473
Views
28
CrossRef citations to date
0
Altmetric
Review

Pyrazinamide: the importance of uncovering the mechanisms of action in mycobacteria

, &

References

  • World Health Organisation. Global tuberculosis report 2014. WHO Press; Geneva, Switzerland: 2014
  • Mitchison DA. Assessment of new sterilizing drugs for treating pulmonary tuberculosis by culture at 2 months. Am Rev Respir Dis 1993;147:1062-3
  • Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 2003;7:6-21
  • Saltini C. Chemotherapy and diagnosis of tuberculosis. Respir Med 2006;100:2085-97
  • Zhang Y, Shi W, Zhang W, et al. Mechanisms of pyrazinamide action and resistance. Microbiol Spectr 2013;2:1-12
  • Murray MF. Nicotinamide: an oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clin Infect Dis 2003;36:453-60
  • Almeida D, Nuermberger E, Tasneen R, et al. Paradoxical effect of isoniazid on the activity of rifampin-pyrazinamide combination in a mouse model of tuberculosis. Antimicrob Agents Chemother 2009;53:4178-84
  • Tarshis MS, Weed WA. Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am Rev Tuberc 1953;67:391-5
  • Salfinger M, Heifets LB. Determination of pyrazinamide MICs for Mycobacterium tuberculosis at different pHs by the radiometric method. Antimicrob Agents Chemother 1988;32:1002-4
  • Werngren J, Sturegård E, Juréen P, et al. Reevaluation of the critical concentration for drug susceptibility testing of Mycobacterium tuberculosis against pyrazinamide using wild-type MIC distributions and pncA gene sequencing. Antimicrob Agents Chemother 2012;56:1253-7
  • Wade MM, Zhang Y. Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. J Med Microbiol 2004;53:769-73
  • Huang Q, Chen ZF, Li YY, et al. Nutrient-starved incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. Chemotherapy 2007;53:338-43
  • Wade MM, Zhang Y. Effects of weak acids, UV and proton motive force inhibitors on pyrazinamide activity against Mycobacterium tuberculosis in vitro. J Antimicrob Chemother 2006;58:936-41
  • Gu P, Constantino L, Zhang Y. Enhancement of the antituberculosis activity of weak acids by inhibitors of energy metabolism but not by anaerobiosis suggests that weak acids act differently from the front-line tuberculosis drug pyrazinamide. J Med Microbiol 2008;57:1129-34
  • Somoskovi A, Wade MM, Sun Z, et al. Iron enhances the antituberculous activity of pyrazinamide. J Antimicrob Chemother 2004;53:192-6
  • Dillon NA, Peterson ND, Rosen BC, et al. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. Antimicrob Agents Chemother 2014;58:7258-63
  • Zhang S, Chen J, Shi W, et al. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2014;2:e34
  • Shi W, Chen J, Feng J, et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect 2014;3:e58
  • Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 1996;2:662-7
  • Boshoff HI, Mizrahi V. Expression of Mycobacterium smegmatis pyrazinamidase in Mycobacterium tuberculosis confers hypersensitivity to pyrazinamide and related amides. J Bacteriol 2000;182:5479-85
  • Bamaga M, Wright DJ, Zhang H. Selection of in vitro mutants of pyrazinamide-resistant Mycobacterium tuberculosis. Int J Antimicrob Agents 2002;20:275-81
  • Miotto P, Cabibbe AM, Feuerriegel S, et al. Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study. MBio 2014;5:e01819-14
  • Bishop KS, Blumberg L, Trollip AP, et al. Characterisation of the pncA gene in Mycobacterium tuberculosis isolates from Gauteng, South Africa. Int J Tuberc Lung Dis 2001;5:952-7
  • Huang TS, Lee SS, Tu HZ, et al. Correlation between pyrazinamide activity and pncA mutations in Mycobacterium tuberculosis isolates in Taiwan. Antimicrob Agents Chemother 2003;47:3672-3
  • Miyagi C, Yamane N, Yogesh B, et al. Genetic and phenotypic characterization of pyrazinamide-resistant Mycobacterium tuberculosis complex isolates in Japan. Diagn Microbiol Infect Dis 2004;48:111-16
  • Rodrigues Vde F, Telles MA, Ribeiro MO, et al. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis in Brazil. Antimicrob Agents Chemother 2005;49:444-6
  • Chan RC, Hui M, Chan EW, et al. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. J Antimicrob Chemother 2007;59:866-73
  • Pandey S, Newton S, Upton A, et al. Characterisation of pncA mutations in clinical Mycobacterium tuberculosis isolates in New Zealand. Pathology 2009;41:582-4
  • Jonmalung J, Prammananan T, Leechawengwongs M, et al. Surveillance of pyrazinamide susceptibility among multidrug-resistant Mycobacterium tuberculosis isolates from Siriraj Hospital, Thailand. BMC Microbiol 2010;10:223
  • Louw GE, Warren RM, Donald PR, et al. Frequency and implications of pyrazinamide resistance in managing previously treated tuberculosis patients. Int J Tuberc Lung Dis 2006;10:802-7
  • Mphahlele M, Syre H, Valvatne H, et al. Pyrazinamide resistance among South African multidrug-resistant Mycobacterium tuberculosis isolates. J Clin Microbiol 2008;46:3459-64
  • Hou L, Osei-Hyiaman D, Zhang Z, et al. Molecular characterization of pncA gene mutations in Mycobacterium tuberculosis clinical isolates from China. Epidemiol Infect 2000;124:227-32
  • Hirano K, Takahashi M, Kazumi Y, et al. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuber Lung Dis 1997;78:117-22
  • Lee KW, Lee JM, Jung KS. Characterization of pncA mutations of pyrazinamide-resistant Mycobacterium tuberculosis in Korea. J Korean Med Sci 2001;16:537-43
  • Barco P, Cardoso RF, Hirata RD, et al. pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis clinical isolates from the southeast region of Brazil. J Antimicrob Chemother 2006;58:930-5
  • Bhuju S, Fonseca Lde S, Marsico AG, et al. Mycobacterium tuberculosis isolates from Rio de Janeiro reveal unusually low correlation between pyrazinamide resistance and mutations in the pncA gene. Infect Genet Evol 2013;19:1-6
  • Doustdar F, Khosravi AD, Farnia P. Mycobacterium tuberculosis genotypic diversity in pyrazinamide-resistant isolates of Iran. Microb Drug Resist 2009;15:251-6
  • Piersimoni C, Mustazzolu A, Giannoni F, et al. Prevention of false resistance results obtained in testing the susceptibility of Mycobacterium tuberculosis to pyrazinamide with the Bactec MGIT 960 system using a reduced inoculum. J Clin Microbiol 2013;51:291-4
  • Zhang Y, Permar S, Sun Z. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J Med Microbiol 2002;51:42-9
  • Chedore P, Bertucci L, Wolfe J, et al. Potential for erroneous results indicating resistance when using the Bactec MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol 2010;48:300-1
  • Dormandy J, Somoskovi A, Kreiswirth BN, et al. Discrepant results between pyrazinamide susceptibility testing by the reference BACTEC 460TB method and pncA DNA sequencing in patients infected with multidrug-resistant W-Beijing Mycobacterium tuberculosis strains. Chest 2007;131:497-501
  • Syre H, Ovreas K, Grewal HM. Determination of the susceptibility of Mycobacterium tuberculosis to pyrazinamide in liquid and solid media assessed by a colorimetric nitrate reductase assay. J Antimicrob Chemother 2010;65:704-12
  • Cui Z, Wang J, Lu J, et al. Evaluation of methods for testing the susceptibility of clinical Mycobacterium tuberculosis isolates to pyrazinamide. J Clin Microbiol 2013;51:1374-80
  • Heifets L, Sanchez T. New agar medium for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol 2000;38:1498-501
  • Zhang Y. Rapid molecular detection of pyrazinamide resistance: the way forward. Int J Tuberc Lung Dis 2015;19:128
  • Boshoff HI, Mizrahi V. Purification, gene cloning, targeted knockout, overexpression, and biochemical characterization of the major pyrazinamidase from Mycobacterium smegmatis. J Bacteriol 1998;180:5809-14
  • Guo M, Sun Z, Zhang Y. Mycobacterium smegmatis has two pyrazinamidase enzymes, PncA and pzaA. J Bacteriol 2000;182:3881-4
  • Scorpio A, Collins D, Whipple D, et al. Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J Clin Microbiol 1997;35:106-10
  • Petrella S, Gelus-Ziental N, Maudry A, et al. Crystal structure of the pyrazinamidase of Mycobacterium tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS One 2011;6:e15785
  • Vilcheze C, Weinrick B, Wong KW, et al. NAD+ auxotrophy is bacteriocidal for the tubercle bacilli. Mol Microbiol 2010;76:365-77
  • Hammer-Jespersen K, Buxton RS, Hansen TD. A second purine nucleoside phosphorylase in Escherichia coli K-12. II. Properties of xanthosine phosphorylase and its induction by xanthosine. Mol Gen Genet 1980;179:341-8
  • Dong WR, Sun CC, Zhu G, et al. New function for Escherichia coli xanthosine phosphorylase (xapA): genetic and biochemical evidences on its participation in NAD(+) salvage from nicotinamide. BMC Microbiol 2014;14:29
  • Zhang Y, Wade MM, Scorpio A, et al. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 2003;52:790-5
  • Raynaud C, Laneelle MA, Senaratne RH, et al. Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology 1999;145(Pt 6):1359-67
  • Zhang Y, Scorpio A, Nikaido H, et al. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Bacteriol 1999;181:2044-9
  • Sayahi H, Pugliese KM, Zimhony O, et al. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I. Chem Biodivers 2012;9:2582-96
  • Sayahi H, Zimhony O, Jacobs WRJr, et al. Pyrazinamide, but not pyrazinoic acid, is a competitive inhibitor of NADPH binding to Mycobacterium tuberculosis fatty acid synthase I. Bioorg Med Chem Lett 2011;21:4804-7
  • Zimhony O, Cox JS, Welch JT, et al. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 2000;6:1043-7
  • Thayil SM, Morrison N, Schechter N, et al. The role of the novel exopolyphosphatase MT0516 in Mycobacterium tuberculosis drug tolerance and persistence. PLoS One 2011;6:e28076
  • Chuang YM, Belchis DA, Karakousis PC. The polyphosphate kinase gene ppk2 is required for Mycobacterium tuberculosis inorganic polyphosphate regulation and virulence. MBio 2013;4:e00039-13
  • Singh R, Singh M, Arora G, et al. Polyphosphate deficiency in Mycobacterium tuberculosis is associated with enhanced drug susceptibility and impaired growth in guinea pigs. J Bacteriol 2013;195:2839-51
  • Li Y, Zhang Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 2007;51:2092-9
  • Shi W, Zhang Y. PhoY2 but not PhoY1 is the PhoU homologue involved in persisters in Mycobacterium tuberculosis. J Antimicrob Chemother 2010;65:1237-42
  • Wang C, Mao Y, Yu J, et al. PhoY2 of mycobacteria is required for metabolic homeostasis and stress response. J Bacteriol 2013;195:243-52
  • Shiba T, Tsutsumi K, Yano H, et al. Inorganic polyphosphate and the induction of rpoS expression. Proc Natl Acad Sci USA 1997;94:11210-15
  • Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 2002;66:373-95
  • Shi W, Zhang X, Jiang X, et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 2011;333:1630-2
  • Li J, Ji L, Shi W, et al. Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. J Antimicrob Chemother 2013;68:2477-81
  • Yang J, Liu Y, Bi J, et al. Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide. Mol Microbiol 2014. [Epub ahead of print]
  • Mirabal NC, Yzquierdo SL, Lemus D, et al. Evaluation of colorimetric methods using nicotinamide for rapid detection of pyrazinamide resistance in Mycobacterium tuberculosis. J Clin Microbiol 2010;48:2729-33
  • Martin A, Cubillos-Ruiz A, Von Groll A, et al. Nitrate reductase assay for the rapid detection of pyrazinamide resistance in Mycobacterium tuberculosis using nicotinamide. J Antimicrob Chemother 2008;61:123-7
  • Jeanguenin L, Lara-Nunez A, Rodionov DA, et al. Comparative genomics and functional analysis of the NiaP family uncover nicotinate transporters from bacteria, plants, and mammals. Funct Integr Genomics 2012;12:25-34
  • Rodionov DA, Li X, Rodionova IA, et al. Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Res 2008;36:2032-46
  • Raiol T, Ribeiro GM, Maranhao AQ, et al. Complete genome sequence of Mycobacterium massiliense. J Bacteriol 2012;194:5455
  • Ohashi K, Kawai S, Murata K. Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae. Eukaryot Cell 2013;12:648-53
  • Llorente B, Dujon B. Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett 2000;475:237-41
  • Herbert M, Sauer E, Smethurst G, et al. Nicotinamide ribosyl uptake mutants in Haemophilus influenzae. Infect Immun 2003;71:5398-401
  • Sauer E, Merdanovic M, Mortimer AP, et al. PnuC and the utilization of the nicotinamide riboside analog 3-aminopyridine in Haemophilus influenzae. Antimicrob Agents Chemother 2004;48:4532-41
  • Jaehme M, Guskov A, Slotboom DJ. Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog. Nat Struct Mol Biol 2014;21:1013-15
  • Boshoff HI, Xu X, Tahlan K, et al. Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. J Biol Chem 2008;283:19329-41
  • Rodionova IA, Schuster BM, Guinn KM, et al. Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria. MBio 2014;5:1-9
  • Lew JM, Kapopoulou A, Jones LM, et al. TubercuList - 10 years after. Tuberculosis (Edinb) 2011;91:1-7
  • Zimic M, Fuentes P, Gilman RH, et al. Pyrazinoic acid efflux rate in Mycobacterium tuberculosis is a better proxy of pyrazinamide resistance. Tuberculosis (Edinb) 2012;92:84-91
  • French JB, Cen Y, Vrablik TL, et al. Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism. Biochemistry 2010;49:10421-39
  • Gerdes SY, Scholle MD, D’Souza M, et al. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol 2002;184:4555-72
  • Osterman AL, Begley TP. A subsystems-based approach to the identification of drug targets in bacterial pathogens. Prog Drug Res 2007;64:131, 133-170
  • Kim H, Shibayama K, Rimbara E, et al. Biochemical characterization of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and inhibition of its activity by pyrazinamide. PLoS One 2014;9:e100062
  • Cheng W, Roth J. Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium. J Bacteriol 1995;177:6711-17
  • Garavaglia S, Raffaelli N, Finaurini L, et al. A novel fold revealed by Mycobacterium tuberculosis NAD kinase, a key allosteric enzyme in NADP biosynthesis. J Biol Chem 2004;279:40980-6
  • Bellinzoni M, De Rossi E, Branzoni M, et al. Heterologous expression, purification, and enzymatic activity of Mycobacterium tuberculosis NAD(+) synthetase. Protein Expr Purif 2002;25:547-57
  • Sharma V, Grubmeyer C, Sacchettini JC. Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target. Structure 1998;6:1587-99
  • Houtkooper RH, Canto C, Wanders RJ, et al. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010;31:194-223
  • Sorci L, Ruggieri S, Raffaelli N. NAD homeostasis in the bacterial response to DNA/RNA damage. DNA Repair (Amst) 2014;23:17-26
  • Srivastava SK, Dube D, Tewari N, et al. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I. Nucleic Acids Res 2005;33:7090-101
  • Noy T, Xu H, Blanchard JS. Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction. Arch Biochem Biophys 2014;550-551:42-9
  • North BJ, Verdin E. Sirtuins: sir2-related NAD-dependent protein deacetylases. Genome Biol 2004;5:224
  • Hayden JD, Brown LR, Gunawardena HP, et al. Reversible acetylation regulates acetate and propionate metabolism in Mycobacterium smegmatis. Microbiology 2013;159:1986-99
  • Gu J, Deng JY, Li R, et al. Cloning and characterization of NAD-dependent protein deacetylase (Rv1151c) from Mycobacterium tuberculosis. Biochemistry (Mosc) 2009;74:743-8
  • Jordahl C, Des Prez R, Deuschle K, et al. Ineffectiveness of nicotinamide and isoniazid in the treatment of pulmonary tuberculosis. Am Rev Respir Dis 1961;83:899-900
  • Morisaki N, Hashimoto Y, Furihata K, et al. Structures of ADP-ribosylated rifampicin and its metabolite: intermediates of rifampicin-ribosylation by Mycobacterium smegmatis DSM43756. J Antibiot (Tokyo) 2000;53:269-75
  • Quan S, Imai T, Mikami Y, et al. ADP-ribosylation as an intermediate step in inactivation of rifampin by a mycobacterial gene. Antimicrob Agents Chemother 1999;43:181-4
  • Baysarowich J, Koteva K, Hughes DW, et al. Rifamycin antibiotic resistance by ADP-ribosylation: structure and diversity of Arr. Proc Natl Acad Sci USA 2008;105:4886-91
  • Quan S, Venter H, Dabbs ER. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother 1997;41:2456-60
  • Fonseca Lde S, Marsico AG, Vieira GB, et al. Correlation between resistance to pyrazinamide and resistance to other antituberculosis drugs in Mycobacterium tuberculosis strains isolated at a referral hospital. J Bras Pneumol 2012;38:630-3
  • Wang XD, Gu J, Wang T, et al. Comparative analysis of mycobacterial NADH pyrophosphatase isoforms reveals a novel mechanism for isoniazid and ethionamide inactivation. Mol Microbiol 2011;82:1375-91
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes -. Release 72.1, December 1, 2014 Nucleic Acids Res 2000;28:27-30
  • Kanehisa M, Goto S, Sato Y, et al. Data, information, knowledge and principle: back to metabolism in KEGG. - Release 72.1, December 1, 2014 Nucleic Acids Res 2014;42:D199-205
  • Imai S. Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases. Curr Pharm Des 2009;15:20-8
  • Martin PR, Shea RJ, Mulks MH. Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J Bacteriol 2001;183:1168-74
  • Konno K, Feldmann FM, McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 1967;95:461-9
  • Cynamon MH, Klemens SP, Chou TS, et al. Antimycobacterial activity of a series of pyrazinoic acid esters. J Med Chem 1992;35:1212-15
  • Speirs RJ, Welch JT, Cynamon MH. Activity of n-propyl pyrazinoate against pyrazinamide-resistant Mycobacterium tuberculosis: investigations into mechanism of action of and mechanism of resistance to pyrazinamide. Antimicrob Agents Chemother 1995;39:1269-71
  • Cynamon MH, Gimi R, Gyenes F, et al. Pyrazinoic acid esters with broad spectrum in vitro antimycobacterial activity. J Med Chem 1995;38:3902-7
  • Bergmann KE, Cynamon MH, Welch JT. Quantitative structure-activity relationships for the in vitro antimycobacterial activity of pyrazinoic acid esters. J Med Chem 1996;39:3394-400
  • Yamamoto S, Toida I, Watanabe N, et al. In vitro antimycobacterial activities of pyrazinamide analogs. Antimicrob Agents Chemother 1995;39:2088-91
  • Simões MF, Valente E, Gómez MJ, et al. Lipophilic pyrazinoic acid amide and ester prodrugs stability, activation and activity against M. tuberculosis. Eur J Pharm Sci 2009;37:257-63
  • World Health Organization. Guidelines for surveillance of drug resistance in tuberculosis. 4th ed. WHO/HTM/TB/2009.422 World Health Organization; Geneva, Switzerland: 2009
  • Hoffner S, Ängeby K, Sturegård E, et al. Proficiency of drug susceptibility testing of Mycobacterium tuberculosis against pyrazinamide: the Swedish experience. Int J Tuberc Lung Dis 2013;17:1486-90
  • World Health Organization. Emergency update. Guidelines for the programmatic management of drug-resistant tuberculosis. WHO; Geneva, Switzerland: 2008
  • Ängeby K, Juréen P, Kahlmeter G, et al. Challenging a dogma: antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull World Health Organ 2012;90:693-8
  • Gumbo T, Chigutsa E, Pasipanodya J, et al. The pyrazinamide susceptibility breakpoint above which combination therapy fails. J Antimicrob Chemother 2014;69:2420-5
  • BD Diagnostic Systems. BACTEC™ MGIT™ 960 PZA kit for the antimycobacterial susceptibility testing of Mycobacterium tuberculosis. Product and Procedure Manual
  • BD Diagnostic Systems. BACTEC™ 460TB. Product and Procedure Manual
  • National Committee for Clinical Laboratory Standards. Approved standard M24-A. Susceptibility testing of mycobacteria, Nocardia, and other aerobic actinomycetes. NCCLS; Wayne, Pa: 2001
  • Miller MA, Thibert L, Desjardins F, et al. Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide: comparison of Bactec method with pyrazinamidase assay. J Clin Microbiol 1995;33:2468-70
  • Hewlett DJr, Horn DL, Alfalla C. Drug-resistant tuberculosis: inconsistent results of pyrazinamide susceptibility testing. JAMA 1995;273:916-17
  • Chang KC, Yew WW, Zhang Y. Pyrazinamide susceptibility testing in Mycobacterium tuberculosis: a systematic review with meta-analyses. Antimicrob Agents Chemother 2011;55:4499-505
  • Tan Y, Hu Z, Zhang T, et al. Role of pncA and rpsA gene sequencing in detection of pyrazinamide resistance in Mycobacterium tuberculosis isolates from southern China. J Clin Microbiol 2014;52:291-7
  • Karuppiah V, Thistlethwaite A, Dajani R, et al. Structure and Mechanism of the Bifunctional CinA Enzyme from Thermus thermophilus. J Biol Chem 2014;289:33187-97
  • Pugmire MJ, Ealick SE. Structural analyses reveal two distinct families of nucleoside phosphorylases. Biochem J 2002;361:1-25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.