1,016
Views
102
CrossRef citations to date
0
Altmetric
Drug Profile

Piperacillin–tazobactam: a β-lactam/β-lactamase inhibitor combination

, , , , &
Pages 365-383 | Published online: 10 Jan 2014

References

  • Lee N, Yuen KY, Kumana CR. Clinical role of β-lactam/β-lactamase inhibitor combinations. Drugs63(14), 1511–1524 (2003).
  • Van der Auwera P, Duchateau V, Lambert C et al.Ex vivo pharmacodynamic study of piperacillin alone and in combination with tazobactam, compared with ticarcillin plus clavulanic acid. Antimicrob. Agents Chemother.37(9), 1860–1868 (1993).
  • Samaha-Kfoury JN, Araj GF. Recent developments in β lactamases and extended spectrum β lactamases. Br. Med. J.327(7425), 1209–1213 (2003).
  • Perry CM, Markham A. Piperacillin/tazobactam: an updated review of its use in the treatment of bacterial infections. Drugs57(5), 805–843 (1999).
  • Jacoby GA, Munoz-Price LS. The new β-lactamases. N. Engl. J. Med.352(4), 380–391 (2005).
  • Nathwani D, Wood MJ. Penicillins. A current review of their clinical pharmacology and therapeutic use. Drugs45(6), 866–894 (1993).
  • Essack SY. The development of β-lactam antibiotics in response to the evolution of β-lactamases. Pharm. Res.18(10), 1391–1399 (2001).
  • Aronoff SC, Jacobs MR, Johenning S, Yamabe S. Comparative activities of the β-lactamase inhibitors YTR 830, sodium clavulanate, and sulbactam combined with amoxicillin or ampicillin. Antimicrob. Agents Chemother.26(4), 580–582 (1984).
  • Kuck NA, Jacobus NV, Petersen PJ, Weiss WJ, Testa RT. Comparative In vitro and in vivo activities of piperacillin combined with the β-lactamase inhibitors tazobactam, clavulanic acid, and sulbactam. Antimicrob. Agents Chemother.33(11), 1964–1969 (1989).
  • Yang Y, Rasmussen BA, Shlaes DM. Class A β-lactamases – enzyme-inhibitor interactions and resistance. Pharmacol. Ther.83(2), 141–151 (1999).
  • Wyeth Pharmaceuticals. Zosyn® Product Monograph. Wyeth Pharmaceuticals Inc., PA, USA (2006).
  • Wilke MS, Lovering AL, Strynadka NC. β-lactam antibiotic resistance: a current structural perspective. Curr. Opin. Microbiol.8(5), 525–533 (2005).
  • Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev.105(2), 395–424 (2005).
  • Grebe T, Hakenbeck R. Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of β-lactam antibiotics. Antimicrob. Agents Chemother.40(4), 829–834 (1996).
  • Iida K, Hirata S, Nakamuta S, Koike M. Inhibition of cell division of Escherichia coli by a new synthetic penicillin, piperacillin. Antimicrob. Agents Chemother.14(2), 257–266 (1978).
  • Botta GA, Park JT. Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J. Bacteriol.145(1), 333–340 (1981).
  • Morikawa Y, Kitazato M, Mitsuyama J et al.In vitro activities of piperacillin against β-lactamase-negative ampicillin-resistant Haemophilus influenzae.Antimicrob. Agents Chemother.48(4), 1229–1234 (2004).
  • Poole K. Resistance to β-lactam antibiotics. Cell. Mol. Life Sci.61(17), 2200–2223 (2004).
  • Poole K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother.56(1), 20–51 (2005).
  • Masterton RG, Turner PJ. Trends in antimicrobial susceptibility in UK centres: the MYSTIC Programme (1997–2002). Int. J. Antimicrob. Agents27(1), 69–72 (2006).
  • Jones RN, Pfaller MA. Antimicrobial activity against strains of Escherichia coli and Klebsiella spp. with resistance phenotypes consistent with an extended-spectrum β-lactamase in Europe. Clin. Microbiol. Infect.9(7), 708–712 (2003).
  • Ambrose PG, Bhavnani SM, Jones RN. Pharmacokinetics–pharmacodynamics of cefepime and piperacillin–tazobactam against Escherichia coli and Klebsiella pneumoniae strains producing extended-spectrum β-lactamases: report from the ARREST program. Antimicrob. Agents Chemother.47(5), 1643–1646 (2003).
  • Puerto AS, Fernandez JG, del Castillo Jde D, Pino MJ, Angulo GP. In vitro activity of β-lactam and non-β-lactam antibiotics in extended-spectrum β-lactamase-producing clinical isolates of Escherichia coli.Diagn. Microbiol. Infect. Dis.54(2), 135–139 (2006).
  • Ramphal R, Ambrose PG. Extended-spectrum β-lactamases and clinical outcomes: current data. Clin. Infect. Dis.42(Suppl. 4), 164–172 (2006).
  • Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev.18(4), 657–686 (2005).
  • Burgess DS, Hall RG 2nd. In vitro killing of parenteral β-lactams against standard and high inocula of extended-spectrum β-lactamase and non-ESBL producing Klebsiella pneumoniae.Diagn. Microbiol. Infect. Dis.49(1), 41–46 (2004).
  • Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother.46(1), 1–11 (2002).
  • Bethel CR, Hujer AM, Helfand MS, Bonomo RA. Exploring the effectiveness of tazobactam against ceftazidime resistant Escherichia coli: insights from the comparison between susceptibility testing and β-lactamase inhibition. FEMS Microbiol. Lett.234(1), 99–103 (2004).
  • Kadima TA, Weiner JH. Mechanism of suppression of piperacillin resistance in enterobacteria by tazobactam. Antimicrob. Agents Chemother.41(10), 2177–2183 (1997).
  • Rybkine T, Mainardi JL, Sougakoff W, Collatz E, Gutmann L. Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of β-lactam resistance. J. Infect. Dis.178(1), 159–163 (1998).
  • Palmer SM, Rybak MJ. An evaluation of the bactericidal activity of ampicillin/sulbactam, piperacillin/tazobactam, imipenem or nafcillin alone and in combination with vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) in time–kill curves with infected fibrin clots. J. Antimicrob. Chemother.39(4), 515–518 (1997).
  • Rice LB, Carias LL, Hujer AM et al. High-level expression of chromosomally encoded SHV-1 β-lactamase and an outer membrane protein change confer resistance to ceftazidime and piperacillin–tazobactam in a clinical isolate of Klebsiella pneumoniae.Antimicrob. Agents Chemother.44(2), 362–367 (2000).
  • Kriengkauykiat J, Porter E, Lomovskaya O, Wong-Beringer A. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa.Antimicrob. Agents Chemother.49(2), 565–570 (2005).
  • Johnson DM, Biedenbach DJ, Jones RN. Potency and antimicrobial spectrum update for piperacillin/tazobactam (2000): emphasis on its activity against resistant organism populations and generally untested species causing community-acquired respiratory tract infections. Diagn. Microbiol. Infect. Dis.43(1), 49–60 (2002).
  • Pfaller MA, Jones RN. A review of the in vitro activity of meropenem and comparative antimicrobial agents tested against 30,254 aerobic and anaerobic pathogens isolated world wide. Diagn. Microbiol. Infect. Dis.28(4), 157–163 (1997).
  • Wenzel RP, Sahm DF, Thornsberry C et al.In vitro susceptibilities of gram-negative bacteria isolated from hospitalized patients in four European countries, Canada, and the United States in 2000–2001 to expanded-spectrum cephalosporins and comparator antimicrobials: implications for therapy. Antimicrob. Agents Chemother.47(10), 3089–3098 (2003).
  • Pfaller MA, Jones RN. MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) results from the Americas: resistance implications in the treatment of serious infections. MYSTIC Study Group (Americas). J. Antimicrob. Chemother.46(Suppl. T2), 25–37 (2000).
  • Livermore DM, Carter MW, Bagel S et al.In vitro activities of ertapenem (MK-0826) against recent clinical bacteria collected in Europe and Australia. Antimicrob. Agents Chemother.45(6), 1860–1867 (2001).
  • Jones RN, Sader HS, Beach ML. Contemporary in vitro spectrum of activity summary for antimicrobial agents tested against 18569 strains non-fermentative Gram-negative bacilli isolated in the SENTRY Antimicrobial Surveillance Program (1997–2001). Int. J. Antimicrob. Agents22(6), 551–556 (2003).
  • Hoellman DB, Kelly LM, Jacobs MR, Appelbaum PC. Comparative antianaerobic activity of BMS 284756. Antimicrob. Agents Chemother.45(2), 589–592 (2001).
  • Roberts SA, Shore KP, Paviour SD, Holland D, Morris AJ. Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999–2003. J. Antimicrob. Chemother.57(5), 992–998 (2006).
  • Auclair B, Ducharme MP. Piperacillin and tazobactam exhibit linear pharmacokinetics after multiple standard clinical doses. Antimicrob. Agents Chemother.43(6), 1465–1468 (1999).
  • Li C, Kuti JL, Nightingale CH et al. Population pharmacokinetics and pharmacodynamics of piperacillin/tazobactam in patients with complicated intra-abdominal infection. J. Antimicrob. Chemother.56(2), 388–395 (2005).
  • Sorgel F, Kinzig M. Pharmacokinetic characteristics of piperacillin/tazobactam. Intensive Care Med.20(Suppl. 3), S14–S20 (1994).
  • Occhipinti DJ, Pendland SL, Schoonover LL et al. Pharmacokinetics and pharmacodynamics of two multiple-dose piperacillin–tazobactam regimens. Antimicrob. Agents Chemother.41(11), 2511–2517 (1997).
  • Wise R, Logan M, Cooper M, Andrews JM. Pharmacokinetics and tissue penetration of tazobactam administered alone and with piperacillin. Antimicrob. Agents Chemother.35(6), 1081–1084 (1991).
  • Reed MD, Goldfarb J, Yamashita TS, Lemon E, Blumer JL. Single-dose pharmacokinetics of piperacillin and tazobactam in infants and children. Antimicrob. Agents Chemother.38(12), 2817–2826 (1994).
  • Kinzig M, Sorgel F, Brismar B, Nord CE. Pharmacokinetics and tissue penetration of tazobactam and piperacillin in patients undergoing colorectal surgery. Antimicrob. Agents Chemother.36(9), 1997–2004 (1992).
  • Bryson HM, Brogden RN. Piperacillin/tazobactam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs47(3), 506–535 (1994).
  • Welling PG, Craig WA, Bundtzen RW et al. Pharmacokinetics of piperacillin in subjects with various degrees of renal function. Antimicrob. Agents Chemother.23(6), 881–887 (1983).
  • Westphal JF, Brogard JM, Caro-Sampara F et al. Assessment of biliary excretion of piperacillin–tazobactam in humans. Antimicrob. Agents Chemother.41(8), 1636–1640 (1997).
  • Sorgel F, Kinzig M. The chemistry, pharmacokinetics and tissue distribution of piperacillin/tazobactam. J. Antimicrob. Chemother.31(Suppl. A), 39–60 (1993).
  • Aronoff GR, Sloan RS, Brier ME, Luft FC. The effect of piperacillin dose on elimination kinetics in renal impairment. Eur. J. Clin. Pharmacol.24(4), 543–547 (1983).
  • Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin. Infect. Dis.26(1), 1–10 (1998).
  • Turnidge JD. The pharmacodynamics of β-lactams. Clin. Infect. Dis.27(1), 10–22 (1998).
  • Buck C, Bertram N, Ackermann T et al. Pharmacokinetics of piperacillin–tazobactam: intermittent dosing versus continuous infusion. Int. J. Antimicrob. Agents25(1), 62–67 (2005).
  • Burgess DS, Waldrep T. Pharmacokinetics and pharmacodynamics of piperacillin/tazobactam when administered by continuous infusion and intermittent dosing. Clin. Ther.24(7), 1090–1104 (2002).
  • Kim MK, Xuan D, Quintiliani R, Nightingale CH, Nicolau DP. Pharmacokinetic and pharmacodynamic profile of high dose extended interval piperacillin–tazobactam. J. Antimicrob. Chemother.48(2), 259–267 (2001).
  • Ong CT, Kuti JL, Nicolau DP. Pharmacodynamic modeling of imipenem–cilastatin, meropenem, and piperacillin–tazobactam for empiric therapy of skin and soft tissue infections: a report from the OPTAMA Program. Surg. Infect. (Larchmt).6(4), 419–426 (2005).
  • Kotapati S, Kuti JL, Nicolau DP. Pharmacodynamic modeling of β-lactam antibiotics for the empiric treatment of secondary peritonitis: a report from the OPTAMA program. Surg. Infect. (Larchmt).6(3), 297–304 (2005).
  • Maglio D, Kuti JL, Nicolau DP. Simulation of antibiotic pharmacodynamic exposure for the empiric treatment of nosocomial bloodstream infections: a report from the OPTAMA program. Clin. Ther.27(7), 1032–1042 (2005).
  • Sun HK, Kuti JL, Nicolau DP. Pharmacodynamics of antimicrobials for the empirical treatment of nosocomial pneumonia: a report from the OPTAMA Program. Crit. Care Med.33(10), 2222–2227 (2005).
  • Lodise TP, Lomaestro BM, Drusano GL. Application of antimicrobial pharmacodynamic concepts into clinical practice: focus on β-lactam antibiotics: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy26(9), 1320–1332 (2006).
  • Lodise TP Jr, Lomaestro B, Rodvold KA, Danziger LH, Drusano GL. Pharmacodynamic profiling of piperacillin in the presence of tazobactam in patients through the use of population pharmacokinetic models and Monte Carlo simulation. Antimicrob. Agents Chemother.48(12), 4718–4724 (2004).
  • Lau WK, Mercer D, Itani KM et al. A randomized, open-label, comparative study of piperacillin/tazobactam administered by continuous infusion vs. intermittent infusion for the treatment of hospitalized patients with complicated intra-abdominal infection. Antimicrob. Agents Chemother.50(11), 3556–3561 (2006).
  • Reese AM, Frei CR, Burgess DS. Pharmacodynamics of intermittent and continuous infusion piperacillin/tazobactam and cefepime against extended-spectrum β-lactamase-producing organisms. Int. J. Antimicrob. Agents26(2), 114–119 (2005).
  • Jaccard C, Troillet N, Harbarth S et al. Prospective randomized comparison of imipenem–cilastatin and piperacillin–tazobactam in nosocomial pneumonia or peritonitis. Antimicrob. Agents Chemother.42(11), 2966–2972 (1998).
  • Dupont H, Carbon C, Carlet J. Monotherapy with a broad-spectrum β-lactam is as effective as its combination with an aminoglycoside in treatment of severe generalized peritonitis: a multicenter randomized controlled trial. The Severe Generalized Peritonitis Study Group. Antimicrob. Agents Chemother.44(8), 2028–2033 (2000).
  • Maltezou HC, Nikolaidis P, Lebesii E et al. Piperacillin/tazobactam versus cefotaxime plus metronidazole for treatment of children with intra-abdominal infections requiring surgery. Eur. J. Clin. Microbiol. Infect. Dis.20(9), 643–646 (2001).
  • Cohn SM, Lipsett PA, Buchman TG et al. Comparison of intravenous/oral ciprofloxacin plus metronidazole versus piperacillin/tazobactam in the treatment of complicated intraabdominal infections. Ann. Surg.232(2), 254–262 (2000).
  • Solomkin JS, Yellin AE, Rotstein OD et al. Ertapenem versus piperacillin/tazobactam in the treatment of complicated intra-abdominal infections: results of a double-blind, randomized comparative phase III trial. Ann. Surg.237(2), 235–245 (2003).
  • Malangoni MA, Song J, Herrington J, Choudhri S, Pertel P. Randomized controlled trial of moxifloxacin compared with piperacillin–tazobactam and amoxicillin–clavulanate for the treatment of complicated intra-abdominal infections. Ann. Surg.244(2), 204–211 (2006).
  • Lipsky BA, Armstrong DG, Citron DM et al. Ertapenem versus piperacillin/tazobactam for diabetic foot infections (SIDESTEP): prospective, randomised, controlled, double-blinded, multicentre trial. Lancet366(9498), 1695–1703 (2005).
  • Gesser RM, McCarroll KA, Woods GL. Efficacy of ertapenem against methicillin-susceptible Staphylococcus aureus in complicated skin/skin structure infections: results of a double-blind clinical trial versus piperacillin–tazobactam. Int. J. Antimicrob. Agents23(3), 235–239 (2004).
  • Siami G, Christou N, Eiseman I, Tack KJ. Clinafloxacin versus piperacillin–tazobactam in treatment of patients with severe skin and soft tissue infections. Antimicrob. Agents Chemother.45(2), 525–531 (2001).
  • Giordano P, Song J, Pertel P, Herrington J, Kowalsky S. Sequential intravenous/oral moxifloxacin versus intravenous piperacillin–tazobactam followed by oral amoxicillin–clavulanate for the treatment of complicated skin and skin structure infection. Int. J. Antimicrob. Agents26(5), 357–365 (2005).
  • Roy S, Higareda I, Angel-Muller E et al. Ertapenem once a day versus piperacillin–tazobactam every 6 hours for treatment of acute pelvic infections: a prospective, multicenter, randomized, double-blind study. Infect. Dis. Obstet. Gynecol.11(1), 27–37 (2003).
  • Sanz MA, Bermudez A, Rovira M et al. Imipenem/cilastatin versus piperacillin/tazobactam plus amikacin for empirical therapy in febrile neutropenic patients: results of the COSTINE study. Curr. Med. Res. Opin.21(5), 645–655 (2005).
  • Rossini F, Terruzzi E, Verga L et al. A randomized clinical trial of ceftriaxone and amikacin versus piperacillin tazobactam and amikacin in febrile patients with hematological neoplasia and severe neutropenia. Support Care Cancer13(6), 387–392 (2005).
  • Harter C, Schulze B, Goldschmidt H et al. Piperacillin/tazobactam vs ceftazidime in the treatment of neutropenic fever in patients with acute leukemia or following autologous peripheral blood stem cell transplantation: a prospective randomized trial. Bone Marrow Transplant.37(4), 373–379 (2006).
  • Sanz MA, Lopez J, Lahuerta JJ et al. Cefepime plus amikacin versus piperacillin–tazobactam plus amikacin for initial antibiotic therapy in haematology patients with febrile neutropenia: results of an open, randomized, multicentre trial. J. Antimicrob. Chemother.50(1), 79–88 (2002).
  • Bow EJ, Rotstein C, Noskin GA et al. A randomized, open-label, multicenter comparative study of the efficacy and safety of piperacillin–tazobactam and cefepime for the empirical treatment of febrile neutropenic episodes in patients with hematologic malignancies. Clin. Infect. Dis.43(4), 447–459 (2006).
  • Del Favero A, Menichetti F, Martino P et al. A multicenter, double-blind, placebo-controlled trial comparing piperacillin–tazobactam with and without amikacin as empiric therapy for febrile neutropenia. Clin. Infect. Dis.33(8), 1295–1301 (2001).
  • Cometta A, Kern WV, De Bock R et al. Vancomycin versus placebo for treating persistent fever in patients with neutropenic cancer receiving piperacillin–tazobactam monotherapy. Clin. Infect. Dis.37(3), 382–389 (2003).
  • Viscoli C, Cometta A, Kern WV et al. Piperacillin–tazobactam monotherapy in high-risk febrile and neutropenic cancer patients. Clin. Microbiol. Infect.12(3), 212–216 (2006).
  • Joshi M, Bernstein J, Solomkin J, Wester BA, Kuye O. Piperacillin/tazobactam plus tobramycin versus ceftazidime plus tobramycin for the treatment of patients with nosocomial lower respiratory tract infection. Piperacillin/tazobactam Nosocomial Pneumonia Study Group. J. Antimicrob. Chemother.43(3), 389–397 (1999).
  • Alvarez-Lerma F, Insausti-Ordenana J, Jorda-Marcos R et al. Efficacy and tolerability of piperacillin/tazobactam versus ceftazidime in association with amikacin for treating nosocomial pneumonia in intensive care patients: a prospective randomized multicenter trial. Intensive Care Med.27(3), 493–502 (2001).
  • Joshi M, Metzler M, McCarthy M et al. Comparison of piperacillin/tazobactam and imipenem/cilastatin, both in combination with tobramycin, administered every 6h for treatment of nosocomial pneumonia. Respir. Med.100(9), 1554–1565 (2006).
  • Schmitt DV, Leitner E, Welte T, Lode H. Piperacillin/tazobactam vs imipenem/cilastatin in the treatment of nosocomial pneumonia – a double blind prospective multicentre study. Infection34(3), 127–134 (2006).
  • Graham DR, Lucasti C, Malafaia O et al. Ertapenem once daily versus piperacillin–tazobactam 4 times per day for treatment of complicated skin and skin-structure infections in adults: results of a prospective, randomized, double-blind multicenter study. Clin. Infect. Dis.34(11), 1460–1468 (2002).
  • Teppler H, Gesser RM, Friedland IR et al. Safety and tolerability of ertapenem. J. Antimicrob. Chemother.53(Suppl. 2), ii75–ii81 (2004).
  • Ohlin B, Cederberg A, Forssell H, Solhaug JH, Tveit E. Piperacillin/tazobactam compared with cefuroxime/metronidazole in the treatment of intra-abdominal infections. Eur. J. Surg.165(9), 875–884 (1999).
  • Wilcox MH, Freeman J, Fawley W et al. Long-term surveillance of cefotaxime and piperacillin–tazobactam prescribing and incidence of Clostridium difficile diarrhoea. J. Antimicrob. Chemother.54(1), 168–172 (2004).
  • Alston WK, Ahern JW. Increase in the rate of nosocomial Clostridium difficile-associated diarrhoea during shortages of piperacillin–tazobactam and piperacillin. J. Antimicrob. Chemother.53(3), 549–550 (2004).
  • Settle CD, Wilcox MH, Fawley WN, Corrado OJ, Hawkey PM. Prospective study of the risk of Clostridium difficile diarrhoea in elderly patients following treatment with cefotaxime or piperacillin–tazobactam. Aliment. Pharmacol. Ther.12(12), 1217–1223 (1998).
  • Mendez MN, Gibbs L, Jacobs RA et al. Impact of a piperacillin–tazobactam shortage on antimicrobial prescribing and the rate of vancomycin-resistant enterococci and Clostridium difficile infections. Pharmacotherapy26(1), 61–67 (2006).
  • Najjar TA, Abou-Auda HS, Ghilzai NM. Influence of piperacillin on the pharmacokinetics of methotrexate and 7-hydroxymethotrexate. Cancer Chemother. Pharmacol.42(5), 423–428 (1998).
  • Zarychanski R, Wlodarczyk K, Ariano R, Bow E. Pharmacokinetic interaction between methotrexate and piperacillin/tazobactam resulting in prolonged toxic concentrations of methotrexate. J. Antimicrob. Chemother.58(1), 228–230 (2006).
  • Hotchkies L, Grima DT, Hedayati S. The total process cost of parenteral antibiotic therapy: beyond drug acquisition cost. Clin. Ther.18(4), 716–725 (1996).
  • Florea NR, Kotapati S, Kuti JL et al. Cost analysis of continuous versus intermittent infusion of piperacillin–tazobactam: a time–motion study. Am. J. Health Syst. Pharm.60(22), 2321–2327 (2003).
  • Kotapati S, Kuti JL, Geissler EC, Nightingale CH, Nicolau DP. The clinical and economic benefits of administering piperacillin–tazobactam by continuous infusion. Intensive Crit. Care Nurs.21(2), 87–93 (2005).
  • DeRyke CA, Kuti JL, Mansfield D, Dana A, Nicolau DP. Pharmacoeconomics of continuous versus intermittent infusion of piperacillin–tazobactam for the treatment of complicated intraabdominal infection. Am. J. Health Syst. Pharm.63(8), 750–755 (2006).
  • Frei CR, Burgess DS. Continuous infusion β-lactams for intensive care unit pulmonary infections. Clin. Microbiol. Infect.11(5), 418–421 (2005).
  • Gorschluter M, Hahn C, Fixson A et al. Piperacillin–tazobactam is more effective than ceftriaxone plus gentamicin in febrile neutropenic patients with hematological malignancies: a randomized comparison. Support Care Cancer11(6), 362–370 (2003).
  • Dietrich ES, Schubert B, Ebner W, Daschner F. Cost efficacy of tazobactam/piperacillin versus imipenem/cilastatin in the treatment of intra-abdominal infection. Pharmacoeconomics19(1), 79–94 (2001).
  • CLSI. Perfomance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement, M100-S16. CLSI, PA, USA (2006).
  • Rhomberg PR, Jones RN. Antimicrobial spectrum of activity for meropenem and nine broad spectrum antimicrobials: report from the MYSTIC Program (2002) in North America. Diagn. Microbiol. Infect. Dis.47(1), 365–372 (2003).
  • Pelak BA, Bartizal K, Woods GL, Gesser RM, Motyl M. Comparative In vitro activities of ertapenem against aerobic and facultative bacterial pathogens from patients with complicated skin and skin structure infections. Diagn. Microbiol. Infect. Dis.43(2), 129–133 (2002).
  • Rhomberg PR, Jones RN, Sader HS, Fritsche TR. Antimicrobial resistance rates and clonality results from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) programme: report of year five (2003). Diagn. Microbiol. Infect. Dis.49(4), 273–281 (2004).
  • Bouchillon SK, Hoban DJ, Johnson BM et al.In vitro activity of tigecycline against 3989 Gram-negative and Gram-positive clinical isolates from the United States Tigecycline Evaluation and Surveillance Trial (TEST Program; 2004). Diagn. Microbiol. Infect. Dis.52(3), 173–179 (2005).
  • Bassetti M, Dembry LM, Farrel PA, Callan DA, Andriole VT. Antimicrobial activities of BMS-284756 compared with those of fluoroquinolones and β-lactams against gram-positive clinical isolates. Antimicrob. Agents Chemother.46(1), 234–238 (2002).
  • Dembry LM, Roberts JC, Schock KD et al. Comparison of in vitro activity of trovafloxacin against gram-positive and gram-negative organisms with quinolones and β-lactam antimicrobial agents. Diagn. Microbiol. Infect. Dis.31(1), 301–311 (1998).
  • Pelak BA, Citron DM, Motyl M et al. Comparative in vitro activities of ertapenem against bacterial pathogens from patients with acute pelvic infection. J. Antimicrob. Chemother.50(5), 735–741 (2002).
  • Goldstein EJ, Citron DM, Vreni Merriam C, Warren Y, Tyrrell KL. Comparative in vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections. Antimicrob. Agents Chemother.44(9), 2389–2394 (2000).
  • Fritsche TR, Sader HS, Jones RN. Comparative activity and spectrum of broad-spectrum β-lactams (cefepime, ceftazidime, ceftriaxone, piperacillin/tazobactam) tested against 12,295 staphylococci and streptococci: report from the SENTRY antimicrobial surveillance program (North America: 2001–2002). Diagn. Microbiol. Infect. Dis.47(2), 435–440 (2003).
  • Hoban DJ, Bouchillon SK, Johnson JL et al. Comparative in vitro potency of amoxycillin–clavulanic acid and four oral agents against recent North American clinical isolates from a global surveillance study. Int. J. Antimicrob. Agents21(5), 425–433 (2003).
  • Watanabe A, Tokue Y, Takahashi H et al. Comparative in-vitro activity of carbapenem antibiotics against respiratory pathogens isolated between 1999 and 2000. J. Infect. Chemother.7(4), 267–271 (2001).
  • Ueda Y, Kanazawa K, Eguchi K et al.In vitro and in vivo antibacterial activities of SM-216601, a new broad-spectrum parenteral carbapenem. Antimicrob. Agents Chemother.49(10), 4185–4196 (2005).
  • Blondeau JM, Laskowski R, Borsos S. In-vitro activity of cefepime and seven other antimicrobial agents against 1518 non-fermentative Gram-negative bacilli collected from 48 Canadian health care facilities. Canadian Afermenter Study Group. J. Antimicrob. Chemother.44(4), 545–548 (1999).
  • Molitoris D, Vaisanen ML, Bolanos M, Finegold SM. In vitro activities of DX-619 and four comparator agents against 376 anaerobic bacterial isolates. Antimicrob. Agents Chemother.50(5), 1887–1889 (2006).
  • Sader HS, Fritsche TR, Kaniga K, Ge Y, Jones RN. Antimicrobial activity and spectrum of PPI-0903M (T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains. Antimicrob. Agents Chemother.49(8), 3501–3512 (2005).
  • Bell JM, Turnidge JD. Multicentre study of the in vitro activity of cefepime, a broad-spectrum cephalosporin, compared to other broad-spectrum agents. Pathology33(1), 53–60 (2001).
  • Nijssen S, Florijn A, Bonten MJ et al. β-lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European Enterobacteriaceae isolates. Int. J. Antimicrob. Agents24(6), 585–591 (2004).
  • Rennie RP, Jones RN, Mutnick AH. Occurrence and antimicrobial susceptibility patterns of pathogens isolated from skin and soft tissue infections: report from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 2000). Diagn. Microbiol. Infect. Dis.45(4), 287–293 (2003).
  • Fung-Tomc J, Bush K, Minassian B et al. Antibacterial activity of BMS-180680, a new catechol-containing monobactam. Antimicrob. Agents Chemother.41(5), 1010–1016 (1997).
  • Koga T, Abe T, Inoue H et al.In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob. Agents Chemother.49(8), 3239–3250 (2005).
  • Kizirgil A, Demirdag K, Ozden M et al.In vitro activity of three different antimicrobial agents against ESBL producing Escherichia coli and Klebsiella pneumoniae blood isolates. Microbiol. Res.160(2), 135–140 (2005).
  • NCCLS. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard-NCCLS document M11-A6. 6th Edition. NCCLS, PA, USA (2003).
  • Hoellman DB, Kelly LM, Jacobs MR, Appelbaum PC. In vitro anti-anaerobic activity of the cephalosporin derivative RWJ 54428, compared to seven other compounds. Clin. Microbiol. Infect.8(12), 814–822 (2002).
  • Hoellman DB, Kelly LM, Credito K et al.In vitro antianaerobic activity of ertapenem (MK-0826) compared to seven other compounds. Antimicrob. Agents Chemother.46(1), 220–224 (2002).
  • Betriu C, Sanchez A, Palau ML, Gomez M, Picazo JJ. In vitro activities of MK-0826 and 16 other antimicrobials against Bacteroides fragilis group strains. Antimicrob. Agents Chemother.45(8), 2372–2374 (2001).
  • Aldridge KE. Ertapenem (MK-0826), a new carbapenem: comparative in vitro activity against clinically significant anaerobes. Diagn. Microbiol. Infect. Dis.44(2), 181–186 (2002).
  • Goldstein EJ, Citron DM, Merriam CV et al. General microbiology and in vitro susceptibility of anaerobes isolated from complicated skin and skin-structure infections in patients enrolled in a comparative trial of ertapenem versus piperacillin–tazobactam. Clin. Infect. Dis.35(Suppl. 1), S119–S125 (2002).
  • Wootton M, Bowker KE, Holt HA, MacGowan AP. BAL 9141, a new broad-spectrum pyrrolidinone cephalosporin: activity against clinically significant anaerobes in comparison with 10 other antimicrobials. J. Antimicrob. Chemother.49(3), 535–539 (2002).
  • Behra-Miellet J, Dubreuil L, Jumas-Bilak E. Antianaerobic activity of moxifloxacin compared with that of ofloxacin, ciprofloxacin, clindamycin, metronidazole and β-lactams. Int. J. Antimicrob. Agents20(5), 366–374 (2002).
  • Wexler HM, Engel AE, Glass D, Li C. In vitro activities of doripenem and comparator agents against 364 anaerobic clinical isolates. Antimicrob. Agents Chemother.49(10), 4413–4417 (2005).
  • Nilsson-Ehle I, Hutchison M, Haworth SJ, Norrby SR. Pharmacokinetics of meropenem compared to imipenem–cilastatin in young, healthy males. Eur. J. Clin. Microbiol. Infect. Dis.10(2), 85–88 (1991).
  • Zhanel GG, Johanson C, Embil JM et al. Ertapenem: review of a new carbapenem. Expert Rev. Anti Infect. Ther.3(1), 23–39 (2005).
  • Chiu LM, Menhinick AM, Johnson PW, Amsden GW. Pharmacokinetics of intravenous azithromycin and ceftriaxone when administered alone and concurrently to healthy volunteers. J. Antimicrob. Chemother.50(6), 1075–1079 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.