, Ellison KE et al. Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. J. Clin. Invest.93(4), 1458–1464 (1994).
  • Morishita R, Gibbons GH, Ellison KE et al. Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc. Natl Acad. Sci. USA90(18), 8474–8478 (1993).
  • Indolfi C, Avvedimento EV, Rapacciuolo A et al. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nat. Med.1(6), 541–545 (1995).
  • Morishita R, Gibbons GH, Horiuchi M et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc. Natl Acad. Sci. USA92(13), 5855–5859 (1995).
  • Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat. Med.4(2), 222–227 (1998).
  • Morishita R, Sugimoto T, Aoki M et al.In vivo transfection of cis element “decoy” against nuclear factor-κB binding site prevents myocardial infarction. Nat. Med.3(8), 894–899 (1997).
  • Iaccarino G, Smithwick LA, Lefkowitz RJ, Koch WJ. Targeting Gβ γ signaling in arterial vascular smooth muscle proliferation: a novel strategy to limit restenosis. Proc. Natl Acad. Sci. USA96(7), 3945–3950 (1999).
  • Kusch B, Waldhans S, Sattler A et al. Inhibition of carotis venous bypass graft disease by intraoperative nucleic acid-based therapy in rabbits. Thorac. Cardiovasc. Surg.54(6), 388–392 (2006).
  • Granada JF, Ensenat D, Keswani AN et al. Single perivascular delivery of mitomycin C stimulates p21 expression and inhibits neointima formation in rat arteries. Arterioscler. Thromb. Vasc. Biol.25(11), 2343–2348 (2005).
  • Chang MW, Barr E, Lu MM, Barton K, Leiden JM. Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J. Clin. Invest.96(5), 2260–2268 (1995).
  • Tsui LV, Camrud A, Mondesire J et al. p27–p16 fusion gene inhibits angioplasty-induced neointimal hyperplasia and coronary artery occlusion. Circ. Res.89(4), 323–328 (2001).
  • Maillard L, Van BE, Smith RC et al. Percutaneous delivery of the gax gene inhibits vessel stenosis in a rabbit model of balloon angioplasty. Cardiovasc. Res.35(3), 536–546 (1997).
  • Mayr U, Mayr M, Li C et al. Loss of p53 accelerates neointimal lesions of vein bypass grafts in mice. Circ. Res.90(2), 197–204 (2002).
  • Chang MW, Ohno T, Gordon D et al. Adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene inhibits vascular smooth muscle cell proliferation and neointima formation following balloon angioplasty of the rat carotid artery. Mol Med.1(2), 172–181 (1995).
  • Sata M, Perlman H, Muruve DA et al. Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc. Natl Acad. Sci. USA95(3), 1213–1217 (1998).
  • Deguchi J, Namba T, Hamada H et al. Targeting endogenous platelet-derived growth factor B-chain by adenovirus-mediated gene transfer potently inhibits in vivo smooth muscle proliferation after arterial injury. Gene Ther.6(6), 956–965 (1999).
  • Mallawaarachchi CM, Weissberg PL, Siow RC. Antagonism of platelet-derived growth factor by perivascular gene transfer attenuates adventitial cell migration after vascular injury: new tricks for old dogs? FASEB J.20(10), 1686–1688 (2006).
  • Kaneda Y, Morishita R, Dzau VJ. Prevention of restenosis by gene therapy. Ann. NY Acad. Sci.811, 299–308 (1997).
  • Wang GJ, Sui XX, Simosa HF, Jain MK, Altieri DC, Conte MS. Regulation of vein graft hyperplasia by survivin, an inhibitor of apoptosis protein. Arterioscler. Thromb. Vasc. Biol.25(10), 2081–2087 (2005).
  • Horiba M, Kadomatsu K, Nakamura E et al. Neointima formation in a restenosis model is suppressed in midkine-deficient mice. J. Clin. Invest.105(4), 489–495 (2000).
  • Banno H, Takei Y, Muramatsu T, Komori K, Kadomatsu K. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J. Vasc. Surg.44(3), 633–641 (2006).
  • Santiago FS, Ishii H, Shafi S et al. Yin Yang-1 inhibits vascular smooth muscle cell growth and intimal thickening by repressing p21WAF1/Cip1 transcription and p21WAF1/Cip1-Cdk4-cyclin D1 assembly. Circ. Res.101(2), 146–155 (2007).
  • Fu M, Zhu X, Zhang J et al. Egr-1 target genes in human endothelial cells identified by microarray analysis. Gene315, 33–41 (2003).
  • Lowe HC, Chesterman CN, Khachigian LM. Catalytic antisense DNA molecules targeting Egr-1 inhibit neointima formation following permanent ligation of rat common carotid arteries. Thromb. Haemost.87(1), 134–140 (2002).
  • Forough R, Lea H, Starcher B et al. Metalloproteinase blockade by local overexpression of TIMP-1 increases elastin accumulation in rat carotid artery intima. Arterioscler. Thromb. Vasc. Biol.18(5), 803–807 (1998).
  • George SJ, Johnson JL, Angelini GD, Newby AC, Baker AH. Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein. Hum. Gene Ther.9(6), 867–877 (1998).
  • Woodside KJ, Naoum JJ, Torry RJ et al. Altered expression of vascular endothelial growth factor and its receptors in normal saphenous vein and in arterialized and stenotic vein grafts. Am. J. Surg.186(5), 561–568 (2003).
  • Denizot Y, Leguyader A, Cornu E et al. Release of soluble vascular endothelial growth factor receptor-1 (sFlt-1) during coronary artery bypass surgery. J. Cardiothorac. Surg.2, 38 (2007).
  • Laitinen M, Zachary I, Breier G et al. VEGF gene transfer reduces intimal thickening via increased production of nitric oxide in carotid arteries. Hum. Gene Ther.8(15), 1737–1744 (1997).
  • Hiltunen MO, Laitinen M, Turunen MP et al. Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Circulation102(18), 2262–2268 (2000).
  • Rutanen J, Turunen AM, Teittinen M et al. Gene transfer using the mature form of VEGF-D reduces neointimal thickening through nitric oxide-dependent mechanism. Gene Ther.12(12), 980–987 (2005).
  • Ruef J, Hu ZY, Yin LY et al. Induction of vascular endothelial growth factor in balloon-injured baboon arteries. A novel role for reactive oxygen species in atherosclerosis. Circ. Res.81(1), 24–33 (1997).
  • Shibata M, Suzuki H, Nakatani M et al. The involvement of vascular endothelial growth factor and flt-1 in the process of neointimal proliferation in pig coronary arteries following stent implantation. Histochem. Cell Biol.116(6), 471–481 (2001).
  • Khurana R, Zhuang Z, Bhardwaj S et al. Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation110(16), 2436–2443 (2004).
  • Walker T, Wendel HP, Tetzloff L et al. Inhibition of adhesion molecule expression on human venous endothelial cells by non-viral siRNA transfection. J. Cell Mol. Med.11(1), 139–147 (2007).
  • Zhang L, Peppel K, Brian L, Chien L, Freedman NJ. Vein graft neointimal hyperplasia is exacerbated by tumor necrosis factor receptor-1 signaling in graft-intrinsic cells. Arterioscler. Thromb. Vasc. Biol.24(12), 2277–2283 (2004).
  • Schepers A, Eefting D, Bonta PI et al. Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and In vivo. Arterioscler. Thromb. Vasc. Biol.26(9), 2063–2069 (2006).
  • Schepers A, de Vries MR, van Leuven CJ et al. Inhibition of complement component C3 reduces vein graft atherosclerosis in apolipoprotein E3-Leiden transgenic mice. Circulation114(25), 2831–2838 (2006).
  • Ali ZA, Bursill CA, Hu Y et al. Gene transfer of a broad spectrum CC-chemokine inhibitor reduces vein graft atherosclerosis in apolipoprotein E-knockout mice. Circulation112(9), I235–I241 (2005).
  • Laukkanen J, Lehtolainen P, Gough PJ, Greaves DR, Gordon S, Yla-Herttuala S. Adenovirus-mediated gene transfer of a secreted form of human macrophage scavenger receptor inhibits modified low-density lipoprotein degradation and foam-cell formation in macrophages. Circulation101(10), 1091–1096 (2000).
  • Turunen P, Puhakka HL, Heikura T et al. Extracellular superoxide dismutase with vaccinia virus anti-inflammatory protein 35K or tissue inhibitor of metalloproteinase-1: Combination gene therapy in the treatment of vein graft stenosis in rabbits. Hum. Gene Ther.17(4), 405–414 (2006).
  • Puhakka HL, Turunen P, Gruchala M et al. Effects of vaccinia virus anti-inflammatory protein 35K and TIMP-1 gene transfers on vein graft stenosis in rabbits. In vivo19(3), 515–521 (2005).
  • Yet SF, Layne MD, Liu X et al. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling.FASEB J.17(12), 1759–1761 (2003).
  • Ehsan A, Mann MJ, Dell’Acqua G, Dzau VJ. Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. J. Thorac. Cardiovasc. Surg.121(4), 714–722 (2001).
  • Taylor KD, Scheuner MT, Yang H et al. Lipoprotein lipase locus and progression of atherosclerosis in coronary-artery bypass grafts. Genet. Med.6(6), 481–486 (2004).
  • Vahakangas E, Yla-Herttuala S. Gene therapy of atherosclerosis. Handb. Exp. Pharmacol.170, 785–807 (2005).
  • Pelisek J, Engelmann MG, Golda A et al. Optimization of nonviral transfection: variables influencing liposome-mediated gene transfer in proliferating vs. quiescent cells in culture and In vivo using a porcine restenosis model. J. Mol. Med.80(11), 724–736 (2002).
  • Hart SL, Rancibia-Carcamo CV, Wolfert MA et al. Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum. Gene Ther.9(4), 575–585 (1998).
  • Meng QH, Jamal W, Hart SL, McEwan JR. Application to vascular adventitia of a nonviral vector for TIMP-1 gene therapy to prevent intimal hyperplasia. Hum. Gene Ther.17(7), 717–727 (2006)
  • Bai HZ, Sawa Y, Zhang WD et al. Gene transfer to vein graft wall by HVJ-liposome method: time course and localization of gene expression. Ann. Thorac. Surg.66(3), 814–819 (1998).
  • Faria M, Wood CD, White MR, Helene C, Giovannangeli C. Transcription inhibition induced by modified triple helix-forming oligonucleotides: a quantitative assay for evaluation in cells. J. Mol. Biol.306(1), 15–24 (2001).
  • Yla-Herttuala S, Martin JF. Cardiovascular gene therapy. Lancet355(9199), 213–222 (2000).
  • Kobayashi S, Dono K, Tanaka T et al. Gene transfer into the liver by plasmid injection into the portal vein combined with electroporation. J. Gene Med.5(3), 201–208 (2003).
  • Bhardwaj S, Roy H, Gruchala M et al. Angiogenic responses of vascular endothelial growth factors in periadventitial tissue. Hum. Gene Ther.14(15), 1451–1462 (2003).
  • Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med.7(1), 33–40 (2001).
  • Roy H, Bhardwaj S, Babu M et al. Adenovirus-mediated gene transfer of placental growth factor to perivascular tissue induces angiogenesis via upregulation of the expression of endogenous vascular endothelial growth factor-A. Hum. Gene Ther.16(12), 1422–1428 (2005).
  • Nicklin SA, Reynolds PN, Brosnan MJ et al. Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension38(1), 65–70 (2001).
  • Work LM, Nicklin SA, Brain NJ et al. Development of efficient viral vectors selective for vascular smooth muscle cells. Mol. Ther.9, 198–208 (2004).
  • Work LM, Reynolds PN, Baker AH. Improved gene delivery to human saphenous vein cells and tissue using a peptide-modified adenoviral vector. Genet. Vaccines Ther.2(1), 14 (2004).
  • Huynh TT, Iaccarino G, Davies MG, Svendsen E, Koch WJ, Hagen PO. Adenoviral-mediated inhibition of G β γ signaling limits the hyperplastic response in experimental vein grafts. Surgery124(2), 177–186 (1998).
  • Tatewaki H, Egashira K, Kimura S, Nishida T, Morita S, Tominaga R. Blockade of monocyte chemoattractant protein-1 by adenoviral gene transfer inhibits experimental vein graft neointimal formation. J. Vasc. Surg.45(6), 1236–1243 (2007).
  • Lamfers ML, Aalders MC, Grimbergen JM et al. Adenoviral delivery of a constitutively active retinoblastoma mutant inhibits neointima formation in a human explant model for vein graft disease. Vascul. Pharmacol.39(6), 293–301 (2002).
  • Saiura A, Sata M, Hiasa K et al. Antimonocyte chemoattractant protein-1 gene therapy attenuates graft vasculopathy. Arterioscler. Thromb. Vasc. Biol.24(10), 1886–1890 (2004).
  • Wu S, Wang X, Guo L, Zi J. Adenovirus mediated endothelial nitric oxide synthase gene transfer prevents restenosis of vein grafts. ASAIO J.50(3), 272–277 (2004).
  • Laitinen M, Pakkanen T, Donetti E et al. Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid-liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum. Gene Ther.8(14), 1645–1650 (1997).
  • Schulick AH, Dong G, Newman KD, Virmani R, Dichek DA. Endothelium-specific in vivo gene transfer. Circ. Res.77(3), 475–485 (1995).
  • Work LM, Nicklin SA, Brain NJ et al. Development of efficient viral vectors selective for vascular smooth muscle cells. Mol. Ther.9(2), 198–208 (2004).
  • Eslami MH, Gangadharan SP, Sui X, Rhynhart KK, Snyder RO, Conte MS. Gene delivery to in situ veins: differential effects of adenovirus and adeno-associated viral vectors. J. Vasc. Surg.31(6), 1149–1159 (2000).
  • Monahan PE, Samulski RJ. Adeno-associated virus vectors for gene therapy: more pros than cons? Mol. Med. Today6(11), 433–440 (2000).
  • Skelly CL, Curi MA, Meyerson SL et al. Prevention of restenosis by a herpes simplex virus mutant capable of controlled long-term expression in vascular tissue in vivo. Gene Ther.8(24), 1840–1846 (2001).
  • Skelly CL, Chandiwal A, Vosicky JE, Weichselbaum RR, Roizman B. Attenuated herpes simplex virus 1 blocks arterial apoptosis and intimal hyperplasia induced by balloon angioplasty and reduced blood flow. Proc. Natl Acad. Sci. USA104(30), 12474–12478 (2007).
  • Curi MA, Skelly CL, Meyerson SL et al. Sustained inhibition of experimental neointimal hyperplasia with a genetically modified herpes simplex virus. J. Vasc. Surg.37(6), 1294–1300 (2003).
  • Shimizu N, Azuma N, Nishikawa T et al. Effect on vein graft intimal hyperplasia of nuclear factor-κB decoy transfection using the second generation of HVJ vector. J. Cardiovasc. Surg.48(4), 463–470 (2007).
  • Dishart KL, Denby L, George SJ et al. Third-generation lentivirus vectors efficiently transduce and phenotypically modify vascular cells: implications for gene therapy. J. Mol. Cell Cardiol.35(7), 739–748 (2003).
  • Mayr U, Zou Y, Zhang Z, Dietrich H, Hu Y, Xu Q. Accelerated arteriosclerosis of vein grafts in inducible NO synthase(-/-) mice is related to decreased endothelial progenitor cell repair. Circ. Res.98(3), 412–420 (2006).
  • Kong D, Melo LG, Mangi AA et al. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation109(14), 1769–1775 (2004).
  • Hu Y, Zhang Z, Torsney E et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J. Clin. Invest.113(9), 1258–1265 (2004).
  • Alexander JH, Ferguson TB Jr, Joseph DM et al. The PRoject of Ex-vivo Vein graft ENgineering via Transfection IV (PREVENT IV) trial: study rationale, design, and baseline patient characteristics. Am. Heart J.150(4), 643–649 (2005).
  • Mann MJ, Whittemore AD, Donaldson MC et al.Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet.354(9189), 1493–1498 (1999).
  • Conte MS, Lorenz TJ, Bandyk DF, Clowes AW, Moneta GL, Seely BL. Design and rationale of the PREVENT III clinical trial: edifoligide for the prevention of infrainguinal vein graft failure. Vasc. Endovascular Surg.39(1), 15–23 (2005).
  • Alexander JH, Hafley G, Harrington RA et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA294(19), 2446–2454 (2005).
  • Conte MS, Bandyk DF, Clowes AW et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. Vasc. Surg.43(4), 742–751 (2006).
  • Trono D. Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther.7(1), 20–23 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.