73
Views
9
CrossRef citations to date
0
Altmetric
Review

Anti-inflammatory activity of ansamycins

Pages 91-103 | Published online: 10 Jan 2014

References

  • Rothstein DM, Hartman AD, Cynamon MH, Eisenstein BI. Development potential of rifalazil. Expert Opin. Investig. Drugs12(2), 255–271 (2003).
  • Lenaerts AM, Chase SE, Cynamon MH. Evaluation of rifalazil in a combination treatment regimen as an alternative to isoniazid-rifampin therapy in a mouse tuberculosis model. Antimicrob. Agents Chemother.44(11), 3167–3168 (2000).
  • Shoen CM, De Stefano MS, Cynamon MH. Durable cure for tuberculosis: rifalazil in combination with isoniazid in a murine model of Mycobacterium tuberculosis infection. Clin. Infect. Dis.30(Suppl. 3), S288–S290 (2000).
  • Maw WW, Tomioka H, Sato K, Saito H. Studies on therapeutic activity of benzoxazinorifamycin KRM-1648 in combination with other antimicrobial agents and biological response modifiers interferon-gamma and granulocyte-macrophage colony-stimulating factor against M. leprae infection in athymic nude mice. Int. J. Lepr. Other Mycobact. Dis.65(3), 345–351 (1997).
  • Dhople AM. In vivo susceptibility of Mycobacterium ulcerans to KRM-1648, a new benzoxazinorifamycin, in comparison with rifampicin. Antimycobacterial activity of KRM-1648. Arzneimittelforsch51(6), 501–505 (2001).
  • Bryskier A. Ansamycins. In: Antibiotics and Antibacterial Agents. Bryskier A (Ed.). ASM Press, Washington DC, USA (2005) (In press).
  • Laroux FS. Mechanisms of inflammation: the good, the bad and the ugly. Front. Biosci.9, 3156–3162 (2004).
  • Rankin JA. Biological mediators of acute inflammation. AACN Clin. Issues15(1), 13–17 (2004).
  • Liu H, Pope RM. Phagocytes: mechanisms of inflammation and tissue destruction. Rheum. Dis. Clin. North Am.30(1), 19–39 (2004).
  • Sherwood ER, Toliver-Kinsky T. Mechanisms of the inflammatory response. Best Pract. Res. Clin. Anaesthesiol.18(3), 385–405 (2004).
  • Labro MT. Interference of antibacterial agents with phagocyte functions: immunomodulation or ‘immuno-fairy’ tales. Clin. Microbiol. Rev.13, 615–650 (2000).
  • Labro MT. Antibiotics as anti-inflammatory agents. Curr. Opinion Invest. Drugs3, 61–68 (2002).
  • Dajani BM, Canady MS, Thompson JS, Kasik JE. Rifampicin: an immunomodulator? Lancet2(7786) 1094 (1972).
  • Floersheim GL. Suppression of cellular immunity in vivo by rifampicin. Experientia29(12), 1545–1546 (1973).
  • Galal SH, Khalil SH, el Husseiny W, Brock J. Cell mediated and humoral immunity and light-chain proteinuria in rifampicin-treated tuberculous patients. Allerg. Immunol. (Leipz.)34, 249–254 (1988).
  • Grennan DM, Sturrock RD. Polyarthritis, hepatitis and antinative DNA antibodies after treatment with ethambutol and rifampicin. Tubercle57(4), 259–261 (1976).
  • Roszkowski W, Lipinska R, Roszkowski K, Jeljaszewicz J, Pulverer G. Rifampicin-induced suppression of antitumor immunity. Med. Microbiol. Immunol.172(4), 197–205 (1984).
  • Bellahsene A, Forsgren A. Effect of rifampin on the immune response in mice. Infect. Immun.27(1), 15–20 (1980).
  • Konrad P, Stenberg P. Rifampicin quinone is an immunosuppressant, but not rifampicin itself. Clin. Immunol. Immunopathol.46(1), 162–166 (1988).
  • Sborgia G, Lafronza V, Balestrazzi E. Clinical trial of a new antibiotic (rifampicin) in some aspecific inflammatory disease of the eye. Ann. Ottamol. Clin. Ocul.96(7), 633–640 (1969).
  • Tunkel AR, Scheld WM. Corticosteroids for everyone with meningitis? N. Engl. J. Med.347(20), 1613–1615 (2002).
  • de Gans J, van de Beek D, for the European Dexamethasone in Adulthood Bacterial Meningitis Study Investigators. Dexamethasone in adults with bacterial meningitis. N. Engl. J. Med.347(20), 1549–1556 (2002).
  • Dexamethasone in adults with bacterial meningitis: correspondence. N. Engl. J. Med.348, 954–957 (2003).
  • Stuertz K, Schmidt H, Trostdorf F, Eiffert H, Mäder M, Nau R. Lower lipoteichoic and teichoic acid CSF concentrations during treatment of pneumococcal meningitis with nonbacteriolytic antibiotics than with Ceftriaxone. Scand. J. Infect. Dis.31, 367–370 (1999).
  • Nau R, Wellmer A, Soto A et al. Rifampin reduces early mortality in experimental Streptococcus pneumoniae meninigitis. J. Infect. Dis.179(6), 1557–1560 (1999).
  • Spreer A, Kerstan H, Bottcher T et al. Reduced release of pneumolysin in Streptococcus pneumoniae in vitro and in vivo after treatment with nonbacteriolytic antibiotics in comparison with ceftriaxone. Antimicrob. Agents Chemother.47(8), 2649–6654 (2003).
  • Bottcher T, Gerber J, Wellmer A et al. Rifampin reduces production of reactive oxygen species of cerebrospinal fluid phagocytes and hippocampal neuronal apoptosis in experimental Streptococcus pneumoniae meningitis. J. Infect. Dis.181, 2095–2098 (2000).
  • Gerber J, Pohl K, Sander V, Bunkowski S, Nau R. Rifampin followed by ceftriaxone for experimental meningitis decreases lipoteichoic acid concentrations in cerebrospinal fluid and reduces neuronal damage in comparison to ceftriaxone alone. Antimicrob. Agents Chemother.47(4) 1313–1317 (2003).
  • Greenstein RJ. Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet3(8), 507–514 (2003).
  • Selby W. Pathogenesis and therapeutic aspects of Crohn’s disease. Vet. Microbiol.77(3–4), 505–511 (2000).
  • Bull TJ, McMinn EJ, Sidi-Boumedine K et al. Detection and verification of Mycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and without Crohn’s disease. Antimicrob. Agents Chemother.41(7), 2915–2923 (2003).
  • Greenstein RJ, Collins MT. Emerging pathogens: is Mycobacterium avium subspecies paratuberculosis zoonotic? Lancet364, 396–397 (2004).
  • Wirotsko E, Johnson L, Wirotsko B. Crohn’s disease. Rifampicin treatment of the ocular and gut disease. Hepatogastroenterology34, 90–93 (1987).
  • Rutgeerts P, Geboes K, Vantrappen G et al. Rifabutin and ethambutol do not help recurrent Crohn’s disease in the neoterminal ileum. J. Clin. Gastroenterol.15, 24–28 (1992).
  • Prantera C, Kohn A, Mangiarotti R, Andreoli A, Luzi C. Antimycobacterial therapy in Crohn’s disease: results of a controlled, double-blind trial with a multiple antibiotic regimen. Am. J. Gastroenterol.89, 513–518 (1994).
  • Borgaonkar MR, MacIntosh DG, Fardy JM. A meta-analysis of antimycobacterial therapy for Crohn’s disease. Am. J. Gastroenterol.95(3), 725–729 (2000).
  • Gui GP, Thomas PR, Tizard ML, Lake J, Sanderson JD, Hermon-Taylor J. 2-year-outcomes analysis of Crohn’s disease treated with rifabutin and macrolide antibiotics. J. Antimicrob. Chemother.39, 393–400 (1997).
  • Borody TJ, Leis S, Warren EF, Surace R. Treatment of severe Crohn’s disease using antimycobacterial triple therapy – approaching a cure? Dig. Liver Dis.34(1), 29–38 (2002).
  • Shafran I, Kugler L, El-Zaatari FA, Naser SA, Sandoval J. Open clinical trial of rifabutin and clarithromycin therapy in Crohn’s disease. Dig. Liver Dis.34(1), 22–28 (2002).
  • Douglass A, Cann PA, Bramble MG. An open pilot study of antimicrobial therapy in patients with unresponsive Crohn’s disease. Gut46(Suppl. A11) (2000).
  • Labro MT. Cellular and molecular effects of macrolides. Curr. Pharm. Des.10(25), 3067–3080 (2004).
  • Gionchetti P, Rizello F, Venturi A et al. Review-antibiotic treatment in inflammatory bowel disease: rifaximin, a new possible approach. Eur. Rev. Med. Pharmacol. Sci.3, 27–30 (1999).
  • Mobley JL. Is rheumatoid arthritis a consequence of natural selection for enhanced tuberculosis resistance? Med. Hypotheses.62(5), 839–843 (2004).
  • Rothschild BM. Unified theory of origins of erosive arthritis: conditioning as a protective/directing mechanism? J. Rheumatol.30, 2095–2102 (2003).
  • Kim HA, Yoo CD, Baek HJ et al. Mycobacterium tuberculosis infection in a corticosteroid-treated rheumatic disease patient population. Clin. Exp. Rheumatol.16(1), 9–13 (1998).
  • Evanchick CC, Davis DE, Harrington TM. Tuberculosis of peripheral joints: an often missed diagnosis. J. Rheumatol.13(1), 187–189 (1986).
  • Mc Conkey B, Situnayake RD. Effects of rifampicin with and without isoniazid in rheumatoid arthritis. J. Rheumatol.15, 46–50 (1988).
  • Caruso I. Twenty years of experience with intra-articular rifamycin for chronic arthritides. J. Int. Med. Res.25, 307–317 (1997).
  • Spisani S, Traniello S, Martuccio C, Rizzuti O, Cellai L. Rifamycins inhibit human neutrophil functions: new derivatives with potential anti-inflammatory activity. Inflammation21, 391–400 (1997).
  • Spisani S, Traniello S, Onori AM, Rizzuti O, Martuccio C, Cellai L. 3-(Carboxyalkylthio) rifamycin S and SV derivatives inhibit human neutrophil functions. Inflammation22(5), 459–469 (1998).
  • Ziglam HM, Daniels I, Finch RG. Immunomodulating activity of rifampicin. J. Chemother.16(4), 357–361 (2004).
  • Mlambo G, Sigola LB. Rifampicin and dexamethasone have similar effects on macrophage phagocytosis of zymosan, but differ in their effects on nitrite and TNF-α production. Intern. Immunopharmacol.3, 513–522 (2003).
  • Ibrahim MS, Maged ZA, Huron A, Khalil RY, Attallah AM. Antibiotics and immunity: effects of antibiotics on natural killer, antibody-dependent cell-mediated cytotoxicity and antibody production. Chemioterapia6(6), 426–430 1987.
  • Sacha PT, Zaremba ML, Jakoniuk P. The effect of selected antibacterial antibiotics on production of interferon gamma by mouse T-lymphocytes stimulated by Listeria monocytogenes.Med. Dosw. Mikrobiol.51, 413–419 (1999).
  • Calleja C, Pascussi JM, Mani JC, Maurel P, Vilarem MJ. The antibiotic rifampicin is a nonsteroidal ligand and activator of the human glucocorticoid receptor. Nature Med.4(1), 92–96 (1998).
  • Pahlevan AA, Wright DJ, Bradley L, Smith C, Foxwell BM. Potential of rifamides to inhibit TNF-induced NF-κB activation. J. Antimicrob. Chemother.49(3), 531–534 (2002).
  • Yerramasetti R, Gollapudi S, Gupta S. Rifampicin inhibits CD95-mediated apoptosis of Jurkat T-cells via glucocorticoid receptors by modifying the expression of molecules regulating apoptosis. J. Clin. Immunol.22, 37–47 (2002).
  • Gollapudi S, Jaidka S, Gupta S. Molecular basis of rifampicin-induced inhibition of anti CD95-induced apoptosis of peripheral blood T-lymphocytes: the role of CD95 ligand and FLIPs. J. Clin. Immunol.23, 11–22 (2003).
  • Giuliani A, Porcelli SA, Tentori L et al. Effect of rifampicin on CD1b expression and double-negative T-cell responses against mycobacteria-derived glycolipid antigen. Life Sci.63(12), 985–994 (1998).
  • Tentori L, Graziani G, Porcelli SA et al. Rifampicin increases cytokine-induced expression of the CD1b molecule in human peripheral blood monocytes. Antimicrob. Agents Chemother.42(3), 550–554 (1998).
  • Ziglam HM, Baldwin DR, Daniels I, Andrew JM, Finch RG. Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following a single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J. Antimicrob. Chemother.50(6), 1011–1015 (2002).
  • Demkow U, Radomska D, Chorostowska-Wynimko J, Skopinska-Rozewska E. The influence of rifampicin on selected parameters of immunologic response. Pneumonol. Alergol. Pol.66(1–2), 45–53 (1998).
  • Littlewood-Evans AJ, Hattenberger M, Zak O, O’Reilly T. Effect of combination therapy of rifampicin and azithromycin on TNF levels during a rat model of chronic osteomyelitis. J. Antimicrob. Chemother.39, 493–498 (1997).
  • Barracchini A, Franceschini N, Di Giulio A et al. Metalloproteinase inhibition: therapeutic application in rheumatic diseases. Clin. Ter.150(4), 295–299 (1999).
  • Feldman DL, Sawyer WK, Jeune MR et al. CGP 43371 paradoxically inhibits development of rabbit atherosclerotic lesions while inducing extra-arterial foam cell formation. Atherosclerosis154(2), 317–328 (2001).
  • Asghar A, Gorski JC, Haehner-Daniels B, Hall SD. Induction of multi-drug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampicin. Drug Metab. Dispos.30, 20–26 (2002).
  • Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal mdR1 by rifampin. J. Biol. Chem.276, 14581–14587 (2001).
  • Granzotto M, Drigo I, Candussio L et al. Rifampicin and verapamil induce the expression of P-glycoprotein in vivo in Ehrlich ascites tumor cells. Cancer Lett.205(1), 107–115 (2004).
  • Magnarin M, Morelli M, Rosati A et al. Induction of proteins involved in multi-drug resistance (P-glycoprotein, MRP1, MRP2, LRP) and of CYP 3A4 by rifampicin in LLC-PK1 cells. Eur. J. Pharmacol.483(1), 19–28 (2004).
  • Fromm MF, Kauffmann HM, Fritz P et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Amer. J. Pathol.157(5), 1575–1580 (2000).
  • Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto KT. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin. Pharmacokinet.42(9), 819–850 (2003).
  • Thomas GA, Swift GL, Green JT et al. Controlled trial of antituberculous chemotherapy in Crohn’s disease: a 5-year follow-up study. Gut42, 497–500 (1998).
  • Rastogi N, Goh KS, Labrousse V. Activity of clarithromycin compared with those of other drugs against Mycobacterium paratuberculosis and further enhancement of its extracellular and intracellular activities by ethambutol. Antimicrob. Agents Chemother.36, 2843–2846 (1992).
  • Targan SR, Hanauer SB, van Deventer SJ et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor-α for Crohn’s disease. N. Engl. J. Med.337, 1029–1035 (1997).
  • Present DH, Rutgeerts P, Targan S et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N. Engl. J. Med.340, 1398–1405 (1999).
  • Bieber J, Kavanaugh A. Consideration of the risk and treatment of tuberculosis in patients who have rheumatoid arthritis and receive biologic treatments. Rheum. Dis. Clin. North Am.30(2), 257–270 (2004).
  • Wolfe F, Michaud K, Anderson J, Urbansky K. Tuberculosis infection in patients with rheumatoid arthritis and the effect of infliximab therapy. Arthritis Rheum.50(2), 372–379 (2004).
  • Apseloff G. Severe neutropenia among healthy volunteers given rifabutin in clinical trials. Clin. Pharmacol. Ther.74(6), 591–592, (2003).
  • Ashitani J, Yanagi S, Arimura Y, Sano A, Mukae H. Acute respiratory distress syndrome induced by rifampicin with high levels of neutrophil and eosinophil products in bronchoalveolar lavage fluid. Respiration70(5), 541–543 (2003).
  • Le Gars L, Collon T, Picard O, Kaplan G, Berenbaum F. Polyarthralgia-arthritis syndrome induced by low doses of rifabutin. J. Rheumatol.26, 1201–1202 (1999).
  • van Denderen JC, Mensen EA, Vints AM. Arthritis caused by use of rifabutine in Mycobacterium avium infection. Ned. Tijdschr. Geneeskd.18(141), 2028–2030 (1997).
  • Khan MA, Singh J, Dhillon B. Rifabutin-induced uveitis with inflammatory vitreous infiltrate. Eye14(Pt 3A), 344–346 (2000).
  • Jaffuel D, Demoly P, Gougat C, Mautino G, Bousquet J, Mathieu M. Rifampicin is not an activator of the glucocorticoid receptor in A549 human alveolar cells. Mol. Pharmacol.55(5), 841–846 (1999).
  • Ray DW, Lovering AM, Davis JRE, White A. Rifampicin; a glucocorticoid receptor ligand? Nature Med.4(10), 1090 (1998).
  • Calleja C, Pascussi JM, Mani JC, Maurel P, Vlarem MJ. Rifampicin; a glucocorticoid receptor ligand? Reply. Nature Med.4(10), 1090 (1998).
  • Blanchard JS. The Ying and Yang of rifampicin. Nature Med.4(1), 14–15 (1998).
  • Holland SM. Cytokine therapy of mycobacterial infections. Adv. Intern. Med.45, 431–452 (2000).
  • Dayer JM. The process of identifying and understanding cytokines: from basic studies to treating rheumatic diseases. Best Pract. Res. Clin. Rheumatol.18(1), 31–45 (2004).
  • D’Acquisto F, May MJ, Ghosh S. Inhibition of nuclear factor κB: an emerging theme in anti-inflammatory therapies. Mol. Intervent.2(1), 22–35 (2002).
  • Dinarello CA. The IL-1 family and inflammatory diseases. Clin. Exp. Rheumatol.20(Suppl. 5), S1–13 (2002).
  • Franchimont D. Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann. NY Acad. Sci.1024, 124–137 (2004).
  • Gilroy DW, Lawrence T, Perretti M, Rossi AG. Inflammatory resolution: new opportunities for drug discovery. Nature Rev. Drug. Discov.3(5), 401–416 (2004).
  • Di Virgilio F. New pathways for reactive oxygen species generation in inflammation and potential novel pharmacological targets. Curr. Pharm. Des.10(14), 1647–1652 (2004).
  • Cuzzocrea S, Thiemermann C, Salvemini D. Potential therapeutic effect of anti-oxidant therapy in shock and inflammation. Curr. Med. Chem.11(9), 1147–1162 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.