72
Views
14
CrossRef citations to date
0
Altmetric
Review

Treatment of Pseudomonas aeruginosa infection in critically ill patients

&
Pages 639-662 | Published online: 10 Jan 2014

References

  • National Nosocomial Infections Surveillance (NNIS) System Report. Data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control32(8), 470–485 (2004).
  • Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical–surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol.21(8), 510–515 (2000).
  • Montravers P, Gauzit R, Muller C et al. Emergence of antibiotic-resistant bacteria in cases of peritonitis after intraabdominal surgery affects the efficacy of empirical antimicrobial therapy. Clin. Infect. Dis.23(3), 486–494 (1996).
  • Dupont H, Mentec H, Sollet JP, Bleichner G. Impact of appropriateness of initial antibiotic therapy on the outcome of ventilator-associated pneumonia. Intensive Care Med.27(2), 355–362 (2001).
  • Zanetti G, Bally F, Greub G et al. Cefepime versus imipenem–cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob. Agents Chemother.47(11), 3442–3447 (2003).
  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis.39(3), 309–317 (2004).
  • Panceri ML, Vegni FE, Goglio A et al. Aetiology and prognosis of bacteraemia in Italy. Epidemiol. Infect.132(4), 647–654 (2004).
  • Vincent JL, Sakr Y, Sprung CL et al. Sepsis in European intensive care units: results of the SOAP study. Crit. Care Med.34(2), 344–353 (2006).
  • Pawar M, Mehta Y, Khurana P et al. Ventilator-associated pneumonia: incidence, risk factors, outcome, and microbiology. J. Cardiothorac. Vasc. Anesth.17(1), 22–28 (2003).
  • Osmon S, Ward S, Fraser VJ, Kollef MH. Hospital mortality for patients with bacteremia due to Staphylococcus aureus or Pseudomonas aeruginosa. Chest125(2), 607–616 (2004).
  • Sligl W, Taylor G, Brindley PG. Five years of nosocomial Gram-negative bacteria in a general intensive care unit: epidemiology, antimicrobial susceptibility patterns, and outcomes. Int. J. Infect. Dis.10(4), 320–325 (2006).
  • Obritsch MD, Fish DN, MacLaren R, Jung R. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy25(10), 1353–1364 (2005).
  • Arruda EA, Marinho IS, Boulos M et al. Nosocomial infections caused by multiresistant Pseudomonas aeruginosa. Infect. Control Hosp. Epidemiol.20(9), 620–623 (1999).
  • Philippe E, Weiss M, Shultz JM, Yeomans F, Ehrenkranz NJ. Emergence of highly antibiotic-resistance Pseudomonasaeruginosa in relation to duration of empirical antipseudomonal antibiotic treatment. Clin. Perform. Qual. Health Care7(2), 83–87 (1999).
  • Tacconelli E, Tumbarello M, Bertagnolio S et al. Multidrug-resistant P seudomonas aeruginosa bloodstream infections: analysis of trends in prevalence and epidemiology. Emerg. Infect. Dis.8(2), 220–221 (2002).
  • Thuong M, Arvaniti K, Ruimy R et al. Epidemiology of Pseudomonas aeruginosa and risk factors for carriage acquisition in an intensive care unit. J. Hosp. Infect.53(4), 274–282 (2003).
  • Paramythiotou E, Lucet JC, Timsit JF et al. Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin. Infect. Dis.38(5), 670–677 (2004).
  • Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob. Agents Chemother.50(1), 43–48 (2006).
  • Wang CY, Jerng JS, Cheng KY et al. Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: clinical features, risk-factors and outcomes. Clin. Microbiol. Infect.12(1), 63–68 (2006).
  • Pier GB, Ramphal R. Pseudomonas aeruginosa. In: Principles and Practice of Infectious Diseases. 6th Edition. Mandell GL, Bennet JE, Dolin R (Eds). Elsevier Churchill Livingstone, PA, USA,2587–2615 (2005).
  • Goldberg JB. Pseudomonas: global bacteria. Trends Microbiol.8(2), 55–57 (2000).
  • Stover CK, Pham XQ, Erwin AL et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature406(6799), 959–964 (2000).
  • Trautmann M, Lepper PM, Haller M. Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. Am. J. Infect. Control33(5), S41–S49 (2005).
  • Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob. Agents Chemother.43(6), 1379–1382 (1999).
  • Crespo MP, Woodford N, Sinclair A et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-β-lactamase, in a tertiary care center in Cali, Colombia. J. Clin. Microbiol.42(11), 5094–5101 (2004).
  • Ferreira AC, Gobara S, Costa SE et al. Emergence of resistance in Pseudomonas aeruginosa and Acinetobacter species after the use of antimicrobials for burned patients. Infect. Control Hosp. Epidemiol.25(10), 868–872 (2004).
  • Tsukayama DT, van Loon HJ, Cartwright C et al. The evolution of Pseudomonas aeruginosa during antibiotic rotation in a medical intensive care unit: the RADAR-trial. Int. J. Antimicrob. Agents24(4), 339–345 (2004).
  • Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis.34(5), 634–640 (2002).
  • Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin. Microbiol. Infect.11(Suppl. 4), 17–32 (2005).
  • Suárez CJ, Lolans K, Villegas MV, Quinn JP. Mechanisms of resistance to β-lactams in some common Gram-negative bacteria causing nosocomial infections. Expert Rev. Anti Infect. Ther.3(6), 915–922 (2005).
  • Thomson JM, Bonomo RA. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: β-lactams in peril! Curr. Opin. Microbiol.8(5), 518–524 (2005).
  • Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa.Antimicrob. Agents Chemother.48(6), 2043–2048 (2004).
  • Kong KF, Jayawardena SR, Indulkar SD et al.Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob. Agents Chemother.49(11), 4567–4575 (2005).
  • Livermore DM. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev.8(4), 557–584 (1995).
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother.39(6), 1211–1233 (1995).
  • Naas T, Nordmann P. OXA-type β-lactamases. Curr. Pharm. Des.5(11), 865–879 (1999).
  • Bradford P. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology and detection of this important resistance treat. Clin. Microbiol. Rev.14(4), 933–951 (2001).
  • Mavroidi A, Tzelepi E, Tsakris A et al. An integron-associated β-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum β-lactamase IBC-1. J. Antimicrob. Chemother.48(5), 627–630 (2001).
  • Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob. Agents Chemother.47(8), 2385–2392 (2003).
  • Bush K. Metallo-β-lactamases: a class apart. Clin. Infect. Dis.27(Suppl. 1), S48–S53 (1998).
  • Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin. Microbiol. Infect.8(6), 321–331 (2002).
  • Docquier JD, Mugnaioli C, Luzzaro F et al. Diversity of IMP-type metallo-β-lactamases in carbapenem resistant clinical isolates of Pseudomonas spp. from Italy. Proceedings of the 13th European Congress of Clinical Microbiology and Infectious Diseases. Glasgow, UK. Clin. Microbiol. Infect.9(Suppl. 1), 121 (2003).
  • Docquier JD, Luzzaro F, Amicosante G, Toniolo A, Rossolini GM. Multidrug-resistant Pseudomonas aeruginosa producing PER-1 extended-spectrum serine-β-lactamase and VIM-2 metallo-β-lactamase. Emerg. Infect. Dis.7(5), 910–911 (2001).
  • Walsh TR. The emergence and implications of metallo-β-lactamases in Gram-negative bacteria. Clin. Microbiol. Infect.11(Suppl. 6), 2–9 (2005).
  • Lee K, Lee WG, Uh Y et al. VIM- and IMP-type metallo-β-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg. Infect. Dis.9(7), 868–871 (2003).
  • Lombardi G, Luzzaro F, Docquier JD et al. Nosocomial infections caused by multidrug-resistant isolates of Pseudomonas putida producing VIM-1 metallo-β-lactamase. J. Clin. Microbiol.40(11), 4051–4055 (2002).
  • Jacoby GA, Munoz-Price LS. The new β-lactamases. N. Engl. J. Med.352(4), 380–391 (2005).
  • Kang CI, Kim SH, Park WB et al. Blood stream infections caused by antibiotic resistant Gram-negative bacilli: factors for mortality and impact of inappropriate initial therapy on outcome. Antimicrob. Agents Chemother.49(2), 760–766 (2005).
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev.18(2), 306–325 (2005).
  • Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa.Antimicrob. Agents Chemother.49(2), 479–487 (2005).
  • Miller GH, Sabatelli FJ, Naples L et al. Resistance to aminoglycosides in Pseudomonas. Trends Microbiol.2(9), 347–353 (1994).
  • Miller GH, Sabatelli FJ, Hare RS et al. The most frequent aminoglycoside resistance mechanisms – changes with time and geographic area: a reflection of aminoglycoside usage patterns? Aminoglycoside Resistance Study Groups. Clin. Infect. Dis.24(Suppl. 1), S46–S62 (1997).
  • Smith CA, Baker EN. Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr. Drug Targets Infect. Disord.2(2), 143–160 (2002).
  • Hancock RE, Brinkman FS. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol.56(1), 17–38 (2002).
  • Wolter DJ, Hanson ND, Lister PD. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol. Lett.236(1), 137–143 (2004)
  • Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J. Mol. Microbiol. Biotechnol.3(2), 255–264 (2001).
  • Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol.175(22), 7363–7372 (1993).
  • Poole K, Gotoh N, Tsujimoto H et al. Overexpression of the mexC-mexD-oprJ effux operon in nfxB-type multidrug resistant strains. Mol. Microbiol.21(4), 713–724 (1996).
  • Köhler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol.23(2), 345–354 (1997).
  • Aendekerk S, Ghysels B, Cornelis P, Baysse C. Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology148(Pt 8), 2371–2381 (2002).
  • Chuanchuen R, Narasaki CT, Schweizer HP. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J. Bacteriol.184(18), 5036–5044 (2002).
  • Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother.43(2), 415–417 (1999).
  • Westbrock-Wadman S, Sherman DR, Hickey MJ et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside resistance. Antimicrob. Agents Chemother.43(12), 2975–2983 (1999).
  • Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet. Mol. Res.2(1), 48–62 (2003).
  • Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other Gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy23(7), 916–924 (2003).
  • Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect.10(1), 12–26 (2004).
  • Llanes C, Hocquet D, Vogne C et al. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob. Agents Chemother.48(5), 1797–1802 (2004).
  • Kohler T, Michea-Hamzehpour M, Epp SF, Pechere JC. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob. Agents Chemother.43(2), 424–427 (1999).
  • Kohler T, Pechere C. In vitro selection of antibiotic resistance in Pseudomonas aeruginosa. Clin. Microbiol. Infect.7(Suppl. 5), 7–10 (2001).
  • Akama H, Matsuura T, Kashiwagi S et al. Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J. Biol. Chem.279(25), 25939–25942 (2004).
  • Higgins MK, Bokma E, Koronakis E, Hughes C, Koronakis V. Structure of the periplasmic component of a bacterial drug efflux pump. Proc. Natl Acad. Sci. USA101(27), 9994–9999 (2004).
  • Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature405(6789), 914–919 (2000).
  • Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature419(6907), 587–593 (2002).
  • Nakano M, Deguchi T, Kawamura T et al. Mutations in the gyrA and parC genes in fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother.41(10), 2289–2291 (1997).
  • Jalal S, Wretlind B. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa.Microb. Drug Resist.4(4), 257–261 (1998).
  • Akasaka T, Tanaka M, Yamaguchi A, Sato K. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob. Agents Chemother.45(8), 2263–2268 (2001).
  • Navon-Venezia S, Ben-Ami R, Carmeli Y. Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr. Opin. Infect. Dis.18(4), 306–313 (2005).
  • Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect.5(13), 1213–1219 (2003).
  • Giamarellou H. Prescribing guidelines for severe Pseudomonas infections. J. Antimicrob. Chemother.49(2), 229–233 (2002).
  • Kiska DL, Gilligan PH. Pseudomonas. In: Manual of Clinical Microbiology (8th Ed.). Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (Eds), ASM Press, Washington DC, USA,719–728 (2003).
  • Gales AC, Reis AO, Jones RN. Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J. Clin. Microbiol.39(1), 183–190 (2001).
  • Luzzaro F, Endimiani A, Docquier JD et al. Prevalence and characterization of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis.48(2), 131–135 (2004).
  • Vidal F, Mensa J, Almela M et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment: analysis of 189 episodes. Arch. Intern. Med.156(18), 2121–2126 (1996).
  • Ibrahim EH, Sherman G, Ward S et al. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest118(1), 146–155 (2000).
  • Bochud PY, Bonten M, Marchetti O, Calandra T. Antimicrobial therapy for patients with severe sepsis and septic shock: an evidence-based review. Crit. Care Med.32(11 Suppl.), S495–S512 (2004).
  • Gerding DN, Larson TA, Hughes RA et al. Aminoglycoside resistance and aminoglycoside usage: ten years of experience in one hospital. Antimicrob. Agents Chemother.35(7), 1284–1290 (1991).
  • Kollef MH, Vlasnik J, Sharpless L et al. Scheduled change of antibiotic classes: a strategy to decrease the incidence of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med.156(4), 1040–1048 (1997).
  • Dominguez EA, Smith TL, Reed E et al. A pilot study of antibiotic cycling in a haematology–oncology unit. Infect. Control Hosp. Epidemiol.21(1 Suppl.), S4–S8 (2000).
  • Gruson D, Hilbert G, Vargas F et al. Rotation and restricted use of antibiotics in a medical intensive care unit: impact on the incidence of ventilator-associated pneumonia caused by antibiotic-resistant gram negative bacteria. Am. J. Respir. Crit. Care Med.162(3), 837–843 (2000).
  • Raymond DP, Pelletier SJ, Crabtree TD et al. Impact of a rotating empiric antibiotic schedule on infectious mortality in an intensive care unit. Crit. Care Med.29(6), 1101–1108 (2001).
  • Fridkin SK. Routine cycling of antimicrobial agents as an infection-control measure. Clin. Infect. Dis.36(11), 1438–1444 (2003).
  • Paterson DL, Rice LB. Empirical antibiotic choice for the seriously ill patient: are minimization of selection of resistant organisms and maximization of individual outcome mutually exclusive? Clin. Infect. Dis.36(8), 1006–1012 (2003).
  • Gruson D, Hilbert G, Vargas F et al. Rotation and restricted use of antibiotics in a medical intensive care unit. Impact on the incidence of ventilator-associated pneumonia caused by antibiotic-resistant gram-negative bacteria. Am. J. Respir. Crit. Care Med.162(3 Pt 1), 837–843 (2000).
  • Martinez JA, Nicolas JM, Marco F et al. Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units. Crit. Care Med.34(2), 329–336 (2006).
  • Warren DK, Hill HA, Merz MR. Cycling empirical antimicrobial agents to prevent emergence of antimicrobial resistant gram negative bacteria among intensive care unit patients. Crit. Care Med.32(12), 2450–2456 (2004).
  • Burgess DS. Use of pharmacokinetics and pharmacodynamics to optimize antimicrobial treatment of Pseudomonas aeruginosa infections. Clin. Infect. Dis.40(Suppl. 2), S99–S104 (2005).
  • Burgess DS, Nathisuwan S. Cefepime, pipericillin/tazobactam, gentamicin, ciprofloxacin, and levofloxacin alone and in combination against Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis.44(1), 35–41 (2002).
  • Gould IM, Milne K. In-vitro pharmacodynamic studies of piperacillin/tazobactam with gentamicin and ciprofloxacin. J. Antimicrob. Chemother.39(1), 53–61 (1997).
  • Burgess DS, Hall RG, Hardin TC. In vitro evaluation of the activity of two doses of levofloxacin alone and in combination with other agents against Pseudomonas aeruginosa.Diagn. Microbiol. Infect. Dis.46(2), 131–172 (2003).
  • Lister PD, Wolter DJ. Levofloxacin–imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa. Clin. Infect. Dis.15(Suppl. 2), S105–S114 (2005).
  • Oie S, Uematsu T, Sawa A et al. In vitro effects of combinations of antipseudomonal agents against seven strains of multidrug-resistant Pseudomonas aeruginosa. J. Antimicrob. Chemother.52(6), 911–914 (2003).
  • Sader HS, Jones RN. Comprehensive in vitro evaluation of cefepime combined with aztreonam or ampicillin/sulbactam against multi-drug resistant Pseudomonas aeruginosa and Acinetobacter spp. Int. J. Antimicrob. Agents25(5), 380–384 (2005).
  • Giamarellos-Bourboulis EJ, Grecka P, Giamarellou H. In-vitro interactions of DX-8739, a new carbapenem, meropenem and imipenem with amikacin against multiresistant Pseudomonas aeruginosa. J. Antimicrob. Chemother.38(2), 287–291 (1996).
  • Ermertcan S, Hosgor M, Tunger O, Cosar G. Investigation of synergism of meropenem and ciprofloxacin against Pseudomonas aeruginosa and Acinetobacter strains isolated from intensive care unit infections. Scand. J. Infect. Dis.33(11), 818–821 (2001).
  • Piccoli L, Guerrieri M, Felici A, Marchetti F. In vitro and in vivo synergy of levofloxacin or amikacin both in combination with ceftazidime against clinical isolates of Pseudomonas aeruginosa. J. Chemother.17(4), 355–360 (2005).
  • Gunderson BW, Ibrahim KH, Hovde LB, Fromm TL, Reed MD, Rotschafer JC. Synergistic activity of colistin and ceftazidime against multiantibioticresistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob. Agents Chemother.47(3), 905–909 (2003).
  • DeRyke CA, Lee SY, Kuti JL, Nicolau DP. Optimising dosing strategies of antibacterials utilising pharmacodynamic principles. impact on the development of resistance. Drugs66(1), 1–14 (2006).
  • Blaser J, Stone BB, Groner MC, Zinner SH. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob. Agents Chemother.31(7), 1054–1060 (1987).
  • Lacy MK, Nicolau DP, Nightingale CH, Quintiliani R. The pharmacodynamics of aminoglycosides. Clin. Infect. Dis.27(1), 23–27 (1998).
  • Kashuba AD, Nafziger AN, Drusano GL, Bertino JS. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by Gram-negative bacteria. Antimicrob. Agents Chemother.43(3), 623–629 (1999).
  • Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob. Agents Chemother.39(3), 650–655 (1995).
  • Murry KR, McKinnon PS, Mitrzyk B, Rybak MJ. Pharmacodynamic characterization of nephrotoxicity associated with once-daily aminoglycoside. Pharmacotherapy19(11), 1252–1260 (1999).
  • Andes D, Craig WA. Animal model pharmacokinetics and pharmacodynamics: a critical review. Int. J. Antimicrob. Agents19(4), 261–268 (2002).
  • MacGowan AP, Wootton M, Holt HA. The antibacterial efficacy of levofloxacin and ciprofloxacin against Pseudomonas aeruginosa assessed by combining antibiotic exposure and bacterial susceptibility. J. Antimicrob. Chemother.43(3), 345–349 (1999).
  • Cipro (ciprofloxacin) I.V. Bayer Pharmaceuticals, CT, USA (2002).
  • Levaquin tablets/injection. Ortho-McNeil Pharmaceutical, NJ, USA (2002).
  • Gotfried MH, Danziger LH, Rodvold KA. Steady-state plasma and intrapulmonary concentrations of levofloxacin and ciprofloxacin in healthy adult subjects. Chest119(4), 1114–1122 (2001).
  • Rodvold KA, Danziger LH, Gotfried MH. Steady-state plasma and bronchopulmonary concentrations of intravenous levofloxacin and azithromycin in healthy adults. Antimicrob. Agents Chemother.47(12), 2450–2472 (2003).
  • Jumbe N, Louie A, Leary R et al. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J. Clin. Invest.112(2), 275–285 (2003).
  • Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin. Infect. Dis.26(1), 1–10 (1998).
  • Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nature Rev. Microbiol.2(4), 289–300 (2004).
  • Drusano GL. Prevention of resistance: a goal for dose selection for antimicrobial agents. Clin. Infect. Dis.36(Suppl. 1), S42–S50 (2003).
  • Turnidge JD. The pharmacodynamics of β-lactams. Clin. Infect. Dis.27(1), 10–22 (1998).
  • Manduru M, Mihm LB, White RL, Friedrich LV, Flume PA, Bosso JA. In vitro pharmacodynamics of ceftazidime against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob. Agents Chemother.41(9), 2053–2056 (1997).
  • Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J. Antimicrob. Chemother.50(3), 425–428 (2002).
  • Kasiakou SK, Lawrence KR, Choulis N, Falagas ME. Continuous versus intermittent intravenous administration of antibacterials with time-dependent action: a systematic review of pharmacokinetic and pharmacodynamic parameters. Drugs65(17), 2499–2511 (2005).
  • Burgess DS, Hastings RW, Hardin TC. Pharmacokinetics and pharmacodynamics of cefepime administered by intermittent and continuous infusion. Clin. Ther.22(1), 66–75 (2000).
  • Tam VH, Louie A, Lomaestro BM, Drusano GL. Integration of population pharmacokinetics, a pharmacodynamic target, and microbiologic surveillance data to generate a rational empiric dosing strategy for cefepime against Pseudomonas aeruginosa. Pharmacotherapy23(3), 291–295 (2003).
  • Georges B, Conil JM, Cougot P et al. Cefepime in critically ill patients: continuous infusion vs. an intermittent dosing regiment. Int. J. Clin. Pharmacol. Ther.43(8), 360–369 (2005).
  • Lorente L, Lorenzo L, Martin MM, Jimenez A, Mora ML. Meropenem by continuous versus internittent infusion in ventilator-associated pneumonia due to Gram-negative bacilli. Ann. Pharmacother.40(2), 219–223 (2006).
  • Kasiakou SK, Sermaides GJ, Michalopoulos A, Soteriades ES, Falagas ME. Continuous versus intermittent intravenous administration of antibiotics: a meta-analysis of randomised controlled trials. Lancet Infect. Dis.5(9), 581–589 (2005).
  • Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients. Clin. Pharmacokinet.44(10), 1009–1034 (2005).
  • Mehrotra R, De Gaudio R, Palazzo M. Antibiotic pharmacokinetic and pharmacodynamic considerations in critical illness. Intensive Care Med.30(12), 2145–2156 (2004).
  • Pea F, Viale P. The antimicrobial therapy puzzle: could pharmacokinetic–pharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients? Clin. Infect. Dis.42(12), 1764–1771 (2006).
  • Baltch AL, Smith RP. Combinations of antibiotics against Pseudomonas aeruginosa. Am. J. Med.79(1A), 8–16 (1985).
  • Pollack M. Pseudomonas aeruginosa. In: Principles and Practice of Infectious Diseases. 5th Edition. Mandell GL, Bennett JE, Dolin R (Eds). Churchill Livingstone, PA, USA,2310–2335 (2000).
  • Ibrahim EH, Ward S, Sherman G et al. Experience with a clinical guideline for the treatment of ventilator associated pneumonia. Crit. Care Med.29(6), 1109–1115 (2001).
  • Giamarellou H, Zissis NP, Tagari G, Bouzos J. In vitro synergistic activities of aminoglycosides and new β-lactams against multiresistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother.25(4), 534–536 (1984).
  • Burgess DS, Hastings RW. Activity of piperacillin/tazobactam in combination with amikacin, ciprofloxacin and trovafloxacin against Pseudomonas aeruginosa by time–kill. Diagn. Microbiol. Infect. Dis.38(1), 37–41 (2000).
  • Hilf M, Yu VL, Sharp J et al. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am. J. Med.87(5), 540–546 (1989).
  • Klastersky J. Science and pragmatism in the treatment and prevention of neutropenic infection. J. Antimicrob. Chemother.41(Suppl. D), 13–24 (1998).
  • Leibovici L, Paul M, Poznanski O et al. Monotherapy versus β-lactam-aminoglycoside combination treatment for Gram-negative bacteremia: a prospective, observational study. Antimicrob. Agents Chemother.41(4), 1127–1133 (1997).
  • Traub WH, Spohr M, Bauer D. Pseudomonas aeruginosa: in vitro susceptibility to antimicrobial drugs, single and combined with and without defibrinated human blood. Chemotherapy34(4), 284–297 (1988).
  • Valdes JM, Baitch AL, Smith RP, Hammer M, Ritz W. The effect of rifampicin on the in vitro activity of cefpirome or ceftazidime in combination with aminoglycosides against Pseudomonas aeruginosa. J. Antimicrob. Chemother.25(4), 575–584 (1990).
  • Zuravleff JJ, Yu VL, Yee RB. Ticarcillin–tobramycin–rifampin: in vitro synergy of the triple combination against Pseudomonas aeruginosa.J. Lab. Clin. Med.101(6), 896–902 (1983).
  • Fu KP, Lasinski E, Zoganas H, Kimble E, Konopka EA. Efficacy of rifampicin in experimental Bacteroides fragilis and Pseudomonas aeruginosa mixed infections. J. Antimicrob. Chemother.15(5), 579–585 (1985).
  • Valdes JM, Baitch AL, Smith RP et al. Comparative therapy with cefpirome alone and in combination with rifampin and/or gentamicin against disseminated Pseudomonas aeruginosa infection in leukopenic mice. J. Infect. Dis.162(5), 1112–1117 (1990).
  • Zuravleff JJ, Chervenick P, Yu VL, Muder RR, Diven WF. Addition of rifampin to ticarcillin–tobramycin combination for the treatment of Pseudomonas aeruginosa infections: assessment in a neutropenic mouse model. J. Lab. Clin. Med.103(6), 878–885 (1984).
  • Yu VL, Zuravleff JJ, Peacock JE, DeHertogh D, Tashjian L. Addition of rifampin to carboxypenicillin–aminoglycoside combination for treatment of infection: clinical experience with four patients. Antimicrob. Agents Chemother.26(4), 575–577 (1984).
  • Korvick JA, Peacock JE, Muder RR, Wheeler RR, Yu VL. Addition of rifampin to combination antibiotic therapy for Pseudomonas aeruginosa bacteremia: prospective trial using the zelen protocol. Antimicrob. Agents Chemother.36(3), 620–625 (1992).
  • Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L. β lactam monotherapy versus β lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomized trials. Br. Med. J.328(7441), 668–672 (2004).
  • Safdar N, Handelsman J, Maki DG. Does combination antibiotic therapy reduce mortality in gram-negative bacteremia? A meta-analysis. Lancet Infect. Dis.4(8), 519–527 (2004).
  • Paul M, Silbiger I, Grozinsky S et al. β lactam antibiotic monotherapy versus β lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst. Rev.1, CD003344 (2006).
  • Lister PD, Wolter DJ, Wickman PA, Reisbig MD. Levofloxacin/imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs. J. Antimicrob. Chemother.57(5), 999–1103 (2006).
  • Damas P, Garweg C, Monchi M et al. Combination therapy versus monotherapy: a randomised pilot study on the evolution of inflammatory parameters after ventilator associated pneumonia. Crit. Care10(2), R52 (2006).
  • Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J. Infect. Dis.155(1), 93–99 (1987).
  • Gilbert DN. Once daily aminoglycoside therapy. Antimicrob. Agents Chemother.35(3), 339–405 (1991).
  • Freeman CD, Nicolau DP, Belliveau PP, Nightingale CH. Once-daily dosing of aminoglycosides: review and recommendations for clinical practice. J. Antimicrob. Chemother.39(6), 677–686 (1997).
  • Hansen M, Christrup LL, Jarlov JO et al. Gentamicin dosing in critically ill patients. Acta Anaesthesiol. Scand.45(6), 734–740 (2001).
  • Norrby SR, Finch RG, Glauser M. Monotherapy in serious hospital-acquired infections: a clinical trial of ceftazidime versus imipenem/cilastatin. European Study Group. J. Antimicrob. Chemother.31(6), 927–937 (1993).
  • Owens RC Jr, Rice L. Hospital-based strategies for combating resistance. Clin. Infect. Dis.42(Suppl. 4), S173–S181 (2006).
  • Cao B, Wang H, Sun H, Zhu Y, Chen M. Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. J. Hosp. Infect.57(2), 112–118 (2004).
  • Norrby SR. Carbapenems in serious infections: a risk-benefit assessment. Drug Saf.22(3), 191–194 (2000).
  • Kasiakou SK, Lawrence KR, Choulis N, Falagas ME. Continuous versus intermittent intravenous administration of antibacterials with time-dependent action: a systematic review of pharmacokinetic and pharmacodynamic parameters. Drugs65(17), 2499–2511 (2005).
  • Garau J, Gome L. Pseudomonas aeruginosa pneumonia. Curr. Opin. Infect. Dis.16(2), 135–143 (2003).
  • Hughes WT, Armostrong D, Bodey GP et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin. Infect. Dis.34(6), 730–751 (2002).
  • Pizzo PA, Hathorn JW, Hiemenz J et al. A randomized trial comparing ceftazidime alone with combination antibiotic therapy in cancer patients with fever and neutropenia. N. Engl. J. Med.315(9), 552–558 (1986).
  • Cometta A, Calandra T, Gaya H et al. Monotherapy with meropenem versus combination therapy with ceftazidime plus amikacin as empiric therapy for fever in granulocytopenic patients with cancer. Antimicrob. Agents Chemother.40(4), 1108–1115 (1996).
  • Ramphal R, Gucalp R, Rotstein C, Cimino M, Oblon D. Clinical experience with single agent and combination regimens in the management of infection in the febrile neutropenic patient. Am. J. Med.100(6A), S83–S89 (1996).
  • Hess U, Bohme C, Rey K, Senn HJ. Monotherapy with piperacillin/tazobactam versus combination therapy with ceftazidime plus amikacin as an empiric therapy for fever in neutropenic cancer patients. Support. Care Cancer6(4), 402–409 (1998).
  • Del Favero A, Menichetti F, Martino P et al. Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) Infection Program. A multicenter, double-blind, placebocontrolled trial comparing piperacillin-tazobactam with and without amikacin as empiric therapy for febrile neutropenia. Clin. Infect. Dis.33(8), 1295–1301 (2001).
  • Furno P, Bucaneve G, Del Favero A. Monotherapy or aminoglycoside-containing combinations for empirical antibiotic treatment of febrile neutropenic patients: a meta-analysis. Lancet Infect. Dis.2(4), 231–242 (2002).
  • Viscoli C, Castagnola E. Treatment of febrile neutropenia: what is new? Curr. Opin. Infect. Dis.15(4), 377–382 (2002)
  • Pizzo PA, Robichaud KJ, Gill FA et al. Duration of empiric antibiotic therapy in granulocytopenic patients with cancer. Am. J. Med.67(2), 194–200 (1979).
  • Panidis D, Markantonis SL, Boutzouka E, Karatzas S, Baltopoulos G. Penetration of gentamicin into the alveolar lining fluid of critically ill patients with ventilator-associated pneumonia. Chest128(2), 545–552 (2005).
  • American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med.171(4), 388–416 (2005).
  • West M, Boulanger BR, Fogarty C et al. Levofloxacin compared with imipenem/cilastatin followed by ciprofloxacin in adult patients with nosocomial pneumonia: a multicenter, prospective, randomized, open-label study. Clin. Ther.25(2), 485–506 (2003).
  • Viale P, Pea F. What is the role of fluoroquinolones in intensive care? J. Chemother.15(Suppl. 3), 5–10 (2003).
  • Scheld WM. Maintaining fluoroquinolone class efficacy: review of influencing factors. Emerg. Infect. Dis.9(1), 1–9 (2003).
  • Neuhauser MM, Weinstein RA, Rydman R et al. Antibiotic resistance among Gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA289(7), 885–888 (2003).
  • Polk RE, Johnson CK, McClish D, Wenzel RP, Edmond MB. Predicting hospital rates of fluoroquinolone-resistant Pseudomonas aeruginosa from fluoroquinolone use in US hospitals and their surrounding communities. Clin. Infect. Dis.39(4), 497–503 (2004).
  • Hsu DI, Okamoto MP, Murthy R, Wong-Beringer A. Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes. J. Antimicrob. Chemother.55(4), 535–541 (2005).
  • Doring G, Conway SP, Heijerman HG et al. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur. Respir. J.16(4), 749–767 (2000).
  • Ratjen F. Changes in strategies for optimal antibacterial therapy in cystic fibrosis. Int. J. Antimicrob. Agents17(2), 93–96 (2001).
  • Hoiby N. New antimicrobials in the management of cystic fibrosis. J. Antimicrob. Chemother.49(2), 235–238 (2002).
  • Canton R, Cobos N, de Gracia J et al. Antimicrobial therapy for pulmonary pathogenic colonization and infection by Pseudomonas aeruginosa in cystic fibrosis patients. Clin. Microbiol. Infect.11(9), 690–703 (2005).
  • Wood DM, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis (review). Cochrane Database Syst. Rev.1, CD004197 (2006).
  • Saiman L, Marshall BC, Mayer-Hamblett N et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA290(13), 1749–1756 (2003)
  • Nagata T, Mukae H, Kadota J et al. Effect of erythromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model. Antimicrob. Agents Chemother.48(6), 2251–2259 (2004).
  • Tateda K, Comte R, Pechere JC et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.45(6), 1930–1933 (2001).
  • Imamura Y, Yanagihara K, Mizuta Y et al. Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-oxododecanoyl) homoserine lactone in NCI-H292 cells. Antimicrob. Agents Chemother.48(9), 3457–3461 (2004).
  • Saiman L, Chen Y, Gabriel PS, Knirsch C. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob. Agents Chemother.46(4), 1105–1107 (2002).
  • Wise BL, Mathis JL, Jawetz E. Infections of the central nervous system due to Pseudomonas aeruginosa. J. Neurosurg.31(4), 432–434 (1969).
  • Rahal JJ, Simberkoff MS. Host defense and antimicrobial therapy in gram-negative bacillary meningitis. Ann. Intern. Med.96(4), 468–474 (1982).
  • Fong IW, Tomkins KB. Review of Pseudomonas aeruginosa meningitis with special emphasis on treatment with ceftazidime. Rev. Infect. Dis.7(5), 604–612 (1985).
  • Rodriguez WJ, Khan WN, Cocchetto DM et al. Treatment of Pseudomonas meningitis with ceftazidime with or without concurrent therapy. Pediatr. Infect. Dis. J.9(2), 83–87 (1990).
  • Marone P, Concia E, Maserati R et al. Ceftazidime in the therapy of Pseudomonas meningitis. Chemioterapia4(4), 289–292 (1985).
  • Saez-Llorens X, Castano E, Garcia R et al. Prospective randomized comparison of cefepime and cefotaxime for treatment of bacterial meningitis in infants and children. Antimicrob. Agents Chemother.39(4), 937–940 (1995).
  • Saez-Llorens X, O’Ryan M. Cefepime in the empiric treatment of meningitis in children. Pediatr. Infect. Dis. J.20(3), 356–361 (2001).
  • Rousseau JM, Soullie B, Villevielle T, Koeck JL. Efficacy of cefepime in postoperative meningitis attributable to Enterobacter aerogenes. J. Trauma50(5), 971 (2001).
  • Donnelly JP, Horrevorts AM, Sauerwein RW, De Pauw BE. High-dose meropenem in meningitis due to Pseudomonas aeruginosa (Letter). Lancet339(8801), 1117 (1992).
  • Capitano B, Nicolau DP, Potoski BA et al. Meropenem administered as a prolonged infusion to treat serious gram-negative central nervous system infections. Pharmacotherapy24(6), 803–807 (2004).
  • Eng RHK, Lynch AM, Smith SM et al. Imipenem resistance in a case of AIDS with relapsing Pseudomonas meningitis. South. Med.83, 979–980 (1990).
  • Schmutzhard E, Williams KJ, Vukmirovits G et al. A randomized comparison of meropenem with cefotaxime or ceftriaxone for the treatment of bacterial meningitis in adults. J. Antimicrob. Chemother.36(Suppl. A), 85–97 (1995).
  • Odio CM, Puig JR, Feris JM et al. Prospective, randomized, investigator-blinded study of the efficacy and safety of meropenem vs. cefotaxime therapy in bacterial meningitis in children. Pediatr. Infect. Dis. J.18(7), 581–590 (1999).
  • Tunkel AR, Hartman BJ, Kaplan SL et al. Practice guidelines for the management of bacterial meningitis. Clin. Infect. Dis.39(9), 1267–1284 (2004).
  • Chmelik V, Gutvirth J. Meropenem treatment of post-traumatic meningitis due to Pseudomonas aeruginosa. J. Antimicrob. Chemother.32(6), 922–923 (1993).
  • Schonwald S, Beus I, Lisic M, Car V, Gmajinicki B. Ciprofloxacin in the treatment of Gram-negative bacillary meningitis. Am. J. Med.87(5A), 248S–249S (1989).
  • Wong-Beringer A, Beringer P, Lovett MA. Successful treatment of multidrug-resistant Pseudomonas aeruginosa meningitis with highdose ciprofloxacin. Clin. Infect. Dis.25(4), 936–937 (1997).
  • Krcmery V Jr, Filka J, Uher J et al. Ciprofloxacin in the treatment of nosocomial meningitis in neonates and in infants: report of 12 cases and review. Diagn. Microbiol. Infect. Dis.35(1), 75–80 (1999).
  • Lipman J, Allworth A, Wallis SC. Cerebrospinal penetration of high doses of intravenous ciprofloxacin in meningitis. Clin. Infect. Dis.31(5), 1131–1132 (2000).
  • Saha V, Stansfield R, Masterton R, Eden T. The treatment of Pseudomonas aeruginosa meningitis: old regime or newer drugs? Scand. J. Infect. Dis.25(1), 81–83 (1993).
  • Wright PF, Kaiser AB, Bowman CM, McKee KT Jr, Trujillo H, McGee ZA. The pharmacokinetics and efficacy of an aminoglycoside administered into the cerebral ventricles in neonates: implications for further evaluation of this route of therapy in meningitis. J. Infect. Dis.143(2), 141–147 (1981).
  • Swartz MN. Intraventricular use of aminoglycosides in the treatment of Gram-negative bacillary meningitis: conflicting views. J. Infect. Dis.143(2), 293–296 (1981).
  • Corpus KA, Weber KB, Zimmerman CR. Intrathecal amikacin for the treatment of Pseudomonal meningitis. Ann. Pharmacother.38(6), 992–995 (2004).
  • Lentnek AL, Williams RR. Aztreonam in the treatment of gram-negative bacterial meningitis. Rev. Infect. Dis.13(Suppl. 7), S586–S590 (1991).
  • Kilpatrick M, Girgis N, Farid Z, Bishay E. Aztreonam for treating meningitis caused by gram-negative rods. Scand. J. Infect. Dis.23(1), 125–126 (1991).
  • Gump WC, Walsh JW. Intrathecal colistin for treatment of highly resistant Pseudomonas ventriculitis. Case report and review of the literature. J. Neurosurg.102(5), 915–917 (2005).
  • Radetsky M. Duration of treatment in bacterial meningitis: a historical inquiry. Pediatr. Infect. Dis. J.9(1), 2–9 (1990).
  • O’Neill P. How long to treat bacterial meningitis. Lancet341(8844), 530 (1993).
  • Tunkel AR, Kaufman BA. Cerebrospinal fluid shunt infections. In: Principles and Practice of Infectious Diseases. 6th Edition. Mandell GL, Bennett JE, Dolin R (Eds). Elsevier Churchill Livingstone, PA, USA,1126–1132 (2004).
  • Kaufman BA. Infections of cerebrospinal fluid shunts. In: Infections of the Central Nervous System. 2nd Edition. Scheld WM, Whitley RJ, Durack DT (Eds). Lippincott-Raven, PA, USA,555–577 (1997).
  • Infection in Neurosurgery Working Party of the British Society of Antimicrobial Chemotherapy. The rational use of antibiotics in the treatment of brain abscess. Br. J. Neurosurg.14(6), 525–530 (2000).
  • Raza MW, Shad A, Pedler SJ, Karamat KA. Penetration and activity of antibiotics in brain abscess. J. Coll. Physicians Surg. Pak.15(3), 165–167 (2005)
  • Shekar R, Rice TW, Zierdt CH, Kallick CA. Outbreak of endocarditis caused by Pseudomonas aeruginosa serotype O11 among pentazocine and tripelennamine abusers in Chicago. J. Infect. Dis.151(2), 203–208 (1985).
  • Rajashekaraiah KR, Rice TW, Kallick CA. Recovery of Pseudomonas aeruginosa from syringes of drug addicts with endocarditis. J. Infect. Dis.144(5), 482 (1981).
  • Hsu RB, Chen RJ, Chu SH. Infective endocarditis in patients with liver cirrhosis. J. Formos Med. Assoc.103(5), 355–358 (2004).
  • Venkatesan A, Spalding C, Speedie A, Sinha G, Rumbaugh JA. Pseudomonas aeruginosa infective endocarditis presenting as bacterial meningitis. J. Infect.51(4), 199–202 (2005).
  • Hill EE, Herijgers P, Herregods MC, Peetermans WE. Evolving trends in infective endocarditis. Clin. Microbiol. Infect.12(1), 5–12 (2006)
  • Moreillon P, Que YA. Infective endocarditis. Lancet363(9403), 139–149 (2004).
  • Gavin PJ, Suseno MT, Cook FV, Peterson LR, Thomson RB Jr. Left-sided endocarditis caused by Pseudomonas aeruginosa: successful treatment with meropenem and tobramycin. Diagn. Microbiol. Infect. Dis.47(2), 427–430 (2003).
  • Uzun Ö, Akalin HE, Ünal S et al. Long-term oral ciprofloxacin in treatment of prosthetic valve endocarditis due to Pseudomonas aeruginosa. Scand. J. Infect. Dis.24(6), 797–800 (1992).
  • Horstkotte D, Follath F, Gutschik E et al. Guidelines on prevention, diagnosis and treatment of infective endocarditis – executive summary. Eur. Heart J.25(3), 267–276 (2004).
  • Olaison L, Pettersson G. Current best practices and guidelines indications for surgical intervention in infective endocarditis. Infect. Dis. Clin. North Am.16(2), 453–475 (2002).
  • Anonymous. National Nosocomial Infections Surveillance (NNIS) Report, data summary from October 1986 to April 1996, issued May 1996. A report from the National Nosocomial Infections Surveillance (NNIS) System. Am. J. Infect. Control24(5), 380–388 (1996).
  • Bouza E, San Juan R, Munoz P, Voss A, Kluytmans J on behalf of the Co-operative Group of the European Study Group on Nosocomial Infections (ESGNI). A European perspective on nosocomial urinary tract infections I. Report on the microbiology workload, etiology and antimicrobial susceptibility (ESGNI-003 study). European Study Group on Nosocomial Infections. Clin. Microbiol. Infect.7(10), 523–531 (2001).
  • Laupland K, Bagshaw S, Gregson D, Kirkpatrick AW, Ross T, Church DL. Intensive care unit-acquired urinary tract infections in a regional critical care system. Crit. Care9(2), R60–R65 (2005).
  • Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram negative bacilli. Clin. Infect. Dis.41(6), 848–854 (2005).
  • Fang G, Brennen C, Wagener M et al. Use of ciprofloxacin versus use of aminoglycosides for therapy of complicated urinary tract infection: prospective, randomized clinical and pharmacokinetic study. Antimicrob. Agents Chemother.35(9), 1849–1855 (1991).
  • Montgomerie JZ, Guerra DA, Schick DG, Gilmore DS, Tabatabai MF, Morrow JW. Pseudomonas urinary tract infection in patients with spinal cord injury. J. Am. Paraplegia Soc.12(1), 8–10 (1989).
  • Leigh DA, Emmanuel FXS, Petch VJ. Ciprofloxacin therapy in complicated urinary tract infections caused by Pseudomonas aeruginosa and other resistant bacteria. J. Antimicrob. Chemother.18(Suppl. D), 117–121 (1986).
  • Brown EM, Morris R, Stephenson TP. The efficacy and safety of ciprofloxacin in the treatment of chronic Pseudomonas aeruginosa urinary tract infection. J. Antimicrob. Chemother.18(Suppl. D), 123–127 (1986).
  • Malinverni R, Glauser MP. Comparative studies of fluoroquinolones in the treatment of urinary tract infections. Rev. Infect. Dis.10(Suppl. 1), S153–S163 (1988).
  • Pea F, Viale P, Damiani D et al. Ceftazidime in acute myeloid leukemia patients with febbrile neutropenia: helpfulness of continuous intravenous infusion in maximizing pharmacodynamic exposure. Antimicrob. Agents Chemiother.49(8), 3550–3553 (2005).
  • Baririan N, Chanteux H, Viaene E, Servais H, Tulkens PM. Stability and compatibility study of cefepime in comparison with ceftazidime for potential administration by continuous infusion under conditions pertinent to ambulatory treatment of cystic fibrosis patients and to administration in intensive care units. J. Antimicrob. Chemother.51, 651–658 (2003)
  • Evans ME, Feola DJ, Rapp RP. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann. Pharmacother.33(9), 960–967 (1999).
  • al Khayyat AA, Aronson AL. Pharmacologic and toxicologic studies with the polymyxins. 3. Consideration regarding clinical use in dogs. Chemotherapy19(2), 98–108 (1973).
  • Wolinsky E, Hines JD. Neurotoxic and nephrotoxic effects of colistin in patients with renal disease. N. Engl. J. Med.266, 759–762 (1972).
  • Koch-Weser J, Sidel VW, Federman EB. Adverse effects of sodium colisimethate: manifestations and specific rates during 317 courses of therapy. Ann. Intern. Med.72(6), 857–868 (1970).
  • Levin AS, Barone AA, Penco J et al. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin. Infect. Dis.28(5), 1008–1111 (1999).
  • Stein A, Raoult D. Colistin: an antimicrobial for the 21st century? Clin. Infect. Dis.35(7), 901–902 (2002).
  • Sobieszczyk ME, Furuya EY, Hay CM et al. Combination therapy with polymyxin B for the treatment of multidrug-resistant Gram-negative respiratory tract infections. J. Antimicrob. Chemother.54(2), 566–569 (2004).
  • Kasiakou S, Michalopoulos A, Soteriades ES, Samonis G, Sermaides GJ, Falagas ME. Combination therapy with intravenous colistin for management of infections due to multidrug-resistant Gram-negative bacteria in patients without cystic fibrosis. Antimicrob. Agents Chemother.49(8), 3136–3146 (2005).
  • Linden PK, Kusne S, Coley K et al. Use of parenteral colistin for the treatment of serious infection due to antimicrobial-resistant Pseudomonas aeruginosa. Clin. Infect. Dis.37(11), 154–160 (2003).
  • Tascini C, Gemignani G, Ferranti S et al. Microbiological activity and clinical efficacy of a colistin and rifampin combination in multidrug-resistant Pseudomonas aeruginosa infections. J. Chemother.16(3), 282–287 (2004).
  • Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin. Infect. Dis.40(9), 1333–1341 (2005).
  • Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit. Care10(1), R27 (2006).
  • Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother.43(4), 727–737 (1999).
  • Ali BH. Agents ameliorating or augmenting experimental gentamicin nephrotoxicity: some recent research. Food Chem. Toxicol.41(11), 1447–1452 (2003).
  • Cheer SM, Waugh J, Noble S. Inhaled tobramycin (TOBI): a review of its use in the management of Pseudomonas aeruginosa infections in patients with cystic fibrosis. Drugs63(22), 2501–2520 (2003).
  • Flume P, Klepser ME. The rationale for aerosolized antibiotics. Pharmacotherapy22(3 Pt 2), S71–S79 (2002).
  • Schiffelers RM, Storm G, ten Kate MT et al. In vivo synergistic interaction of liposome-coencapsulated gentamicin and ceftazidime. J. Pharmacol. Exp. Ther.298(1), 369–375 (2001).
  • Rejman J, Wagenaar A, Engberts JB, Hoekstra D. Characterization and transfection properties of lipoplexes stabilized with novel exchangeable polyethylene glycol–lipid conjugates. Biochim. Biophys. Acta1660(1–2), 41–52 (2004).
  • Schiffelers R, Storm G, Bakker-Woudenberg I. Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. J. Antimicrob. Chemother.48(3), 333–344 (2001).
  • Sachetelli S, Khalil H, Chen T, Beaulac C, Senechal S, Lagace J. Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. Biochim. Biophys. Acta1463(2), 254–266 (2000).
  • Cordeiro C, Wiseman DJ, Lutwyche P et al. Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar Typhimurium intracellular infection model. Antimicrob. Agents Chemother.44(3), 533–539 (2000).
  • Lutwyche P, Cordeiro C, Wiseman DJ et al. Intracellular delivery and antibacterial activity of gentamicin encapsulated in pH-sensitive liposomes. Antimicrob. Agents Chemother.42(10), 2511–2520 (1998).
  • Nacucchio MC, Gatto Bellora MJ, Sordelli DO, D’Aquino M. Enhanced liposome-mediated antibacterial activity of piperacillin and gentamicin against Gram-negative bacilli in vitro. J. Microencapsul.5(4), 303–309 (1988).
  • Fierer J, Hatlen L, Lin JP, Estrella D, Mihalko P, Yau-Young A. Successful treatment using gentamicin liposomes of Salmonella dublin infections in mice. Antimicrob. Agents Chemother.34(2), 343–348 (1990).
  • Mugabe C, Azghani AO, Omri A. Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J. Antimicrob. Chemother.55(2), 269–271 (2005).
  • Rukholm G, Mugabe C, Azghani AO, Omri A. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time-kill study. Int. J. Antimicrob. Agents27(3), 247–252 (2006).
  • Hebeisen P, Heinze-Krauss I, Angehrn P, Hohl P, Page MG, Then RL. In vitro and in vivo properties of Ro 63–9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob. Agents Chemother.45(3), 825–836 (2001).
  • Issa NC, Rouse MS, Piper KE, Wilson WR, Steckelberg JM, Patel R. In vitro activity of BAL9141 against clinical isolates of Gram-negative bacteria. Diagn. Microbiol. Infect. Dis.48(1), 73–75 (2004).
  • Kresken M, Heep M, Hafner D. In vitro activities of ceftobiprole, BAL9141, the activity component of BAL5788, and seven other β-lactams against selected strains of Pseudomonas aeruginosa susceptible or resistant to ceftazidime. Proceedings of the 44th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Washington DC, USA (2004).
  • Kresken M, Heep M. In vitro activity of ceftobiprole in combination with ciprofloxacin, levofloxacin, amikacin, and tobramycin against clinical isolates of Pseudomonas aeruginosa. Proceedings of the 45th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Washington DC, USA, E-311 (2005).
  • Hatano K, Wakai Y, Nakai T et al. In vivo anti-Pseudomonas aeruginosa activity of novel parenteral cephalosporin, FR264205. Proceedings of the 45th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Washington DC, USA, F-1165 (2005).
  • Hatano K, Takeda S, Nakai T et al. In vitro anti-Pseudomonas aeruginosa activity of novel parenteral cephalosporin, FR264205. Proceedings of the 45th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). Washington DC, USA, F-1452 (2005).
  • Buynak JD. The discovery and development of modified penicillin- and cephalosporin-derived β-lactamase inhibitors. Curr. Med. Chem.11(14), 1951–1964 (2004).
  • Weiss WJ, Petersen PJ, Murphy TM et al. In vitro and in vivo activities of novel 6-methylidene penems as β-lactamase inhibitors. Antimicrob. Agents Chemother.48(12), 4589–4596 (2004).
  • Jamieson CE, Lambert PA, Simpson IN. In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against Gram-positive and Gram-negative organisms. Antimicrob. Agents Chemother.47(8), 2615–2618 (2003).
  • Wróblewska M. Novel therapies of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter spp. infections: the state of the art. Arch. Immunol. Ther. Exp.54(2), 113–120 (2006).
  • Iso Y, Irie T, Iwaki T et al. Synthesis and modification of a novel 1 β-methyl carbapenem antibiotic, S-4661. J. Antibiot.49(5), 478–484 (1996)
  • Iso Y, Irie T, Nishino Y, Motokawa K, Nishitani Y. A novel 1 β-methylcarbapenem antibiotic, S-4661. Synthesis and structure–activity relationships of 2-(5-substituted pyrroldin-3-ylthio)-1 β-methylcarbapenems. J. Antibiot.49(2), 199–209 (1996).
  • Mori M, Hikida M, Nishihara T, Nasu T, Mitsuhashi S. Comparative stability of carbapenem and penem antibiotics to human recombinant dehydropeptidase-I. J. Antimicrob. Chemother.37(5), 1034–1036 (1996).
  • Tsuji M, Ishii Y, Ohno A, Miyazaki S, Yamaguchi K. In vitro and in vivo antibacterial activities of S-4661, a new carbapenem. Antimicrob. Agents Chemother.42(1), 184–187 (1998).
  • Ge Y, Wikler MA, Sahm DF, Blosser-Middleton RS, Karlowsky JA. In vitro antimicrobial activity of doripenem, a new carbapenem. Antimicrob. Agents Chemother.48(4), 1384–1396 (2004).
  • Jones RN, Huynh HK, Biedenbach DJ. Activities of doripenem (S-4661) against drug-resistant clinical pathogens. Antimicrob. Agents Chemother.48(8), 3136–3140 (2004).
  • Jones RN, Huynh HK, Biedenbach DJ, Fritsche TR, Sader HS. Doripenem (S-4661), a novel carbapenem: comparative activity against contemporary pathogens including bactericidal action and preliminary in vitro methods evaluations. J. Antimicrob. Chemother.54(1), 144–154 (2004).
  • Watanabe A, Takahashi H, Kikuchi T et al. Comparativein vitro activity of S-4661, a new parenteral carbapenem, and other antimicrobial agents against respiratory pathogens. Chemotherapy46(3), 184–187 (2000).
  • Wiseman LR, Wagstaff AJ, Brogden RN, Bryson HM. Meropenem. A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs50(1), 73–101 (1995).
  • Fritsche TR, Stilwell MG, Jones RN. Antimicrobial activity of doripenem (S-4661): a global surveillance report (2003). Clin. Microbiol. Infect.11(12), 974–984 (2005).
  • Traczewski MM, Brown SD. In vitro activity of doripenem against Pseudomonas aeruginosa and Burkholderia cepacia isolates from both cystic fibrosis and noncystic fibrosis patients. Antimicrob. Agents Chemother.50(2), 819–821 (2006).
  • Mushtaq S, Ge Y, Livermore DM. Doripenem versus Pseudomonas aeruginosain vitro: activity against characterized isolates, mutants, and transconjugants and resistant selection potential. Antimicrob. Agents Chemother.48(8), 3086–3092 (2004).
  • Giamarellos-Bourboulis EJ, Adamis T, Laoutaris G et al. Immunomodulatory clarithromycin treatment of experimental sepsis and acute pyelonephritis caused by multidrugresistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother.48(1), 93–99 (2004).
  • Kikuchi T, Hagiwara K, Honda Y et al. Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-κB transcription factors. J. Antimicrob. Chemother.49(5), 745–755 (2002).
  • Giamarellos-Bourboulis EJ, Antonopoulou A, Raftogiannis M et al. Clarithromycin is an effective immunomodulator when administered late in experimental pyelonephritis by multidrug-resistant Pseudomonas aeruginosa. BMC Infect. Dis.6, 31 (2006).
  • Renau TE, Leger R, Flamme EM et al. Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J. Med. Chem.42(24), 4928–4931 (1999).
  • Lomovskaya O, Warren MS, Lee A et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother.45(1), 105–116 (2001).
  • Coban AY, Ekinci B, Durupinar B. A multidrug efflux pump inhibitor reduces fluoroquinolone resistance in Pseudomonas aeruginosa isolates. Chemotherapy50(1), 22–26 (2004).
  • Pagès JM, Masi M, Barbe J. Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol. Med.11(8), 382–389 (2005).
  • Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic-A vision for applied use. Biochem. Pharmacol.71(7), 910–918 (2006).
  • Lynch AS. Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view. Biochem. Pharmacol.71(7), 949–956 (2006).
  • Rasmussen TB, Givskov M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol.296(2–3), 149–161 (2006).
  • Givskov M, de Nys R, Manefield M et al. Eukaryotic interference with homoserine lactone mediated prokaryotic signaling. J. Bacteriol.178(22), 6618–6622 (1996).
  • Manefield M, de Nys R, Kumar N et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology145(Pt 2), 283–291 (1999).
  • Rasmussen TB, Manefield M, Andersen JB et al. How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology146(Pt 12), 3237–3244 (2000).
  • Rasmussen TB, Bjarnsholt T, Skindersoe ME et al. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J. Bacteriol.187(5), 1799–1814 (2005).
  • Rasmussen TB, Skindersoe ME, Bjarnsholt T et al. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology151(Pt 5), 1325–1340 (2005).
  • Hentzer M, Wu H, Andersen JB et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J.22(15), 3803–3815 (2003).
  • Gilbert DN, Moellering RC, Eliopoulos GM, Sande MA. The Sanford Guide to Antimicrobial Therapy 2005. 35th Edition. Antimicrobial Therapy, Inc., VT, USA (2005).

Website

  • Kani SS, Sexton DJ. Treatment of Pseudomonas aeruginosa infections. www.uptodate.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.