530
Views
36
CrossRef citations to date
0
Altmetric
Review

Bacillithiol: a key protective thiol in Staphylococcusaureus

, &

References

  • Fahey RC. Glutathione analogs in prokaryotes. Biochim Biophys Acta 2013;1830(5):3182-98
  • Park S, Imlay JA. High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 2003;185(6):1942-50
  • Keire DA, Robert JM, Rabenstein DL. Microscopic Protonation equilibria and solution conformations of coenzyme-a and coenzyme-a disulfides. J Org Chem 1992;57(16):4427-31
  • Benesch RE, Benesch R. The acid strength of the -Sh group in cysteine and related compounds. J Am Chem Soc 1955;77(22):5877-81
  • Rabenstein DL. Nuclear magnetic resonance studies of the acid-base chemistry of amino acids and peptides. I. Microscopic ionization constants of glutathione and methylmercury-complexed glutathione. J Am Chem Soc 1973;95(9):2797-803
  • Setlow B, Setlow P. Levels of acetyl coenzyme A, reduced and oxidized coenzyme A, and coenzyme A in disulfide linkage to protein in dormant and germinated spores and growing and sporulating cells of Bacillus megaterium. J Bacteriol 1977;132(2):444-52
  • Fahey RC, Brown WC, Adams WB, Worsham MB. Occurrence of glutathione in bacteria. J Bacteriol 1978;133(3):1126-9
  • Newton GL, Dorian R, Fahey RC. Analysis of biological thiols: derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Anal Biochem 1981;114(2):383-7
  • Fahey RC, Newton GL. Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol 1987;143:85-96
  • Radkowsky AE, Kosower EM. Bimanes. 17. (Haloalky1)- 1,5-diazabicyclo[ 3.3.0loctadienediones (Halo-9,10-dioxabimanes): Reactivity toward the Tripeptide Thiol. Glutathione. J Am Chem Soc 1986;108(15):4527-31
  • Spies HS, Steenkamp DJ. Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur J Biochem 1994;224(1):203-13
  • Newton GL, Bewley CA, Dwyer TJ, et al. The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur J Biochem 1995;230(2):821-5
  • Newton GL, Buchmeier N, Fahey RC. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 2008;72(3):471-94
  • Newton GL, Rawat M, La Clair JJ, et al. Bacillithiol is an antioxidant thiol produced in Bacilli. Nat Chem Biol 2009;5(9):625-7
  • Newton GL, Fahey RC, Cohen G, Aharonowitz Y. Low-molecular-weight thiols in streptomycetes and their potential role as antioxidants. J Bacteriol 1993;175(9):2734-42
  • Sakuda S, Zhou ZY, Yamada Y. Structure of a novel disulfide of 2-(N-acetylcysteinyl)amido-2-deoxy-alpha-D-glucopyranosyl-myo-inositol produced by Streptomyces sp. Biosci Biotechnol Biochem 1994;58(7):1347-8
  • Fahey RC, Newton GL. Occurrence of low molecular weight thiols in biological systems. In: Larsson A, Orrenius S, Holmgren A, Mannervik B, editors. Functions of glutathione: biochemical, physiological, toxicological and clinical aspects. Raven Press; New York: 1983
  • Nicely NI, Parsonage D, Paige C, et al. Structure of the type III pantothenate kinase from Bacillus anthracis at 2.0 A resolution: implications for coenzyme A-dependent redox biology. Biochem 2007;46(11):3234-45
  • Lee JW, Soonsanga S, Helmann JD. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci USA 2007;104(21):8743-8
  • Sharma SV, Arbach M, Roberts AA, et al. Biophysical Features of Bacillithiol, the Glutathione Surrogate of Bacillus subtilis and other Firmicutes. ChemBioChem 2013;14(16):2160-8
  • Ma Z, Chandrangsu P, Helmann TC, et al. Bacillithiol is a major buffer of the labile zinc pool in Bacillus subtilis. Mol Microbiol 2014;94(4):756-70
  • Rajkarnikar A, Strankman A, Duran S, et al. Analysis of mutants disrupted in bacillithiol metabolism in Staphylococcus aureus. Biochem Biophys Res Commun 2013;436(2):128-33
  • Andreini C, Banci L, Bertini I, Rosato A. Zinc through the three domains of life. J Proteome Res 2006;5(11):3173-8
  • Kehl-Fie TE, Chitayat S, Hood MI, et al. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 2011;10(2):158-64
  • Fang Z, Roberts AA, Weidman K, et al. Cross-functionalities of Bacillus deacetylases involved in bacillithiol biosynthesis and bacillithiol-S-conjugate detoxification pathways. Biochem J 2013;454(2):239-47
  • Roberts AA, Sharma SV, Strankman AW, et al. Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. Biochem J 2013;451(1):69-79
  • Gaballa A, Newton GL, Antelmann H, et al. Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci USA 2010;107(14):6482-6
  • Newton GL, Ta P, Bzymek KP, Fahey RC. Biochemistry of the initial steps of mycothiol biosynthesis. J Biol Chem 2006;281(45):33910-20
  • Ruane KM, Davies GJ, Martinez-Fleites C. Crystal structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. Proteins 2008;73(3):784-7
  • Parsonage D, Newton GL, Holder RC, et al. Characterization of the N-acetyl-alpha-D-glucosaminyl l-malate synthase and deacetylase functions for bacillithiol biosynthesis in Bacillus anthracis. Biochemistry 2010;49(38):8398-414
  • Upton H, Newton GL, Gushiken M, et al. Characterization of BshA, bacillithiol glycosyltransferase from Staphylococcus aureus and Bacillus subtilis. FEBS Lett 2012;586(7):1004-8
  • Fadouloglou VE, Deli A, Glykos NM, et al. Crystal structure of the BcZBP, a zinc-binding protein from Bacillus cereus. FEBS J 2007;274(12):3044-54
  • Deli A, Koutsioulis D, Fadouloglou VE, et al. LmbE proteins from Bacillus cereus are de-N-acetylases with broad substrate specificity and are highly similar to proteins in Bacillus anthracis. FEBS J 2010;277(13):2740-53
  • Sareen D, Steffek M, Newton GL, Fahey RC. ATP-dependent L-cysteine:1D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside ligase, mycothiol biosynthesis enzyme MshC, is related to class I cysteinyl-tRNA synthetases. Biochemistry 2002;41(22):6885-90
  • VanDuinen AJ, Winchell KR, Keithly ME, Cook PD. The X-ray Crystallographic Structure of BshC, a Unique Enzyme Involved in Bacillithiol Biosynthesis. Biochemistry 2014;54(2):100-3
  • Asnis RE. A glutathione reductase from Escherichia coli. J Biol Chem 1955;213(1):77-85
  • Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393(6685):537-44
  • Patel MP, Blanchard JS. Expression, purification, and characterization of Mycobacterium tuberculosis mycothione reductase. Biochemistry 1999;38(36):11827-33
  • delCardayre SB, Davies JE. Staphylococcus aureus coenzyme A disulfide reductase, a new subfamily of pyridine nucleotide-disulfide oxidoreductase. Sequence, expression, and analysis of cdr. J Biol Chem 1998;273(10):5752-7
  • delCardayre SB, Stock KP, Newton GL, et al. Coenzyme A disulfide reductase, the primary low molecular weight disulfide reductase from Staphylococcus aureus. Purification and characterization of the native enzyme. The J Biol Chem 1998;273(10):5744-51
  • Wallen JR, Mallett TC, Boles W, et al. Crystal structure and catalytic properties of Bacillus anthracis CoADR-RHD: implications for flavin-linked sulfur trafficking. Biochemistry 2009;48(40):9650-67
  • Tuggle CK, Fuchs JA. Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12. J Bacteriol 1985;162(1):448-50
  • Bhaskar A, Chawla M, Mehta M, et al. Reengineering redox sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection. PLoS Pathog 2014;10(1):e1003902
  • Posada AC, Kolar SL, Dusi RG, et al. Importance of bacillithiol in the oxidative stress response of Staphylococcus aureus. Infect Immun 2014;82(1):316-32
  • Cao M, Bernat BA, Wang Z, et al. FosB, a cysteine-dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J Bacteriol 2001;183(7):2380-3
  • Lamers AP, Keithly ME, Kim K, et al. Synthesis of bacillithiol and the catalytic selectivity of FosB-type fosfomycin resistance proteins. Org Lett 2012;14(20):5207-9
  • Thompson MK, Keithly ME, Harp J, et al. Structural and chemical aspects of resistance to the antibiotic fosfomycin conferred by FosB from Bacillus cereus. Biochemistry 2013;52(41):7350-62
  • Newton GL, Fahey RC, Rawat M. Detoxification of toxins by bacillithiol in Staphylococcus aureus. Microbiology 2012;158(Pt 4):1117-26
  • Pother DC, Gierok P, Harms M, et al. Distribution and infection-related functions of bacillithiol in Staphylococcus aureus. Int J Med Microbiol 2013;303(3):114-23
  • Melis A, Kosower NS, Crawford NA, et al. Bimanes—26. An Electron Transfer Reaction Between Photosystem II and Monobromobimane Induces Static Chlorophyll a Quenching in Spinach Chloroplasts. Photochem Photobio 1986;43(5):583-9
  • Dorries K, Schlueter R, Lalk M. The impact of antibiotics with various target sides on the metabolome of Staphylococcus aureus. Antimicrob Agents Chemother 2014;58(12):7151-63
  • Perera VR, Newton GL, Parnell JM, et al. Purification and characterization of the Staphylococcus aureus bacillithiol transferase BstA. Biochimi Biophys Acta 2014;1840(9):2851-61
  • Feng J, Che Y, Milse J, et al. The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum. J Biol Chem 2006;281(16):10778-85
  • Zhao Q, Wang M, Xu D, et al. Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A. Nature 2015;518(7537):115-19
  • He P, Moran GR. Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily. J Inorg Biochem 2011;105(10):1259-72
  • Newton GL, Leung SS, Wakabayashi JI, et al. The DinB superfamily includes novel mycothiol, bacillithiol, and glutathione S-transferases. Biochemistry 2011;50(49):10751-60
  • Tran NP, Gury J, Dartois V, et al. Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of Bacillus subtilis. J Bacteriol 2008;190(9):3213-24
  • Gury J, Barthelmebs L, Tran NP, et al. Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus plantarum. Appl Environ Microbiol 2004;70(4):2146-53
  • Lubelski J, de Jong A, van Merkerk R, et al. LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol Microbiol 2006;61(3):771-81
  • Newton GL, Av-Gay Y, Fahey RC. A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 2000;39(35):10739-46
  • Steffek M, Newton GL, Av-Gay Y, Fahey RC. Characterization of Mycobacterium tuberculosis mycothiol S-conjugate amidase. Biochemistry 2003;42(41):12067-76
  • Newton GL, Av-Gay Y, Fahey RC. N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. J Bacteriol 2000;182(24):6958-63
  • Newton GL, Ko M, Ta P, et al. Purification and characterization of Mycobacterium tuberculosis 1D-myo-inosityl-2-acetamido-2-deoxy-alpha-D-glucopyranoside deacetylase, MshB, a mycothiol biosynthetic enzyme. Protein Expr Purif 2006;47(2):542-50
  • Dayaram YK, Talaue MT, Connell ND, Venketaraman V. Characterization of a glutathione metabolic mutant of Mycobacterium tuberculosis and its resistance to glutathione and nitrosoglutathione. J Bacteriol 2006;188(4):1364-72
  • Bzymek KP, Newton GL, Ta P, Fahey RC. Mycothiol import by Mycobacterium smegmatis and function as a resource for metabolic precursors and energy production. J Bacteriol 2007;189(19):6796-805
  • Ozyamak E, de Almeida C, de Moura AP, et al. Integrated stress response of Escherichia coli to methylglyoxal: transcriptional readthrough from the nemRA operon enhances protection through increased expression of glyoxalase I. Mol Microbiol 2013;88(5):936-50
  • Chandrangsu P, Dusi R, Hamilton CJ, Helmann JD. Methylglyoxal resistance in Bacillus subtilis: contributions of bacillithiol-dependent and independent pathways. Mol Microbiol 2014;91(4):706-15
  • Ferguson GP, Booth IR. Importance of glutathione for growth and survival of Escherichia coli cells: detoxification of methylglyoxal and maintenance of intracellular K+. J Bacteriol 1998;180(16):4314-18
  • Krymkiewicz N. Reactions of methylglyoxal with nucleic acids. FEBS Lett 1973;29(1):51-4
  • Chi BK, Gronau K, Mader U, et al. S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol Cell Proteomics 2011;10(11):M111 009506
  • Chi BK, Roberts AA, Huyen TT, et al. S-bacillithiolation protects conserved and essential proteins against hypochlorite stress in firmicutes bacteria. Antioxid Sedox Signal 2013;18(11):1273-95
  • Hondorp ER, Matthews RG. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol 2004;2(11):e336
  • Gaballa A, Chi BK, Roberts AA, et al. Redox regulation in Bacillus subtilis: the bacilliredoxins BrxA (YphP) and BrxB (YqiW) function in de-bacillithiolation of S-bacillithiolated OhrR and MetE. Antioxid Redox Signal 2013;21(3):357-67
  • Duy NV, Mader U, Tran NP, et al. The proteome and transcriptome analysis of Bacillus subtilis in response to salicylic acid. Proteomics 2007;7(5):698-710
  • Nguyen VD, Wolf C, Mader U, et al. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis. Proteomics 2007;7(9):1391-408
  • Pohl S, Tu WY, Aldridge PD, et al. Combined proteomic and transcriptomic analysis of the response of Bacillus anthracis to oxidative stress. Proteomics 2011;11(15):3036-55
  • Kashyap DR, Rompca A, Gaballa A, et al. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress. PLoS Pathog 2014;10(7):e1004280
  • Palazzolo-Ballance AM, Reniere ML, Braughton KR, et al. Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus. J Immunol 2008;180(1):500-9
  • Pother DC, Liebeke M, Hochgrafe F, et al. Diamide triggers mainly S Thiolations in the cytoplasmic proteomes of Bacillus subtilis and Staphylococcus aureus. J Bacteriol 2009;191(24):7520-30
  • Schlag S, Nerz C, Birkenstock TA, et al. Inhibition of staphylococcal biofilm formation by nitrite. J Bacteriol 2007;189(21):7911-19
  • Hochgrafe F, Wolf C, Fuchs S, et al. Nitric oxide stress induces different responses but mediates comparable protein thiol protection in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 2008;190(14):4997-5008
  • Hinchman CA, Ballatori N. Glutathione conjugation and conversion to mercapturic acids can occur as an intrahepatic process. J Toxicol Environ Health A 1994;41(4):387-409
  • Rawat M, Uppal M, Newton G, et al. Targeted mutagenesis of the Mycobacterium smegmatis mca gene, encoding a mycothiol-dependent detoxification protein. J Bacteriol 2004;186(18):6050-8
  • Sherrill C, Fahey RC. Import and metabolism of glutathione by Streptococcus mutans. J Bacteriol 1998;180(6):1454-9
  • Potter AJ, Trappetti C, Paton JC. Streptococcus pneumoniae uses glutathione to defend against oxidative stress and metal ion toxicity. J Bacteriol 2012;194(22):6248-54
  • Suzuki H, Kumagai H, Tochikura T. gamma-Glutamyltranspeptidase from Escherichia coli K-12: formation and localization. J Bacteriol 1986;168(3):1332-5
  • U.S. Department of Health and Human Services, Food and Drug Administration. Guidance for Industry: Antibacterial therapies Guidance for industry: antibacterial therapies for patients with unmet medical need for the treatment of serious bacterial diseases. 2014
  • Burke SL, Rose WE. New pharmacological treatments for methicillin-resistant Staphylococcus aureus infections. Expert Opin Pharmacother 2014;15(4):483-91
  • Park JY, Kim JW, Moon BY, et al. Characterization of a novel two-component regulatory system, HptRS, the regulator for the hexose phosphate transport system in Staphylococcus aureus. Infect Immun 2015;83(4):1620-8
  • Popovic M, Steinort D, Pillai S, Joukhadar C. Fosfomycin: an old, new friend? Eur J Clin Microbiol Infect Dis 2010;29(2):127-42
  • Etienne J, Gerbaud G, Fleurette J, Courvalin P. Characterization of staphylococcal plasmids hybridizing with the fosfomycin resistance gene fosB. FEMS Microbiol Lett 1991;68(1):119-22
  • Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis 2008;46(7):1069-77
  • Nicholas GM, Eckman LL, Ray S, et al. Bromotyrosine-derived natural and synthetic products as inhibitors of mycothiol-S-conjugate amidase. Bioorg Med Chem Lett 2002;12(17):2487-90
  • Nicholas GM, Eckman LL, Newton GL, et al. Inhibition and kinetics of mycobacterium tuberculosis and mycobacterium smegmatis mycothiol-S-conjugate amidase by natural product inhibitors. Bioorg Med Chem Lett 2003;11(4):601-8
  • Metaferia BB, Fetterolf BJ, Shazad-Ul-Hussan S, et al. Synthesis of natural product-inspired inhibitors of Mycobacterium tuberculosis mycothiol-associated enzymes: the first inhibitors of GlcNAc-Ins deacetylase. J Med Chem 2007;50(25):6326-36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.