170
Views
76
CrossRef citations to date
0
Altmetric
Review

Pathogenesis of mucosal biofilm infections: challenges and progress

Pages 201-208 | Published online: 10 Jan 2014

References

  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science284(21), 1318–1322 (1999).
  • Post JC, Stoodley P, Hall-Stoodley L, Ehrlich GD. The role of biofilms in otolaryngologic infections. Curr. Opin. Otolaryngol. Head Neck Surg.12(3), 185–190 (2004).
  • Post JC, Hiller NL, Nistico L, Stoodley P, Ehrlich GD. The role of biofilms in otolaryngologic infections: update 2007. Curr. Opin. Otolaryngol. Head Neck Surg.15(5), 347–351 (2007).
  • Stoodley P, Kathju S, Hu F Z et al. Molecular and imaging techniques for bacterial biofilms in arthroplastic joint infections. Clin. Orthop. Relat. Res.437, 31–40 (2005).
  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature417(6888), 552–555 (2002).
  • Swidinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol.43(7), 3380–3389 (2005).
  • Ehrlich GD, Veeh R, Wang X et al. Mucosal biofilm formation on middle ear mucosa in the Chinchilla model of otitis media. JAMA287(13), 1710–1715 (2007).
  • Hall-Stoodley L, Hu FZ, Gieseke A et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA296(2), 202–211 (2006).
  • Jansen AM, Lockatell V, Johnson DE, Mobley HL. Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect. Immun.72(12), 7294–7305 (2004).
  • Oggioni MR, Trappetti C, Kadioglu A et al. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol. Microbiol.61(5), 1196–1210 (2006).
  • Domingue PA, Sadhu K, Costerton JW, Bartlett K, Chow AW. The human vagina: normal flora considered as an in situ tissue-associated, adherent biofilm. Genitourin. Med.67(3), 226–231 (1991).
  • Akiyama H, Morizane S, Yamasaki O, Oono T, Iwatsuki K. Assessment of Streptococcus pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. J. Dermatol. Sci.32(3), 193–199 (2003).
  • Scaramuzzino DA, McNiff JM, Bessen DE. Humanized in vivo model for streptococcal impetigo. Infect. Immun.68(5), 2880–2887 (2000).
  • Coticchia J, Zuliani G, Coleman C et al. Biofilm surface area in the pediatric nasopharynx: chronic rhinosinusitis vs obstructive sleep apnea. Arch. Otolaryngol. Head Neck Surg.133(2), 110–114 (2007).
  • Uppuluri P, Sarmah B, Chaffin WL. Candida albicans SNO1 and SNZ1 expressed in stationary-phase planktonic yeast cells and base of biofilm. Microbiology152 (7), 2031–2038 (2006).
  • Macfarlane S, Dillon JF. Microbial biofilms in the human gastrointestinal tract. J. Appl. Microbiol.102(5), 1187–1196 (2007).
  • Ehrlich GD, Veeh R, Wang X et al. Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA287(13), 1710–1715 (2002).
  • Inoue H, Kudo SE, Shiokawa A. Technology insight: laser-scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract. Nat. Clin. Pract. Gastroenterol. Hepatol.2(1), 31–37 (2005).
  • Donlan RM, Costerton J. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev.15(2), 167–193 (2002).
  • Kawaguchi T, Decho AW. in situ microspatial imaging using two-photon and confocal laser scanning microscopy of bacteria and extracellular polymeric secretions (EPS) within marine stromatolites. Mar. Biotechnol.4, 127–131 (2002).
  • Daims H, Wagner M. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Appl. Microbiol. Biotechnol.75(2), 237–248 (2007).
  • Cross SE, Kreth J, Zhu L et al. Atomic force microscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans.Nanotechnology17, S1–S7 (2006).
  • Yang Y, Sreenivasan P, Subramanyam R, Cummins D. Multiparameter assessments to determine the effects of sugars and antimicrobials on a polymicrobial oral biofilm. Appl. Environ. Microbiol.72(10), 6734–6742 (2006).
  • Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J. Med. Microbiol.55 (8), 999–1008 (2006).
  • Baillie GS, Douglas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother.46(3), 397–403 (2000).
  • Jesaitis AJ, Franklin M, Berglund D et al. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol.171(8), 4329–4339 (2003).
  • Walker TS, Tomlin KL, Worthen GS et al. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect. Immun.73(6), 3693–3701 (2005).
  • Sutherland IW. The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol.9(5), 222–227 (2001).
  • Strathmann M, Wingender J, Flemming HC. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa.J. Microbiol. Methods50(3), 237–248 (2002).
  • Martinez LR, Casadevall A. Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect. Immun.73(10), 6350–6362 (2005).
  • Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int. J. Artif. Organs.28(11), 1062–1068 (2005).
  • Zhao X, Daniels KJ, Oh SH et al.Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology152, 2287–2299 (2006).
  • Cho KH, Caparon MG. Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol. Microbiol.57(6), 1545–1556 (2005).
  • Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science301(5629), 105–107 (2003).
  • Mukherjee PK, Mohamed S, Chandra J et al. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect. Immun.74(7), 3804–3816 (2006).
  • Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect. Immun.75(5), 2126–2135 (2007).
  • Nett J, Andes D. Candida albicans biofilm development, modeling a host–pathogen interaction. Curr. Opin. Microbiol.9(4), 340–345 (2006).
  • Leid JG, Shirtliff ME, Costerton JW, Stoodley AP. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect. Immun.70(11), 6339–6345 (2002).
  • McLaughlin RA, Hoogewerf AJ. Interleukin-1β-induced growth enhancement of Staphylococcus aureus occurs in biofilm but not planktonic cultures. Microb. Pathog.41(2-3), 67–79 (2006).
  • Macfarlane S, Furrie E, Cummings JH, Macfarlane GT. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin. Infect. Dis.38(12), 1690–1699 (2004).
  • Kumamoto CA. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc. Natl Acad. Sci. USA102(15), 5576–5581 (2005).
  • Kolenbrander PE, Palmer RJ, Rickard AH et al. Bacterial interactions and successions during plaque development. Periodontol. 200042, 47–79 (2006).
  • Mencacci A, Cenci E, Bacci A, Montagnoli C, Bistoni F, Romani L. Cytokines in candidiasis and aspergillosis. Curr. Pharm. Biotechnol.1(3), 235–251 (2000).
  • Mobberley-Schuman PS, Weiss AA. Influence of CR3 (CD11b/CD18) expression on phagocytosis of Bordetella pertussis by human neutrophils. Infect. Immun.73(11), 7317–7323 (2005).
  • Neuman E, Huleatt JW, Jack RM. Granulocyte-macrophage colony-stimulating factor increases synthesis and expression of CR1 and CR3 by human peripheral blood neutrophils. J. Immunol.145(10), 3325–3332 (1990).
  • Willment JA, Lin HH, Reid DM et al. Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, examethasone, and lipopolysaccharide. J. Immunol.171(9), 4569–4573 (2003).
  • Hong W, Mason K, Jurcisek J, Novotny L, Bakaletz LO, Swords WE. Phosphorylcholine decreases early inflammation and promotes the establishment of stable biofilm communities of nontypeable Haemophilus influenzae strain 86–028NP in a Chinchilla model of otitis media. Infect. Immun.75(2), 958–965 (2007).
  • Chandra J, McCormick TS, Imamura Y, Mukherjee PK, Ghannoum MA. Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines. Infect. Immun.75(5), 2612–2620 (2007).
  • Ellerbroek PM, Walenkamp AM, Hoepelman AI, Coenjaerts FE. Effects of the capsular polysaccharides of Cryptococcus neoformans on phagocyte migration and inflammatory mediators. Curr. Med. Chem.11(2), 253–266 (2004).
  • Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet358(9276), 135–138 (2001).
  • Mah TC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol.9(1), 34–39 (2001).
  • Gilbert P, Allison DG, McBain AJ. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl. Microbiol.92, 98S–110S (2002).
  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett.230(1), 13–18 (2004).
  • Ehrlich GD, Hu FZ, Shen K, Stoodley P, Post JC. Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin. Orthop. Relat. Res.437, 20–24 (2005).
  • Martinez LR, Bryan RA, Apostolidis C, Morgenstern A, Casadevall A, Dadachova E. Antibody-guided a radiation effectively damages fungal biofilms. Antimicrob. Agents Chemother.50(6), 2132–2136 (2006).
  • Martinez LR, Christaki E, Casadevall A. Specific antibody to Cryptococcus neoformans glucurunoxylomannan antagonizes antifungal drug action against cryptococcal biofilms in vitro. J. Infect. Dis.194(2), 261–266 (2006).
  • Akiyama H, Oono T, Huh WK et al. Actions of gluco-oligosaccharide against Staphylococcus aureus. J. Dermatol.29(9), 580–586 (2002).
  • Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. The physiology and collective recalcitrance of microbial biofilm communities. Adv. Microb. Physiol.46, 202–256 (2002).
  • Nicolatou-Galitis O, Dardoufas K, Markoulatos P et al. Oral pseudomembranous candidiasis, herpes simplex virus-1 infection, and oral mucositis in head and neck cancer patients receiving radiotherapy and granulocyte-macrophage colony-stimulating factor (GM–CSF) mouthwash. J. Oral Pathol. Med.30(8), 471–480 (2001).
  • Green CB, Cheng G, Chandra J et al. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology150, 267–275 (2004).
  • Dongari-Bagtzoglou A, Kashleva H. Development of a novel three-dimensional in vitro model of oral Candida infection. Microb. Pathog.40(6), 271–278 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.