459
Views
19
CrossRef citations to date
0
Altmetric
Review

Detection of expanded-spectrum β-lactamases in Gram-negative bacteria in the 21st century

, , &

References

  • Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal AmpC beta-lactamases. J Clin Microbiol 2005;43(7):3110-13
  • Peter-Getzlaff S, Polsfuss S, Poledica M, et al. Detection of AmpC beta-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol 2011;49(8):2924-32
  • Willems E, Verhaegen J, Magerman K, et al. Towards a phenotypic screening strategy for emerging β-lactamases in Gram-negative bacilli. Int J Antimicrob Agents 2013;41(2):99-109
  • Slama TG. Gram-negative antibiotic resistance: there is a price to pay. Crit Care 2008;12(Suppl 4):S4
  • Pitout JDD. Infections with extended-spectrum beta-lactamase-producing enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 2010;70(3):313-33
  • Siegel JD, Rhinehart E, Jackson M, Chiarello L. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control 2007;35(10 Suppl 2):S165-93
  • Colodner R. Extended-spectrum beta-lactamases: a challenge for clinical microbiologists and infection control specialists. Am J Infect Control 2005;33(2):104-7
  • Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995;8(4):557-84
  • Barthelemy M, Peduzzi J, Labia R. Distinction between the primary structures of TEM-1 and TEM-2 beta-lactamases. Ann Inst Pasteur Microbiol 1985;136A:311-21
  • Du Bois SK, Marriott MS, Amyes SG. TEM- and SHV-derived extended-spectrum beta-lactamases: relationship between selection, structure and function. J Antimicrob Chemother 1995;35(1):7-22
  • Paterson DL, Bonomo RA. Extended-spectrum -lactamases: a clinical update. Clin Microbiol Rev 2005;18(4):657-86
  • Tzouvelekis LS, Bonomo RA. SHV-type beta-lactamases. Curr Pharm Des 1999;5(11):847-64
  • Jacoby GA, Sutton L. Properties of plasmids responsible for production of extended-spectrum beta-lactamases. Antimicrob Agents Chemother 1991;35(1):164-9
  • Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001;14(4):933-51
  • Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004;48(1):1-14
  • Ma L, Ishii Y, Ishiguro M, et al. Cloning and sequencing of the gene encoding Toho-2, a class A beta-lactamase preferentially inhibited by tazobactam. Antimicrob Agents Chemother 1998;42(5):1181-6
  • Ishii Y, Ohno A, Taguchi H, et al. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother 1995;39(10):2269-75
  • Baraniak A, Fiett J, Hryniewicz W, et al. Ceftazidime-hydrolysing CTX-M-15 extended-spectrum beta-lactamase (ESBL) in Poland. J Antimicrob Chemother 2002;50(3):393-6
  • Poirel L, Gniadkowski M, Nordmann P. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother 2002;50(6):1031-4
  • Sturenburg E, Kuhn A, Mack D, Laufs R. A novel extended-spectrum beta-lactamase CTX-M-23 with a P167T substitution in the active-site omega loop associated with ceftazidime resistance. J Antimicrob Chemother 2004;54(2):406-9
  • Labia R. Analysis of the bla(toho) gene coding for Toho-2-beta-lactamase. Antimicrob Agents Chemother 1999;43(10):2576-7
  • De CC, Sirot D, Chanal C, et al. A 1998 survey of extended-spectrum beta-lactamases in Enterobacteriaceae in France. The French Study Group. Antimicrob Agents Chemother 2000;44(11):3177-9
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995;39(6):1211-33
  • Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010;54(3):969-76
  • Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother 2003;47(8):2385-92
  • Toleman MA, Rolston K, Jones RN, Walsh TR. Molecular and biochemical characterization of OXA-45, an extended-spectrum class 2d’ beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2003;47(9):2859-63
  • Nordmann P, Naas T. Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrob Agents Chemother 1994;38(1):104-14
  • Bauernfeind A, Stemplinger I, Jungwirth R, et al. Characterization of beta-lactamase gene blaPER-2, which encodes an extended-spectrum class A beta-lactamase. Antimicrob Agents Chemother 1996;40(3):616-20
  • Neuhauser MM, Weinstein RA, Rydman R, et al. Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA 2003;289(7):885-8
  • Vahaboglu H, Hall LM, Mulazimoglu L, et al. Resistance to extended-spectrum cephalosporins, caused by PER-1 beta-lactamase, in Salmonella typhimurium from Istanbul, Turkey. J Med Microbiol 1995;43(4):294-9
  • Vahaboglu H, Saribaş S, Akbal H, et al. Activities of cefepime and five other antibiotics against nosocomial PER-1-type and/or OXA-10-type beta-lactamase-producing Pseudomonas aeruginosa and Acinetobacter spp. J Antimicrob Chemother 1998;42(2):269-70
  • Pagani L, Migliavacca R, Pallecchi L, et al. Emerging extended-spectrum beta-lactamases in Proteus mirabilis. J Clin Microbiol 2002;40(4):1549-52
  • Pereira M, Perilli M, Mantengoli E, et al. PER-1 extended-spectrum beta-lactamase production in an Alcaligenes faecalis clinical isolate resistant to expanded-spectrum cephalosporins and monobactams from a hospital in Northern Italy. Microb Drug Resist 2000;6(1):85-90
  • Claeys G, Verschraegen G, de Baere T, Vaneechoutte M. PER-1 beta-lactamase-producing Pseudomonas aeruginosa in an intensive care unit. J Antimicrob Chemother 2000;45(6):924-5
  • De Champs C, Poirel L, Bonnet R, et al. Prospective survey of beta-lactamases produced by ceftazidime- resistant Pseudomonas aeruginosa isolated in a French hospital in 2000. Antimicrob Agents Chemother 2002;46(9):3031-4
  • Pagani L, Mantengoli E, Migliavacca R, et al. Multifocal detection of multidrug-resistant pseudomonas aeruginosa producing the PER-1 extended-Spectrum -lactamase in northern Italy. J Clin Microbiol 2004;42(6):2523-9
  • Yong D, Shin JH, Kim S, et al. High prevalence of PER-1 extended-spectrum beta-lactamase-producing Acinetobacter spp. in Korea. Antimicrob Agents Chemother 2003;47(5):1749-51
  • Petroni A, Corso A, Melano R, et al. Plasmidic extended-spectrum beta-lactamases in Vibrio cholerae O1 El Tor isolates in Argentina. Antimicrob Agents Chemother 2002;46(5):1462-8
  • Naas T, Poirel L, Karim A, Nordmann P. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett 1999;176(2):411-19
  • Jiang X, Ni Y, Jiang Y, et al. Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 beta-lactamase in China. J Clin Microbiol 2005;43(2):826-31
  • Poirel L, Rotimi VO, Mokaddas EM, et al. VEB-1-like extended-spectrum beta-lactamases in Pseudomonas aeruginosa, Kuwait. Emerg Infect Dis 2001;7(3):468-70
  • Poirel L, Le Thomas I, Naas T, et al. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother 2000;44(3):622-32
  • Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 2002;46(1):1-11
  • Jacobs C, Frère JM, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell 1997;88(6):823-32
  • Wiedemann B, Dietz H, Pfeifle D. Induction of beta-lactamase in Enterobacter cloacae. Clin Infect Dis 1998;27(Suppl 1):S42-7
  • Jaurin B, Grundström T, Edlund T, Normark S. The E. coli beta-lactamase attenuator mediates growth rate-dependent regulation. Nature 1981;290(5803):221-5
  • Honore N, Nicolas MH, Cole ST. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J 1986;5(13):3709-14
  • Stapleton PD, Shannon KP, French GL. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 beta-lactamase production and loss of an outer membrane protein. Antimicrob Agents Chemother 1999;43(5):1206-10
  • Morosini MI, Ayala JA, Baquero F, et al. Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob Agents Chemother 2000;44(11):3137-43
  • Medeiros AA. Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis 1997;24(Suppl 1):S19-45
  • Bobrowski MM, Matthew M, Barth PT, et al. Plasmid-determined beta-lactamase indistinguishable from the chromosomal beta-lactamase of Escherichia coli. J Bacteriol 1976;125(1):149-57
  • Levesque R, Roy PH, Letarte R, Pechère JC. A plasmid-mediated cephalosporinase from Achromobacter species. J Infect Dis 1982;145(5):753-61
  • Bauernfeind A, Chong Y, Schweighart S. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 1989;17(5):316-21
  • Papanicolaou GA, Medeiros AA, Jacoby GA. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 1990;34(11):2200-9
  • Monnaie D, Frere JM. Interaction of clavulanate with class C beta-lactamases. FEBS Lett 1993;334(3):269-71
  • Kazmierczak A, Cordin X, Duez JM, et al. Differences between clavulanic acid and sulbactam in induction and inhibition of cephalosporinases in enterobacteria. J Int Med Res 1990;18(Suppl 4):67D-77D
  • Bush K, Macalintal C, Rasmussen BA, et al. Kinetic interactions of tazobactam with beta-lactamases from all major structural classes. Antimicrob Agents Chemother 1993;37(4):851-8
  • Bauernfeind A, Chong Y, Lee K. Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 years after the discovery? Yonsei Med J 1998;39(6):520-5
  • Nordmann P, Carrer A. Carbapenemases in enterobacteriaceae. Arch Pediatr 2010;17(Suppl 4):S154-62
  • Patel G, Bonomo RA. ‘Stormy waters ahead’: global emergence of carbapenemases. Front Microbiol 2013;4:48
  • Walther-Rasmussen J, Hoiby N. Class A carbapenemases. J Antimicrob Chemother 2007;60(3):470-82
  • Aubron C, Poirel L, Ash RJ, Nordmann P. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg Infect Dis 2005;11(2):260-4
  • Kotsakis SD, Miriagou V, Tzelepi E, Tzouvelekis LS. Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Antimicrob Agents Chemother 2010;54(11):4864-71
  • Bratu S, Landman D, Alam M, et al. Detection of KPC carbapenem-hydrolyzing enzymes in enterobacter spp. from Brooklyn, New York. Antimicrob Agents Chemother 2005;49(2):776-8
  • Miriagou V, Tzouvelekis LS, Rossiter S, et al. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob Agents Chemother 2003;47(4):1297-300
  • Villegas M V, Lolans K, Correa A, et al. First identification of pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing -lactamase. Antimicrob Agents Chemother 2007;51(4):1553-5
  • Robledo IE, Aquino EE, Santé MI, et al. Detection of KPC in acinetobacter spp. in puerto rico. Antimicrob Agents Chemother 2010;54(3):1354-7
  • Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009;9(4):228-36
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 2005;18(2):306-25
  • Ito H, Arakawa Y, Ohsuka S, et al. Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother 1995;39(4):824-9
  • Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010;10(9):597-602
  • Paton R, Miles RS, Hood J, Amyes SG. ARI 1: beta-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents 1993;2(2):81-7
  • Donald HM, Scaife W, Amyes SG, Young HK. Sequence analysis of ARI-1, a novel OXA beta-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother 2000;44(1):196-9
  • Walsh TR. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents 2010;36(Suppl 3):S8-14
  • Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrob Chemother 2006;57(3):373-83
  • Glupczynski Y, Berhin C, Bauraing C, Bogaerts P. Evaluation of a new selective chromogenic agar medium for detection of extended-spectrum -lactamase-producing enterobacteriaceae. J Clin Microbiol 2006;45(2):501-5
  • Saito R, Koyano S, Nagai R, et al. Evaluation of a chromogenic agar medium for the detection of extended-spectrum ß-lactamase-producing Enterobacteriaceae. Lett Appl Microbiol 2010;51(6):704-6
  • Huang T-D, Bogaerts P, Berhin C, et al. Evaluation of Brilliance ESBL agar, a novel chromogenic medium for detection of extended-spectrum-beta- lactamase-producing Enterobacteriaceae. J Clin Microbiol 2010;48(6):2091-6
  • Réglier-Poupet H, Naas T, Carrer A, et al. Performance of chromID ESBL, a chromogenic medium for detection of Enterobacteriaceae producing extended-spectrum beta-lactamases. J Med Microbiol 2008;57(3):310-15
  • Grohs P, Tillecovidin B, Caumont-Prim A, et al. Comparison of five media for detection of extended-spectrum Beta-lactamase by use of the wasp instrument for automated specimen processing. J Clin Microbiol 2013;51(8):2713-16
  • Randall LP, Kirchner M, Teale CJ, et al. Evaluation of CHROMagar CTX, a novel medium for isolating CTX-M-ESBL-positive Enterobacteriaceae while inhibiting AmpC-producing strains. J Antimicrob Chemother 2009;63(2):302-8
  • Ebrahimi F, Mózes J, Mészáros J, et al. Carriage rates and characteristics of enterobacteriaceae producing extended-spectrum Beta-lactamases in healthy individuals: comparison of applicants for long-term care and individuals screened for employment purposes. Chemotherapy 2014;60(4):239-49
  • Sharma R, Cooke RPD, Ratcliffe JG. Detection of ESBL bacteria from clinical specimens: evaluation of a new selective medium. Br J Biomed Sci 2008;65(4):191-4
  • British Society for Antimicrobial Chemotherapy. BSAC methods for antimicrobial susceptibility testing; version 10. BSAC, Birmingham, UK; 2010. Available from: http://www.bsac.org.uk/
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-first international supplement. Document 2011;M100-S21
  • Pfaller MA, Segreti J. Overview of the epidemiological profile and laboratory detection of extended-spectrum beta-lactamases. Clin Infect Dis 2006;42(Suppl 4):S153-63
  • Hope R, Potz NAC, Warner M, et al. Efficacy of practised screening methods for detection of cephalosporin-resistant Enterobacteriaceae. J Antimicrob Chemother 2007;59(1):110-13
  • National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing; 15th informational supplement. 2005;M100-S15
  • Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988;10(4):867-78
  • Brun-Buisson C, Legrand P, Philippon A, et al. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet 1987;2(8554):302-6
  • Thomson KS, Sanders CC. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother 1992;36(9):1877-82
  • Coudron PE, Moland ES, Sanders CC. Occurrence and detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae at a veterans medical center: seek and you may find. J Clin Microbiol 1997;35(10):2593-7
  • Ho PL, Chow KH, Yuen KY, et al. Comparison of a novel, inhibitor-potentiated disc-diffusion test with other methods for the detection of extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae. J Antimicrob Chemother 1998;42(1):49-54
  • Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 2008;14(Suppl 1):90-103
  • Vercauteren E, Descheemaeker P, Ieven M, et al. Comparison of screening methods for detection of extended-spectrum beta-lactamases and their prevalence among blood isolates of Escherichia coli and Klebsiella spp. in a Belgian teaching hospital. J Clin Microbiol 1997;35(9):2191-7
  • Brown DF, Andrews J, King A, MacGowan AP. Detection of extended-spectrum beta-lactamases with Etest and double-disc potentiation methods. J Antimicrob Chemother 2000;46(2):327-8
  • GenBank Overview. Available from: http://www.ncbi.nlm.nih.gov/genbank
  • Szabó D, Melan MA, Hujer AM, et al. Molecular analysis of the simultaneous production of two SHV-type extended-spectrum beta-lactamases in a clinical isolate of Enterobacter cloacae by using single-nucleotide polymorphism genotyping. Antimicrob Agents Chemother 2005;49(11):4716-20
  • Randegger CC, Hächler H. Real-time PCR and melting curve analysis for reliable and rapid detection of SHV extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2001;45(6):1730-6
  • Sittová M, Röderová M, Dendis M, et al. Application of Molecular Diagnostics in Primary Detection of ESBL Directly from Clinical Specimens. Microb Drug Resist 2015;21(3):352-7
  • Monstein H-J, Ostholm-Balkhed A, Nilsson M V, et al. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007;115(12):1400-8
  • Ouellette M, Paul GC, Philippon AM, Roy PH. Oligonucleotide probes (TEM-1, OXA-1) versus isoelectric focusing in beta-lactamase characterization of 114 resistant strains. Antimicrob Agents Chemother 1988;32(3):397-9
  • Mabilat C, Courvalin P. Development of ‘oligotyping’ for characterization and molecular epidemiology of TEM beta-lactamases in members of the family Enterobacteriaceae. Antimicrob Agents Chemother 1990;34(11):2210-16
  • Tham TN, Mabilat C, Courvalin P, Guesdon JL. Biotinylated oligonucleotide probes for the detection and the characterization of TEM-type extended broad spectrum beta-lactamases in Enterobacteriaceae. FEMS Microbiol Lett 1990;57(1-2):109-15
  • Arlet G, Philippon A. Construction by polymerase chain reaction and use of intragenic DNA probes for three main types of transferable beta-lactamases (TEM, SHV, CARB) [corrected]. FEMS Microbiol Lett 1991;66(1):19-25
  • Chanawong A, M’Zali FH, Heritage J, et al. Characterisation of extended-spectrum beta-lactamases of the SHV family using a combination of PCR-single strand conformational polymorphism (PCR-SSCP) and PCR-restriction fragment length polymorphism (PCR-RFLP). FEMS Microbiol Lett 2000;184(1):85-9
  • Edelstein M, Stratchounski L. Development of single strand conformational polymorphysim (SSCP) PCR method for discriminatory detection of genes coding for TEM-family-β-lactamases. Poster presented at 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 24-27 September 1998; San Diego, USA
  • Nüesch-Inderbinen MT, Hächler H, Kayser FH. Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis 1996;15(5):398-402
  • Wiedmann M, Wilson WJ, Czajka J, et al. Ligase chain reaction (LCR)–overview and applications. PCR Methods Appl 1994;3(4):S51-64
  • Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 2009;22(4):611-33
  • Grimm V, Ezaki S, Susa M, et al. Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer resistance. J Clin Microbiol 2004;42(8):3766-74
  • Check-points offers a range of rapid molecular assays. Available from: http://www.check-points.eu/
  • Ikryannikova LN, Shitikov EA, Zhivankova DG, et al. A MALDI TOF MS-based minisequencing method for rapid detection of TEM-type extended-spectrum beta-lactamases in clinical strains of Enterobacteriaceae. J Microbiol Methods 2008;75(3):385-91
  • Diggle MA, Clarke SC. Pyrosequencing: sequence typing at the speed of light. Mol Biotechnol 2004;28(2):129-37
  • Naas T, Oxacelay C, Nordmann P. Identification of CTX-M-type extended-spectrum-beta-lactamase genes using real-time PCR and pyrosequencing. Antimicrob Agents Chemother 2007;51(1):223-30
  • Poirel L, Naas T, Nordmann P. Pyrosequencing as a rapid tool for identification of GES-type extended-spectrum beta-lactamases. J Clin Microbiol 2006;44(8):3008-11
  • Jones CH, Ruzin A, Tuckman M, et al. Pyrosequencing using the single-nucleotide polymorphism protocol for rapid determination of TEM- and SHV-type extended-spectrum beta-lactamases in clinical isolates and identification of the novel beta-lactamase genes blaSHV-48, blaSHV-105, and blaTEM-155. Antimicrob Agents Chemother 2009;53(3):977-86
  • Haanpera M, Forssten SD, Huovinen P, Jalava J. Typing of SHV extended-spectrum-lactamases by pyrosequencing in klebsiella pneumoniae strains with chromosomal SHV -lactamase. Antimicrob Agents Chemother 2008;52(7):2632-5
  • Cockerill FR. Genetic methods for assessing antimicrobial resistance. Antimicrob Agents Chemother 1999;43(2):199-212
  • Faria-Ramos I, Espinar MJ, Rocha R, et al. A novel flow cytometric assay for rapid detection of extended-spectrum beta-lactamases. Clin Microbiol Infect 2013;19(1):E8-15
  • Fujita S, Yosizaki K, Ogushi T, et al. Rapid identification of gram-negative bacteria with and without CTX-M extended-spectrum β-lactamase from positive blood culture bottles by PCR followed by microchip gel electrophoresis. J Clin Microbiol 2011;49(4):1483-8
  • Xu L, Evans J, Ling T, et al. Rapid genotyping of CTX-M extended-spectrum beta-lactamases by denaturing high-performance liquid chromatography. Antimicrob Agents Chemother 2007;51(4):1446-54
  • Dortet L, Poirel L, Nordmann P. Rapid detection of ESBL-producing Enterobacteriaceae in blood cultures. Emerg Infect Dis 2015;21(3):504-7
  • Tenover FC, Emery SL, Spiegel CA, et al. Identification of plasmid-mediated AmpC beta-lactamases in Escherichia coli, Klebsiella spp., and proteus species can potentially improve reporting of cephalosporin susceptibility testing results. J Clin Microbiol 2009;47(2):294-9
  • Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol 2005;43(8):4163-7
  • Kim J, Lim YM. Prevalence of derepressed ampC mutants and extended-spectrum beta-lactamase producers among clinical isolates of Citrobacter freundii, Enterobacter spp., and Serratia marcescens in Korea: dissemination of CTX-M-3, TEM-52, and SHV-12. J Clin Microbiol 2005;43(5):2452-5
  • Pai H, Hong JY, Byeon J-H, et al. High prevalence of extended-spectrum beta-lactamase-producing strains among blood isolates of Enterobacter spp. collected in a tertiary hospital during an 8-year period and their antimicrobial susceptibility patterns. Antimicrob Agents Chemother 2004;48(8):3159-61
  • Nasim K, Elsayed S, Pitout JDD, et al. New method for laboratory detection of AmpC -lactamases in Escherichia coli and Klebsiella pneumoniae. J Clin Microbiol 2004;42(10):4799-802
  • Black JA, Thomson KS, Buynak JD, Pitout JDD. Evaluation of beta-lactamase inhibitors in disk tests for detection of plasmid-mediated AmpC beta-lactamases in well-characterized clinical strains of Klebsiella spp. J Clin Microbiol 2005;43(8):4168-71
  • Black JA, Thomson KS, Pitout JDD. Use of beta-lactamase inhibitors in disk tests to detect plasmid-mediated AmpC beta-lactamases. J Clin Microbiol 2004;42(5):2203-6
  • Ruppé E, Bidet P, Verdet C, et al. First detection of the Ambler class C 1 AmpC beta-lactamase in Citrobacter freundii by a new, simple double-disk synergy test. J Clin Microbiol 2006;44(11):4204-7
  • Beesley T, Gascoyne N, Knott-Hunziker V, et al. The inhibition of class C beta-lactamases by boronic acids. Biochem J 1983;209(1):229-33
  • Yagi T, Wachino J, Kurokawa H, et al. Practical methods using boronic acid compounds for identification of class C beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 2005;43(6):2551-8
  • Song W, Jeong SH, Kim J-S, et al. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC beta-lactamases and extended-spectrum beta-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis 2007;57(3):315-18
  • Aeabahpka B. Evaluation of two new Etest strips for AmpC detection. In: 46th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Washington DC; 2006
  • Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002;40(6):2153-62
  • Lupo A, Papp-Wallace KM, Sendi P, et al. Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagn Microbiol Infect Dis 2013;77(3):179-94
  • Hrabák J, Chudáčková E, Papagiannitsis CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect 2014;20(9):839-53
  • Adler A, Navon-Venezia S, Moran-Gilad J, et al. Laboratory and clinical evaluation of screening agar plates for detection of carbapenem-resistant Enterobacteriaceae from surveillance rectal swabs. J Clin Microbiol 2011;49(6):2239-42
  • Nordmann P, Poirel L, Carrër A, et al. How to detect NDM-1 producers. J Clin Microbiol 2011;49(2):718-21
  • Carrer A, Fortineau N, Nordmann P. Use of chromID extended-spectrum beta-lactamase medium for detecting carbapenemase-producing Enterobacteriaceae. J Clin Microbiol 2010;48(5):1913-14
  • Vrioni G, Daniil I, Voulgari E, et al. Comparative evaluation of a prototype chromogenic medium (ChromID CARBA) for detecting carbapenemase-producing enterobacteriaceae in surveillance rectal swabs. J Clin Microbiol 2012;50(6):1841-6
  • Nordmann P, Girlich D, Poirel L. Detection of carbapenemase producers in Enterobacteriaceae by use of a novel screening medium. J Clin Microbiol 2012;50(8):2761-6
  • Girlich D, Poirel L, Nordmann P. Comparison of the SUPERCARBA, CHROMagar KPC, and Brilliance CRE screening media for detection of Enterobacteriaceae with reduced susceptibility to carbapenems. Diagn Microbiol Infect Dis 2013;75(2):214-17
  • Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012;67(7):1597-606
  • Ruppé E, Armand-Lefèvre L, Lolom I, et al. Development of a phenotypic method for detection of fecal carriage of OXA-48-producing enterobacteriaceae after incidental detection from clinical specimen. J Clin Microbiol 2011;49(7):2761-2
  • Zurfluh K, Nüesch-Inderbinen MT, Poirel L, et al. Emergence of Escherichia coli producing OXA-48 β-lactamase in the community in Switzerland. Antimicrob Resist Infect Control 2015;4:9
  • Glupczynski Y, Huang T-D, Bouchahrouf W, et al. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int J Antimicrob Agents 2012;39(2):168-72
  • Huang T-D, Poirel L, Bogaerts P, et al. Temocillin and piperacillin/tazobactam resistance by disc diffusion as antimicrobial surrogate markers for the detection of carbapenemase-producing Enterobacteriaceae in geographical areas with a high prevalence of OXA-48 producers. J Antimicrob Chemother 2014;69(2):445-50
  • Hartl R, Widhalm S, Kerschner H, Apfalter P. Temocillin and meropenem to discriminate resistance mechanisms leading to decreased carbapenem susceptibility with focus on OXA-48 in Enterobacteriaceae. Clin Microbiol Infect 2013;19(5):E230-2
  • Day KM, Pike R, Winstanley TG, et al. Use of faropenem as an indicator of carbapenemase activity in the Enterobacteriaceae. J Clin Microbiol 2013;51(6):1881-6
  • Orstavik I, Odegaard K. A simple test for penicillinase production in Staphylococcus aureus. Acta Pathol Microbiol Scand B Microbiol Immunol 1971;79(6):855-6
  • Hodge W, Ciak J, Tramont EC. Simple method for detection of penicillinase-producing Neisseria gonorrhoeae. J Clin Microbiol 1978;7(1):102-3
  • Lee K, Chong Y, Shin HB, et al. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2001;7(2):88-91
  • Carvalhaes CG, Picão RC, Nicoletti AG, et al. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother 2010;65(2):249-51
  • Seah C, Low DE, Patel SN, Melano RG. Comparative evaluation of a chromogenic agar medium, the modified Hodge test, and a battery of meropenem-inhibitor discs for detection of carbapenemase activity in Enterobacteriaceae. J Clin Microbiol 2011;49(5):1965-9
  • Pasteran F, Mendez T, Rapoport M, et al. Controlling false-positive results obtained with the Hodge and Masuda assays for detection of class a carbapenemase in species of Enterobacteriaceae by incorporating boronic Acid. J Clin Microbiol 2010;48(4):1323-32
  • Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011;17(10):1791-8
  • Lee K, Kim CK, Yong D, et al. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J Microbiol Methods 2010;83(2):149-52
  • Van der Zwaluw K, de Haan A, Pluister GN, et al. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One 2015;10(3):e0123690
  • Kimura S, Ishii Y, Yamaguchi K. Evaluation of dipicolinic acid for detection of IMP- or VIM- type metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis 2005;53(3):241-4
  • Migliavacca R, Docquier JD, Mugnaioli C, et al. Simple microdilution test for detection of metallo-beta-lactamase production in Pseudomonas aeruginosa. J Clin Microbiol 2002;40(11):4388-90
  • Lee K, Lim YS, Yong D, et al. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2003;41(10):4623-9
  • Arakawa Y, Shibata N, Shibayama K, et al. Convenient test for screening metallo-beta-lactamase-producing gram-negative bacteria by using thiol compounds. J Clin Microbiol 2000;38(1):40-3
  • Kim SY, Hong SG, Moland ES, Thomson KS. Convenient test using a combination of chelating agents for detection of metallo-beta-lactamases in the clinical laboratory. J Clin Microbiol 2007;45(9):2798-801
  • Yong D, Lee K, Yum JH, et al. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2002;40(10):3798-801
  • European society of clinical microbiology and infectious diseases. Available from: https://www.escmid.org/
  • Girlich D, Halimi D, Zambardi G, Nordmann P. Evaluation of Etest® strips for detection of KPC and metallo-carbapenemases in Enterobacteriaceae. Diagn Microbiol Infect Dis 2013;77(3):200-1
  • Pasteran F, Mendez T, Guerriero L, et al. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol 2009;47(6):1631-9
  • Doi Y, Potoski BA, Adams-Haduch JM, et al. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J Clin Microbiol 2008;46(12):4083-6
  • Tsakris A, Kristo I, Poulou A, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol 2009;47(2):362-7
  • Giske CG, Gezelius L, Samuelsen Ø, et al. A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin Microbiol Infect 2011;17(4):552-6
  • Tsakris A, Poulou A, Pournaras S, et al. A simple phenotypic method for the differentiation of metallo-beta-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J Antimicrob Chemother 2010;65(8):1664-71
  • Miriagou V, Tzelepi E, Kotsakis SD, et al. Combined disc methods for the detection of KPC- and/or VIM-positive Klebsiella pneumoniae: improving reliability for the double carbapenemase producers. Clin Microbiol Infect 2013;19(9):E412-15
  • Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20(3):440-58
  • Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother 2007;59(2):321-2
  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011;70(1):119-23
  • Voets GM, Fluit AC, Scharringa J, et al. A set of multiplex PCRs for genotypic detection of extended-spectrum beta-lactamases, carbapenemases, plasmid-mediated AmpC beta-lactamases and OXA beta-lactamases. Int J Antimicrob Agents 2011;37(4):356-9
  • Dallenne C, Da CA, Decre D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010;65(3):490-5
  • Avlami A, Bekris S, Ganteris G, et al. Detection of metallo-beta-lactamase genes in clinical specimens by a commercial multiplex PCR system. J Microbiol Methods 2010;83(2):185-7
  • Mendes RE, Kiyota KA, Monteiro J, et al. Rapid detection and identification of metallo-beta-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol 2007;45(2):544-7
  • Chen L, Mediavilla JR, Endimiani A, et al. Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (bla KPC) variants. J Clin Microbiol 2011;49(2):579-85
  • Chen L, Chavda KD, Mediavilla JR, et al. Multiplex real-time PCR for detection of an epidemic KPC-producing Klebsiella pneumoniae ST258 clone. Antimicrob Agents Chemother 2012;56(6):3444-7
  • Monteiro J, Widen RH, Pignatari AC, et al. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother 2012;67(4):906-9
  • Diene SM, Bruder N, Raoult D, Rolain JM. Real-time PCR assay allows detection of the New Delhi metallo-beta-lactamase (NDM-1)-encoding gene in France. Int J Antimicrob Agents 2011;37(6):544-6
  • Ulyashova CE, Khalilova YI, Rubtsova CE, et al. Oligonucleotide microarray for the identification of carbapenemase genes of molecular classes a, B, and d. Acta Naturae 2010;2(23):101-9
  • Bogaerts P, Hujer AM, Naas T, et al. Multicenter evaluation of a new DNA microarray for rapid detection of clinically relevant bla genes from beta-lactam-resistant gram-negative bacteria. Antimicrob Agents Chemother 2011;55(9):4457-60
  • Naas T, Cuzon G, Bogaerts P, et al. Evaluation of a DNA microarray (Check-MDR CT102) for rapid detection of TEM, SHV, and CTX-M extended-spectrum beta-lactamases and of KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases. J Clin Microbiol 2011;49(4):1608-13
  • Skinner A, Wise R. A comparison of three rapid methods for the detection of beta-lactamase activity in Haemophilus influenzae. J Clin Pathol 1977;30(11):1030-2
  • Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2012;18(9):1503-7
  • Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother 2012;56(12):6437-40
  • Dortet L, Poirel L, Errera C, Nordmann P. CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol 2014;52(7):2359-64
  • Dortet L, Brechard L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Enterobacteriaceae from blood cultures. Clin Microbiol Infect 2014;20(4):340-4
  • Tijet N, Boyd D, Patel SN, et al. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013;57(9):4578-80
  • Pires J, Novais A, Peixe L. Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol 2013;51(12):4281-3
  • Hrabak J, Walkova R, Studentova V, et al. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2011;49(9):3222-7
  • Kempf M, Bakour S, Flaudrops C, et al. Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS One 2012;7(2):e31676
  • Papagiannitsis CC, Študentová V, Izdebski R, et al. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Meropenem Hydrolysis Assay with NH4HCO3, a Reliable Tool for Direct Detection of Carbapenemase Activity. J Clin Microbiol 2015;53(5):1731-5
  • Carvalhaes CG, Cayo R, Assis DM, et al. Detection of SPM-1-producing Pseudomonas aeruginosa and class D beta-lactamase-producing Acinetobacter baumannii isolates by use of liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013;51(1):287-90
  • Cornaglia G, Akova M, Amicosante G, et al. Metallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues. Int J Antimicrob Agents 2007;29(4):380-8
  • Bernabeu S, Poirel L, Nordmann P. Spectrophotometry-based detection of carbapenemase producers among Enterobacteriaceae. Diagn Microbiol Infect Dis 2012;74(1):88-90
  • Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999;43(7):1584-90
  • Diene SM, Rolain JM. Investigation of antibiotic resistance in the genomic era of multidrug-resistant Gram-negative bacilli, especially Enterobacteriaceae, Pseudomonas and Acinetobacter. Expert Rev Anti Infect Ther 2013;11(3):277-96
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67(11):2640-4
  • Zankari E, Hasman H, Kaas RS, et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 2013;68(4):771-7
  • Rolain JM, Diene SM, Kempf M, et al. Real-time sequencing to decipher the molecular mechanism of resistance of a clinical pan-drug-resistant Acinetobacter baumannii isolate from Marseille, France. Antimicrob Agents Chemother 2013;57(1):592-6
  • Gupta SK, Padmanabhan BR, Diene SM, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014;58(1):212-20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.