146
Views
30
CrossRef citations to date
0
Altmetric
Review

Cephalosporin resistance among animal-associated Enterobacteria: a current perspective

, &
Pages 403-417 | Published online: 10 Jan 2014

References

  • Hornish RE, Kotarski SF. Cephalosporins in veterinary medicine – ceftiofur use in food animals. Curr. Top. Med. Chem. 2(7), 717–731 (2002).
  • Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother. 46(1), 1–11 (2002).
  • Livermore DM. β-lactamase-mediated resistance and opportunities for its control. J. Antimicrob. Chemother. 41(Suppl. D), 25–41 (1998).
  • Bush K. Characterization of β-lactamases. Antimicrob. Agents Chemother. 33(3), 259–263 (1989).
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39(6), 1211–1233 (1995).
  • Ambler RP. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 289(1036), 321–331 (1980).
  • National Office of Animal Health Ltd (NOAH). Compendium of data sheets for veterinary products. (2004).
  • Allen KJ, Poppe C. Occurrence and characterization of resistance to extended-spectrum cephalosporins mediated by β-lactamase CMY-2 in Salmonella isolated from food-producing animals in Canada. Can. J. Vet. Res. 66(3), 137–144 (2002).
  • Winokur PL, Brueggemann A, DeSalvo DL et al. Animal and human multi-drug resistant, cephalosporin-resistant salmonella isolates expressing a plasmid-mediated CMY-2 AmpC β-lactamase. Antimicrob. Agents Chemother. 44(10), 2777–2783 (2000).
  • Advisory Committee on Animal Uses of Antimicrobials and Impact on Resistance and Human Health. Uses of antimicrobials in food animals in Canada: impact on resistance and human health. (2002).
  • Livermore DM. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8(4), 557–584 (1995).
  • Sougakoff W, Goussard S, Courvalin P. The TEM-3 β-lactamase, which hydrolyzes broad spectrum cephalosporins, is derived from the TEM-2 penicillinase by two amino acid substitutions. FEMS Microbiol. Lett. 56(3), 343–348 (1988).
  • Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14(4), 933–951 (2001).
  • Vakulenko SB, Geryk B, Kotra LP et al. Selection and characterization of β-lactam-β-lactamase inactivator-resistant mutants following PCR mutagenesis of the TEM-1 β-lactamase gene. Antimicrob. Agents Chemother. 42(7), 1542–1548 (1998).
  • Helfand MS, Bethel CR, Hujer AM et al. Understanding resistance to β-lactams and β-lactamase inhibitors in the SHV β-lactamase: lessons from the mutagenesis of SER-130. J. Biol. Chem. 278(52), 52724–52729 (2003).
  • Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48(1), 1–14 (2004).
  • Walther-Rasmussen J, Høiby N. Cefotaximases (CTX-M-ases), an expanding family of extended-spectrum β-lactamases. Can. J. Microbiol. 50(3), 137–165 (2004).
  • Matsumoto Y, Ikeda F, Kamimura T et al. Novel plasmid-mediated β-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob. Agents Chemother. 32(8), 1243–1246 (1988).
  • Humeniuk C, Arlet G, Gautier V et al. β-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother. 46(9), 3045–3049 (2002).
  • Decousser JW, Poirel L, Nordmann P. Characterization of a chromosomally encoded extended-spectrum class A β-lactamase from Kluyvera cryocrescens. Antimicrob. Agents Chemother. 45(12), 3595–3598 (2001).
  • Poirel L, Kämpfer P, Nordmann P. Chromosome-encoded Ambler class A β-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 46(12), 4038–4040 (2002).
  • Lartigue MF, Poirel L, Nordmann P. Diversity of genetic environment of bla(CTX-M) genes. FEMS Microbiol. Lett. 234(2), 201–207 (2004).
  • Fosse T, Giraud-Morin C, Madinier I et al. Sequence analysis and biochemical characterisation of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC ‘FOX’ cluster. FEMS Microbiol. Lett. 222(1), 93–98 (2003).
  • Bauernfeind A, Stemplinger I, Jungwirth R et al. Characterization of the plasmidic β-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob. Agents Chemother. 40(1), 221–224 (1996).
  • Poirel L, Guibert M, Girlich D et al. Cloning, sequence analyses, expression, and distribution of ampC–ampR from Morganella morganii clinical isolates. Antimicrob. Agents Chemother. 43(4), 769–776 (1999).
  • Girlich D, Naas T, Bellais S et al. Biochemical-genetic characterization and regulation of expression of an ACC-1-like chromosome-borne cephalosporinase from Hafnia alvei. Antimicrob. Agents Chemother. 44(6), 1470–1478 (2000).
  • Papanicolaou GA, Medeiros AA, Jacoby GA. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 34(11), 2200–2209 (1990).
  • Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40(6), 2153–2162 (2002).
  • Yan JJ, Chiu CH, Ko WC et al. Ceftriaxone-resistant Salmonella enterica serovar Hadar: evidence for interspecies transfer of blaCMY-2 in a Taiwanese university hospital. J. Formos. Med. Assoc. 101(9), 665–668 (2002).
  • Koeck JL, Arlet G, Philippon A et al. A plasmid-mediated CMY-2 β-lactamase from an Algerian clinical isolate of Salmonella senftenberg. FEMS Microbiol. Lett. 152(2), 255–260 (1997).
  • Chen S, Zhao S, White DG et al. Characterization of multiple antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 70(1), 1–7 (2004).
  • Armand-Lefèvre L, Leflon-Guibout V, Bredin J et al. Imipenem resistance in Salmonella enterica serovar Wien related to porin loss and CMY-4 β-lactamase production. Antimicrob. Agents Chemother. 47(3), 1165–1168 (2003).
  • Miriagou V, Filip R, Coman G et al. Expanded-spectrum cephalosporin-resistant Salmonella strains in Romania. J. Clin. Microbiol. 40(11), 4334–4336 (2002).
  • Navarro F, Perez-Trallero E, Marimon JM et al. CMY-2-producing Salmonella enterica, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis and Escherichia coli strains isolated in Spain (October 1999–December 2000). J. Antimicrob. Chemother. 48(3), 383–389 (2001).
  • Orman BE, Pineiro SA, Arduino S et al. Evolution of multiresistance in nontyphoid Salmonella serovars from 1984 to 1998 in Argentina. Antimicrob. Agents Chemother. 46(12), 3963–3970 (2002).
  • Chiu CH, Su LH, Chu C et al. Isolation of Salmonella enterica serotype choleraesuis resistant to ceftriaxone and ciprofloxacin. Lancet 363(9417), 1285–1286 (2004).
  • Giles WP, Benson AK, Olson ME et al. DNA sequence analysis of regions surrounding blaCMY-2 from multiple Salmonella plasmid backbones. Antimicrob. Agents Chemother. 48(8), 2845–2852 (2004).
  • Carattoli A, Tosini F, Giles WP et al. Characterization of plasmids carrying CMY-2 from expanded-spectrum cephalosporin-resistant Salmonella strains isolated in the United States between 1996 and 1998. Antimicrob. Agents Chemother. 46(5), 1269–1272 (2002).
  • Hanson ND. AmpC β-lactamases: what do we need to know for the future? J. Antimicrob. Chemother. 52(1), 2–4 (2003).
  • Petrosino JF, Pendleton AR, Weiner JH et al. Chromosomal system for studying AmpC-mediated β-lactam resistance mutation in Escherichia coli. Antimicrob. Agents Chemother. 46(5), 1535–1539 (2002).
  • Hanson ND, Sanders CC. Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Curr. Pharm. Des. 5(11), 881–894 (1999).
  • Lindberg F, Lindquist S, Normark S. Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii β-lactamase. J. Bacteriol. 169(5), 1923–1928 (1987).
  • Jaurin B, Grundström T, Edlund T et al. The E. coli β-lactamase attenuator mediates growth rate-dependent regulation. Nature 290(5803), 221–225 (1981).
  • Olsson O, Bergström S, Lindberg FP et al. ampC β-lactamase hyperproduction in Escherichia coli: natural ampicillin resistance generated by horizontal chromosomal DNA transfer from Shigella. Proc. Natl. Acad. Sci. USA 80(24), 7556–7560 (1983).
  • Edlund T, Grundstrom T, Normark S. Isolation and characterization of DNA repetitions carrying the chromosomal β-lactamase gene of Escherichia coli K-12. Mol. Gen. Genet. 173(2), 115–125 (1979).
  • Edlund T, Normark S. Recombination between short DNA homologies causes tandem duplication. Nature 292(5820), 269–271 (1981).
  • Olsson O, Bergström S, Normark S. Identification of a novel ampC β-lactamase promoter in a clinical isolate of Escherichia coli. EMBO J. 1(11), 1411–1416 (1982).
  • Nelson EC, Elisha BG. Molecular basis of AmpC hyperproduction in clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 43(4), 957–959 (1999).
  • Caroff N, Espaze E, Bérard I et al. Mutations in the ampC promoter of Escherichia coli isolates resistant to oxyiminocephalosporins without extended spectrum β-lactamase production. FEMS Microbiol. Lett. 173(2), 459–465 (1999).
  • Caroff N, Espaze E, Gautreau D et al. Analysis of the effects of -42 and -32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing ampC. J. Antimicrob. Chemother. 45(6), 783–788 (2000).
  • Siu LK, Lu PL, Chen JY et al. High-level expression of ampC β-lactamase due to insertion of nucleotides between -10 and -35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum cephalosporin treatment. Antimicrob. Agents Chemother. 47(7), 2138–2144 (2003).
  • Reisbig MD, Hossain A, Hanson ND. Factors influencing gene expression and resistance for Gram-negative organisms expressing plasmid-encoded ampC genes of Enterobacter origin. J. Antimicrob. Chemother. 51(5), 1141–1151 (2003).
  • Naas T, Nordmann P. OXA-type β-lactamases. Curr. Pharm. Des. 5(11), 865–879 (1999).
  • Martínez-Martínez L, Conejo MC, Pascual A et al. Activities of imipenem and cephalosporins against clonally related strains of Escherichia coli hyperproducing chromosomal β-lactamase and showing altered porin profiles. Antimicrob. Agents Chemother. 44(9), 2534–2536 (2000).
  • Bradford PA, Urban C, Mariano N et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the foss of an outer membrane protein. Antimicrob. Agents Chemother. 41(3), 563–569 (1997).
  • Stapleton PD, Shannon KP, French GL. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 β-lactamase production and loss of an outer membrane protein. Antimicrob. Agents Chemother. 43(5), 1206–1210 (1999).
  • Briñas L, Moren MA, Teshager T et al. β-lactamase characterization in Escherichia coli isolates with diminished susceptibility or resistance to extended-spectrum cephalosporins recovered from sick animals in Spain. Microb. Drug Resist. 9(2), 201–209 (2003).
  • Briñas L, Moreno MA, Zarazaga M et al. Detection of CMY-2, CTX-M-14, and SHV-12 β-lactamases in Escherichia coli fecal-sample isolates from healthy chickens. Antimicrob. Agents Chemother. 47(6), 2056–2058 (2003).
  • Liebana E, Gibbs M, Clouting C et al. Characterization of β-lactamases responsible for resistance to extended-spectrum cephalosporins in Escherichia coli and Salmonella enterica strains from food-producing animals in the United Kingdom. Microb. Drug Resist. 10(1), 1–9 (2004).
  • Aarestrup FM, Hasman H, Olsen I et al. International spread of bla(CMY-2)-mediated cephalosporin resistance in a multiresistant Salmonella enterica serovar Heidelberg isolate stemming from the importation of a boar by Denmark from Canada. Antimicrob. Agents Chemother. 48(5), 1916–1917 (2004).
  • Gupta A, Fontana J, Crowe C et al. Emergence of multi-drug resistant Salmonella enterica serotype Newport infections resistant to expanded-spectrum cephalosporins in the United States. J. Infect. Dis. 188(11), 1707–1716 (2003).
  • Dunne EF, Fey PD, Kludt P et al. Emergence of domestically acquired ceftriaxone-resistant Salmonella infections associated with AmpC β-lactamase. J. Am. Med. Assoc. 284(24), 3151–3156 (2000).
  • Shiraki Y, Shibata N, Doi Y et al. Escherichia coli producing CTX-M-2 β-lactamase in cattle, Japan. Emerg. Infect. Dis. 10(1), 69–75 (2004).
  • Yan JJ, Hong CY, Ko WC et al. Dissemination of blaCMY-2 among Escherichia coli isolates from food animals, retail ground meats, and humans in southern Taiwan. Antimicrob. Agents Chemother. 48(4), 1353–1356 (2004).
  • Briñas L, Zarazaga M, Sáenz Y et al. β-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob. Agents Chemother. 46(10), 3156–3163 (2002).
  • Randall LP, Cooles SW, Osborn MK et al. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother. 53(2), 208–216 (2004).
  • Antunes P, Machado J, Sousa JC et al. Dissemination amongst humans and food products of animal origin of a Salmonella typhimurium clone expressing an integron-borne OXA-30 β-lactamase. J. Antimicrob. Chemother. 54(2), 429–434 (2004).
  • Guerra B, Junker E, Schroeter A et al. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J. Antimicrob. Chemother. 52(3), 489–492 (2003).
  • Bradford PA, Petersen PJ, Fingerman IM et al. Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine calf diarrhoeal disease. J. Antimicrob. Chemother. 44(5), 607–610 (1999).
  • Olesen I, Hasman H, Aarestrup FM. Prevalence of β-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microb. Drug Resist. 10(4), 334–340 (2004).
  • Féria C, Ferreira E, Correia JD et al. Patterns and mechanisms of resistance to β-lactams and β-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. J. Antimicrob. Chemother. 49(1), 77–85 (2002).
  • Maidhof H, Guerra B, Abbas S et al. A multiresistant clone of Shiga toxin-producing Escherichia coli O118:[H16] is spread in cattle and humans over different European countries. Appl. Environ. Microbiol. 68(12), 5834–5842 (2002).
  • Dundas S, Todd WT. Clinical presentation, complications and treatment of infection with verocytotoxin-producing Escherichia coli. Challenges for the clinician. Symp. Ser. Soc. Appl. Microbiol. (29), S24–S30 (2000).
  • Weill FX, Lailler R, Praud K et al. Emergence of extended-spectrum β-lactamase (CTX-M-9)-producing multiresistant strains of Salmonella enterica serotype Virchow in poultry and humans in France. J. Clin. Microbiol. 42(12), 5767–5773 (2004).
  • Teshager T, Domínguez L, Moreno MA et al. Isolation of an SHV-12 β-lactamase-producing Escherichia coli strain from a dog with recurrent urinary tract infections. Antimicrob. Agents Chemother. 44(12), 3483–3484 (2000).
  • Costa D, Poeta P, Briñas L et al. Detection of CTX-M-1 and TEM-52 β-lactamases in Escherichia coli from healthy pets in Portugal. J. Antimicrob. Chemother. 54(5), 960–961 (2004).
  • Zhao S, White DG, McDermott PF et al. Identification and expression of cephamycinase bla(CMY) genes in Escherichia coli and Salmonella isolates from food animals and ground meat. Antimicrob. Agents Chemother. 45(12), 3647–3650 (2001).
  • Fey PD, Safranek TJ, Rupp ME et al. Ceftriaxone-resistant salmonella infection acquired by a child from cattle. N. Engl. J. Med. 342(17), 1242–1249 (2000).
  • Rankin SC, Aceto H, Cassidy J et al. Molecular characterization of cephalosporin-resistant Salmonella enterica serotype Newport isolates from animals in Pennsylvania. J. Clin. Microbiol. 40(12), 4679–4684 (2002).
  • White DG, Zhao S, Sudler R et al. The isolation of antibiotic-resistant Salmonella from retail ground meats. N. Engl. J. Med. 345(16), 1147–1154 (2001).
  • Zhao S, Qaiyumi S, Friedman S et al. Characterization of Salmonella enterica serotype newport isolated from humans and food animals. J. Clin. Microbiol. 41(12), 5366–5371 (2003).
  • Winokur PL, Vonstein DL, Hoffman LJ et al. Evidence for transfer of CMY-2 AmpC β-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob. Agents Chemother. 45(10), 2716–2722 (2001).
  • Department of Agriculture Athens Georgia, USA. National Antimicrobial Resistance Monitoring System (NARMS): Enteric Bacteria Veterinary Salmonella report 2003. (2004).
  • Gray JT, Hungerford LL, Fedorka-Cray PJ et al. Extended-spectrum-cephalosporin resistance in Salmonella enterica isolates of animal origin. Antimicrob. Agents Chemother. 48(8), 3179–3181 (2004).
  • Guardabassi L, Schwarz, S Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J. Antimicrob. Chemother. 54(2), 321–332 (2004).
  • Centers for Disease Control and Prevention Atlanta, USA. National Antimicrobial Resistance Monitoring System (NARMS): Enteric Bacteria Annual report 2002. (2004).
  • Department for Environment Food and Rural Affairs UK. (DEFRA). Salmonella in livestock production in GB. (2003).
  • Espié E, Weill FX. Outbreak of multi-drug resistant Salmonella Newport due to the consumption of horsemeat in France. Eurosurveillance 7(27), (2003).
  • Miriagou V, Tassios PT, Legakis NJ et al. Expanded-spectrum cephalosporin resistance in non-typhoid Salmonella. Int. J. Antimicrob. Agents 23(6), 547–555 (2004).
  • Hohmann EL. Nontyphoidal salmonellosis. Clin. Infect. Dis. 32(2), 263–269 (2001).
  • Ko WC, Yan JJ, Yu WL et al. A new therapeutic challenge for old pathogens: community-acquired invasive infections caused by ceftriaxone- and ciprofloxacin-resistant Salmonella enterica serotype choleraesuis. Clin. Infect. Dis. 40(2), 315–318 (2005).
  • Wong-Beringer A. Therapeutic challenges associated with extended-spectrum, β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Pharmacotherapy 21(5), 583–592 (2001).
  • Jacoby GA, Munoz-Price LS. The new β-lactamases. N. Engl. J. Med. 352(4), 380–391 (2005).
  • Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin. Microbiol. Infect. 8(6), 321–331 (2002).
  • Miriagou V, Tzouvelekis LS, Rossiter S et al. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob. Agents Chemother. 47(4), 1297–1300 (2003).
  • Neuwirth C, Siebor E, Pechinot A et al. Evidence of in vivo transfer of a plasmid encoding the extended-spectrum β-lactamase TEM-24 and other resistance factors among different members of the family Enterobacteriaceae. J. Clin. Microbiol. 39(5), 1985–1988 (2001).
  • Sanchez S, McCrackin Stevenson MA, Hudson CR et al. Characterization of multi-drug resistant Escherichia coli isolates associated with nosocomial infections in dogs. J. Clin. Microbiol. 40(10), 3586–3595 (2002).
  • Jaurin B, Grundström T, Normark S. Sequence elements determining ampC promoter strength in E. coli. EMBO J. 1(7), 875–881 (1982).
  • Anderson AD, Nelson JM, Rossiter S et al. Public health consequences of use of antimicrobial agents in food animals in the United States. Microb. Drug Resist. 9(4), 373–379 (2003).
  • Danish Institute for Food and Veterinary Research. DANMAP 2003: use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. (2004).
  • The National Veterinary Institute Uppsala Sweden. SVARM 2003: Swedish veterinary antimicrobial resistance monitoring. (2003).
  • Veterinary Medicines Directorate (UK). Sales of antimicrobial products authorised for use as veterinary medicines, antiprotozoals, antifungals, growth promoters and coccidiostats, in the UK. (2004).
  • Doublet B, Carattoli A, Whichard JM et al. Plasmid-mediated florfenicol and ceftriaxone resistance encoded by the floR and bla(CMY-2) genes in Salmonella enterica serovars Typhimurium and Newport isolated in the United States. FEMS Microbiol. Lett. 233(2), 301–305 (2004).
  • Centraal Instituut voor Dierziekt Controle (CIDC-Lelystad). MARAN 2002: monitoring of antimicrobial resistance and antibiotic usage in animals in the Netherlands in 2002. (2004).
  • Sarria JC, Vidal AM, Kimbrough RC III. Infections caused by Kluyvera species in humans. Clin. Infect. Dis. 33(7), E69–E74 (2001).
  • Moubareck C, Bourgeois N, Courvalin P et al. Multiple antibiotic resistance gene transfer from animal to human enterococci in the digestive tract of gnotobiotic mice. Antimicrob. Agents Chemother. 47(9), 2993–2996 (2003).
  • Bourgeois N, Savard B, Moubareck C et al. Interspecies transfer of vancomycin resistance from poultry Enterococcus faecium to human Enterococcus faecalis in digestive tract of human flora associated mice. 43rd ICCAC abstracts. ASM. IL, USA (2003).
  • Shoemaker NB, Wang GR, Salyers AA. Evidence for natural transfer of a tetracycline resistance gene between bacteria from the human colon and bacteria from the bovine rumen. Appl. Environ. Microbiol. 58(4), 1313–1320 (1992).
  • Oppegaard H, Steinum TM, Wasteson Y. Horizontal transfer of a multi-drug resistance plasmid between coliform bacteria of human and bovine origin in a farm environment. Appl. Environ. Microbiol. 67(8), 3732–3734 (2001).
  • Su LH, Chiu CH, Chu C et al. In vivo acquisition of ceftriaxone resistance in Salmonella enterica serotype anatum. Antimicrob. Agents Chemother. 47(2), 563–567 (2003).
  • Archambaud M, Gerbaud G, Labau E et al. Possible in vivo transfer of β-lactamase TEM-3 from Klebsiella pneumoniae to Salmonella kedougou. J. Antimicrob. Chemother. 27(4), 427–436 (1991).
  • Bergström S, Lindberg FP, Olsson O et al. Comparison of the overlapping frd and ampC operons of Escherichia coli with the corresponding DNA sequences in other Gram-negative bacteria. J. Bacteriol. 155(3), 1297–1305 (1983).
  • Honore N, Nicolas MH, Cole ST. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 5(13), 3709–3714 (1986).
  • Barnaud G, Arlet G, Verdet C et al. Salmonella enteritidis: AmpC plasmid-mediated inducible β-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob. Agents Chemother. 42(9), 2352–2358 (1998).
  • Fortineau N, Poirel L, Nordmann P. Plasmid-mediated and inducible cephalosporinase DHA-2 from Klebsiella pneumoniae. J. Antimicrob. Chemother. 47(2), 207–210 (2001).
  • Reisbig MD, Hanson ND. The ACT-1 plasmid-encoded AmpC β-lactamase is inducible: detection in a complex β-lactamase background. J. Antimicrob. Chemother. 49(3), 557–560 (2002).
  • Nakano R, Okamoto R, Nakano Y et al. CFE-1, a novel plasmid-encoded AmpC β-lactamase with an ampR gene originating from Citrobacter freundii. Antimicrob. Agents Chemother. 48(4), 1151–1158 (2004).
  • Morosini MI, Ayala JA, Baquero F et al. Biological cost of AmpC production for Salmonella enterica serotype typhimurium. Antimicrob. Agents Chemother. 44(11), 3137–3143 (2000).
  • Hossain A, Reisbig MD, Hanson ND. Plasmid-encoded functions compensate for the biological cost of AmpC overexpression in a clinical isolate of Salmonella typhimurium. J. Antimicrob. Chemother. 53(6), 964–970 (2004).
  • Maurelli AT, Fernández RE, Bloch CA et al. ‘Black holes’ and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95(7), 3943–3948 (1998).
  • Zansky S, Wallace B, Schoonmaker-Bopp D et al. From the Centers for Disease Control and Prevention. Outbreak of multi-drug resistant Salmonella Newport – United States January–April 2002. J. Am. Med. Assoc. 288(8), 951–953 (2002).
  • Pitout JD, Reisbig MD, Mulvey M et al. Association between handling of pet treats and infection with Salmonella enterica serotype newport expressing the AmpC β-lactamase CMY-2. J. Clin. Microbiol. 41(10), 4578–4582 (2003).

Websites

  • Amino Acid Sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant β-lactamases www.lahey.org/studies/webt.asp (Accessed May 2005)
  • Centers for Disease Control and Prevention, National Antimicrobial Resistance Monitoring System www.cdc.gov/narms (Accessed May 2005)
  • Animal Health Institute www.ahi.org (Accessed May 2005)
  • Union of Concerned Scientists www.ucsusa.org (Accessed May 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.