157
Views
45
CrossRef citations to date
0
Altmetric
Review

Anthrax, toxins and vaccines: a 125-year journey targeting Bacillus anthracis

, , , &
Pages 219-236 | Published online: 10 Jan 2014

References

  • Kaufmann SH, Schaible UE. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol.13(10), 469–475 (2005).
  • Pasteur L, Chamberland C, Roux E. Compte rendu sommaire des expériences faites à Pouilly-le-Fort, près de Melun, sur la vaccination charbonneuse. C. R. Acad. Sci.92, 1378–1383 (1881).
  • Sterne M. Avirulent anthrax vaccine. Onderstepoort J. Vet. Sci. Anim. Ind.7, 41–43 (1937).
  • Turnbull PC. Anthrax vaccines: past, present and future. Vaccine9(8), 533–539 (1991).
  • Shlyakhov EN, Rubinstein E. Human live anthrax vaccine in the former USSR. Vaccine12(8), 727–730 (1994).
  • Turnbull PC. Introduction: anthrax history, disease and ecology. Curr. Top. Microbiol. Immunol.271, 1–19 (2002).
  • Brachman PS, Gold H, Plotkin SA et al. Field evaluation of a human anthrax vaccine. Am. J. Public Health Nations Health52(4), 632–645 (1962).
  • Belton FC, Darlow HM, Henderson DW. The use of anthrax antigen to immunise man and monkey. Lancet271(6941), 476–479 (1956).
  • Pittman PR, Kim-Ahn G, Pifat DY et al. Anthrax vaccine: immunogenicity and safety of a dose-reduction, route–change comparison study in humans. Vaccine20(9–10), 1412–1420 (2002).
  • Weiss MM, Weiss PD, Weiss JB. Anthrax vaccine and public health policy. Am. J. Public Health97(11), 1945–1951 (2007).
  • Ivins BE, Pitt ML, Fellows PF et al. Comparative efficacy of experimental anthrax vaccine candidates against inhalation anthrax in rhesus macaques. Vaccine16(11–12), 1141–1148 (1998).
  • Fellows PF, Linscott MK, Ivins BE et al. Efficacy of a human anthrax vaccine in guinea pigs, rabbits, and rhesus macaques against challenge by Bacillus anthracis isolates of diverse geographical origin. Vaccine19(23–24), 3241–3247 (2001).
  • Brossier F, Levy M, Mock M. Anthrax spores make an essential contribution to vaccine efficacy. Infect. Immun.70(2), 661–664 (2002).
  • Chabot DJ, Scorpio A, Tobery SA et al. Anthrax capsule vaccine protects against experimental infection. Vaccine23(1), 43–47 (2004).
  • Baillie LW. Past, imminent and future human medical countermeasures for anthrax. J. Appl. Microbiol.101(3), 594–606 (2006).
  • Grabenstein JD. Vaccines: countering anthrax: vaccines and immunoglobulins. Clin. Infect. Dis.46(1), 129–136 (2008).
  • Friedlander AM, Pittman PR, Parker GW. Anthrax vaccine: evidence for safety and efficacy against inhalational anthrax. JAMA282(22), 2104–2106 (1999).
  • Mock M, Fouet A. Anthrax. Annu. Rev. Microbiol.55, 647–671 (2001).
  • Saile E, Koehler TM. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl. Environ. Microbiol.72(5), 3168–3174 (2006).
  • Candela T, Fouet A. Poly-γ-glutamate in bacteria. Mol. Microbiol.60(5), 1091–1098 (2006).
  • Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev.68(3), 373–402 (2004).
  • Scorpio A, Chabot DJ, Day WA et al. Poly-γ-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis. Antimicrob. Agents Chemother.51(1), 215–222 (2007).
  • Young JA, Collier RJ. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem.76, 243–265 (2007).
  • Inglesby TV, O’Toole T, Henderson DA et al. Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA287(17), 2236–2252 (2002).
  • Ross JM. The pathogenesis of anthrax following the administration of spores by the respiratory route. J. Pathol. Bacteriol.73, 485–494 (1957).
  • Henderson DW, Peacock S, Belton FC. Observations on the prophylaxis of experimental pulmonary anthrax in the monkey. J. Hyg. (Lond.)54(1), 28–36 (1956).
  • Klein F, Hodges DR, Mahlandt BC et al. Anthrax toxin: causative agent in the death of Rhesus monkey. Science138, 1331–1333 (1962).
  • Albrink WS, Goodlow RJ. Experimental inhalation anthrax in the chimpanzee. Am. J. Pathol.35, 1055–1065 (1959).
  • Albrink WS, Brooks SM, Biron RE, Kopel M. Human inhalation anthrax. A report of three fatal cases. Am. J. Pathol.36, 457–471 (1960).
  • Abramova FA, Grinberg LM, Yampolskaya OV, Walker DH. Pathology of inhalational anthrax in 42 cases from the Sverdlosk outbreak of 1979. Proc. Natl Acad. Sci. USA90(6), 2291–2294 (1993).
  • Grinberg LM, Abramova FA, Yampolskaya OV, Walker DH, Smith JH. Quantitative pathology of inhalational anthrax I: quantitative microscopic findings. Mod. Pathol.14(5), 482–495 (2001).
  • Guarner J, Jernigan JA, Shieh WJ et al. Pathology and pathogenesis of bioterrorism-related inhalational anthrax. Am. J. Pathol.163(2), 701–709 (2003).
  • Glomski IJ, Piris-Gimenez A, Huerre M, Mock M, Goossens PL. Primary involvement of pharynx and Peyer’s patch in inhalational and intestinal anthrax. PLoS Pathog.3(6), e76 (2007).
  • Sanz P, Teel LD, Alem F et al. Detection of Bacillus anthracis spore germination in vivo by bioluminescence imaging. Infect. Immun.76(3), 1036–1047 (2008).
  • Cleret A, Quesnel-Hellmann A, Vallon-Eberhard A et al. Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J. Immunol.178(12), 7994–8001 (2007).
  • Ribot WJ, Panchal RG, Brittingham KC et al. Anthrax lethal toxin impairs innate immune functions of alveolar macrophages and facilitates Bacillus anthracis survival. Infect. Immun.74(9), 5029–5034 (2006).
  • Cleret A, Quesnel-Hellmann A, Mathieu J, Vidal D, Tournier JN. Resident CD11c+ lung cells are impaired by anthrax toxins after spore infection. J. Infect. Dis.194(1), 86–94 (2006).
  • Tournier JN, Quesnel-Hellmann A, Cleret A, Vidal DR. Contribution of toxins to the pathogenesis of inhalational anthrax. Cell. Microbiol.9(3), 555–565 (2007).
  • Kim C, Wilcox-Adelman S, Sano Y et al. Antiinflammatory cAMP signaling and cell migration genes co-opted by the anthrax bacillus. Proc. Natl Acad. Sci. USA105(16), 6150–6155 (2008).
  • Rety S, Salamitou S, Garcia-Verdugo I et al. The crystal structure of the Bacillus anthracis spore surface protein BclA shows remarkable similarity to mammalian proteins. J. Biol. Chem.280(52), 43073–43078 (2005).
  • Bozue J, Moody KL, Cote CK et al.Bacillus anthracis spores of the BclA mutant exhibit increased adherence to epithelial cells, fibroblasts, and endothelial cells but not to macrophages. Infect. Immun.75(9), 4498–4505 (2007).
  • Steichen C, Chen P, Kearney JF, Turnbough CL Jr. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J. Bacteriol.185(6), 1903–1910 (2003).
  • Sylvestre P, Couture-Tosi E, Mock M. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol. Microbiol.45(1), 169–178 (2002).
  • Kubler-Kielb J, Vinogradov E, Hu H et al. Saccharides cross-reactive with Bacillus anthracis spore glycoprotein as an anthrax vaccine component. Proc. Natl Acad. Sci. USA105(25), 8709–8712 (2008).
  • Oliva CR, Swiecki MK, Griguer CE et al. The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. Proc. Natl Acad. Sci. USA105(4), 1261–1266 (2008).
  • Abrami L, Reig N, van der Goot FG. Anthrax toxin: the long and winding road that leads to the kill. Trends Microbiol.13(2), 72–78 (2005).
  • Moayeri M, Wiggins JF, Leppla SH. Anthrax protective antigen cleavage and clearance from the blood of mice and rats. Infect. Immun.75(11), 5175–5184 (2007).
  • Novak JM, Stein MP, Little SF, Leppla SH, Friedlander AM. Functional characterization of protease-treated Bacillus anthracis protective antigen. J. Biol. Chem.267(24), 17186–17193 (1992).
  • Klimpel KR, Molloy SS, Thomas G, Leppla SH. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc. Natl Acad. Sci. USA89(21), 10277–10281 (1992).
  • Koehler TM, Collier RJ. Anthrax toxin protective antigen: low-pH-induced hydrophobicity and channel formation in liposomes. Mol. Microbiol.5(6), 1501–1506 (1991).
  • Hammamieh R, Ribot WJ, Abshire TG, Jett M, Ezzell J. Activity of the Bacillus anthracis 20 kDa protective antigen component. BMC Infec. Dis.8, 124 (2008).
  • Milne JC, Collier RJ. pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol. Microbiol.10(3), 647–653 (1993).
  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC. Crystal structure of the anthrax toxin protective antigen. Nature385(6619), 833–838 (1997).
  • Mogridge J, Cunningham K, Lacy DB, Mourez M, Collier RJ. The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen. Proc. Natl Acad. Sci. USA99(10), 7045–7048 (2002).
  • Gupta P, Singh A, Chauhan V, Bhatnagar R. Involvement of residues 147VYYEIGK153 in binding of lethal factor to protective antigen of Bacillus anthracis. Biochem. Biophys. Res. Commun.280(1), 158–163 (2001).
  • Mogridge J, Cunningham K, Collier RJ. Stoichiometry of anthrax toxin complexes. Biochemistry41(3), 1079–1082 (2002).
  • Perelle S, Scalzo S, Kochi S, Mock M, Popoff MR. Immunological and functional comparison between Clostridium perfringens iota toxin, C. spiroforme toxin, and anthrax toxins. FEMS Microbiol. Lett.146, 117–121 (1997)
  • Gupta PK, Chandra H, Gaur R et al. Conformational fluctuations in anthrax protective antigen: a possible role of calcium in the folding pathway of the protein. FEBS Lett.554(3), 505–510 (2003).
  • Rivera J, Nakouzi A, Abboud N et al. A monoclonal antibody to Bacillus anthracis protective antigen defines a neutralizing epitope in domain 1. Infect. Immun.74(7), 4149–4156 (2006).
  • Little SF, Novak JM, Lowe JR et al. Characterization of lethal factor binding and cell receptor binding domains of protective antigen of Bacillus anthracis using monoclonal antibodies. Microbiology142(Pt 3), 707–715 (1996).
  • Rosovitz MJ, Schuck P, Varughese M et al. Alanine-scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody. J. Biol. Chem.278(33), 30936–30944 (2003).
  • Varughese M, Teixeira AV, Liu S, Leppla SH. Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin. Infect. Immun.67(4), 1860–1865 (1999).
  • Brossier F, Sirard JC, Guidi-Rontani C, Duflot E, Mock M. Functional analysis of the carboxy-terminal domain of Bacillus anthracis protective antigen. Infect. Immun.67(2), 964–967 (1999).
  • Singh Y, Klimpel KR, Quinn CP, Chaudhary VK, Leppla SH. The carboxyl-terminal end of protective antigen is required for receptor binding and anthrax toxin activity. J. Biol. Chem.266(23), 15493–15497 (1991).
  • Leppla SH. The bifactorial Bacillus anthracis lethal and oedema toxins. In: The Comprehensive Sourcebook of Bacterial Toxins. Alouf J, Freer JH (Eds). Academic Press, Inc., NY, USA 243–263 (1999).
  • Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA. Identification of the cellular receptor for anthrax toxin. Nature414(6860), 225–229 (2001).
  • Scobie HM, Rainey GJ, Bradley KA, Young JA. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl Acad. Sci. USA100(9), 5170–5174 (2003).
  • Santelli E, Bankston LA, Leppla SH, Liddington RC. Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature430(7002), 905–908 (2004).
  • Lacy DB, Wigelsworth DJ, Melnyk RA, Harrison SC, Collier RJ. Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation. Proc. Natl Acad. Sci. USA101(36), 13147–13151 (2004).
  • Scobie HM, Wigelsworth DJ, Marlett JM et al. Anthrax toxin receptor 2-dependent lethal toxin killing in vivo. PLoS Pathog.2(10), e111 (2006).
  • Scobie HM, Thomas D, Marlett JM et al. A soluble receptor decoy protects rats against anthrax lethal toxin challenge. J. Infect. Dis.192(6), 1047–1051 (2005).
  • Liu S, Leung HJ, Leppla SH. Characterization of the interaction between anthrax toxin and its cellular receptors. Cell. Microbiol.9(4), 977–987 (2007).
  • Wei W, Lu Q, Chaudry GJ, Leppla SH, Cohen SN. The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin. Cell124(6), 1141–1154 (2006).
  • Young JJ, Bromberg-White JL, Zylstra C et al. LRP5 and LRP6 are not required for protective antigen-mediated internalization or lethality of anthrax lethal toxin. PLoS Pathog.3(3), e27 (2007).
  • Ryan PL, Young JA. Evidence against a human cell-specific role for LRP6 in anthrax toxin entry. PLoS ONE3(3), e1817 (2008).
  • Zhang S, Finkelstein A, Collier RJ. Evidence that translocation of anthrax toxin’s lethal factor is initiated by entry of its N terminus into the protective antigen channel. Proc. Natl Acad. Sci. USA101(48), 16756–16761 (2004).
  • Nablo BJ, Halverson KM, Robertson JW et al. Sizing the Bacillus anthracis PA63 channel with nonelectrolyte poly(ethylene glycols). Biophys. J.95(3), 1157–1164 (2008).
  • Krantz BA, Finkelstein A, Collier RJ. Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J. Mol. Biol.355(5), 968–979 (2006).
  • Krantz BA, Trivedi AD, Cunningham K, Christensen KA, Collier RJ. Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin. J. Mol. Biol.344(3), 739–756 (2004).
  • Rainey GJ, Wigelsworth DJ, Ryan PL et al. Receptor-specific requirements for anthrax toxin delivery into cells. Proc. Natl Acad. Sci. USA102(37), 13278–13283 (2005).
  • Wolfe JT, Krantz BA, Rainey GJ, Young JA, Collier RJ. Whole-cell voltage clamp measurements of anthrax toxin pore current. J. Biol. Chem.280(47), 39417–39422 (2005).
  • Gupta PK, Kurupati RK, Chandra H et al. Acid induced unfolding of anthrax protective antigen. Biochem. Biophys. Res. Commun.311(1), 229–232 (2003).
  • Sellman BR, Nassi S, Collier RJ. Point mutations in anthrax protective antigen that block translocation. J. Biol. Chem.276(11), 8371–8376 (2001).
  • Batra S, Gupta P, Chauhan V, Singh A, Bhatnagar R. Trp 346 and Leu 352 residues in protective antigen are required for the expression of anthrax lethal toxin activity. Biochem. Biophys. Res. Commun.281(1), 186–192 (2001).
  • Singh S, Ahuja N, Chauhan V et al. Gln277 and Phe554 residues are involved in thermal inactivation of protective antigen of Bacillus anthracis. Biochem. Biophys. Res. Commun.296(5), 1058–1062 (2002).
  • Krantz BA, Melnyk RA, Zhang S et al. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science309(5735), 777–781 (2005).
  • Baldari CT, Tonello F, Paccani SR, Montecucco C. Anthrax toxins: a paradigm of bacterial immune suppression. Trends Immunol.27(9), 434–440 (2006).
  • Pannifer AD, Wong TY, Schwarzenbacher R et al. Crystal structure of the anthrax lethal factor. Nature414(6860), 229–233 (2001).
  • Drum CL, Yan SZ, Bard J et al. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature415(6870), 396–402 (2002).
  • Dal Molin F, Tonello F, Ladant D et al. Cell entry and cAMP imaging of anthrax edema toxin. EMBO J.25(22), 5405–5413 (2006).
  • Leppla SH. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl Acad. Sci. USA79(10), 3162–3166 (1982).
  • Duesbery NS, Webb CP, Leppla SH et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science280(5364), 734–737 (1998).
  • Vitale G, Pellizzari R, Recchi C et al. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem. Biophys. Res. Commun.248(3), 706–711 (1998).
  • Vitale G, Bernardi L, Napolitani G, Mock M, Montecucco C. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J.352(Pt 3), 739–745 (2000).
  • O’Brien J, Friedlander A, Dreier T, Ezzell J, Leppla S. Effects of anthrax toxin components on human neutrophils. Infect. Immun.47(1), 306–310 (1985).
  • Kassam A, Der SD, Mogridge J. Differentiation of human monocytic cell lines confers susceptibility to Bacillus anthracis lethal toxin. Cell. Microbiol.7(2), 281–292 (2005).
  • Erwin JL, DaSilva LM, Bavari S et al. Macrophage-derived cell lines do not express proinflammatory cytokines after exposure to Bacillus anthracis lethal toxin. Infect. Immun.69(2), 1175–1177 (2001).
  • Pellizzari R, Guidi-Rontani C, Vitale G, Mock M, Montecucco C. Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNγ-induced release of NO and TNFα. FEBS Lett.462(1–2), 199–204 (1999).
  • Agrawal A, Lingappa J, Leppla SH et al. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature424(6946), 329–334 (2003).
  • Tournier JN, Quesnel-Hellmann A, Mathieu J et al. Anthrax edema toxin cooperates with lethal toxin to impair cytokine secretion during infection of dendritic cells. J. Immunol.174(8), 4934–4941 (2005).
  • Paccani SR, Tonello F, Ghittoni R et al. Anthrax toxins suppress T lymphocyte activation by disrupting antigen receptor signaling. J. Exp. Med.201(3), 325–331 (2005).
  • Fang H, Xu L, Chen TY, Cyr JM, Frucht DM. Anthrax lethal toxin has direct and potent inhibitory effects on B cell proliferation and immunoglobulin production. J. Immunol.176(10), 6155–6161 (2006).
  • Friedlander AM, Bhatnagar R, Leppla SH, Johnson L, Singh Y. Characterization of macrophage sensitivity and resistance to anthrax lethal toxin. Infect. Immun.61(1), 245–252 (1993).
  • Alileche A, Serfass ER, Muehlbauer SM, Porcelli SA, Brojatsch J. Anthrax lethal toxin-mediated killing of human and murine dendritic cells impairs the adaptive immune response. PLoS Pathog.1(2), e19 (2005).
  • Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet.38(2), 240–244 (2006).
  • Kim SO, Jing Q, Hoebe K, Beutler B, Duesbery NS, Han J. Sensitizing anthrax lethal toxin-resistant macrophages to lethal toxin-induced killing by tumor necrosis factor-α. J. Biol. Chem.278(9), 7413–7421 (2003).
  • Fink SL, Bergsbaken T, Cookson BT. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc. Natl Acad. Sci. USA105(11), 4312–4317 (2008).
  • Park JM, Greten FR, Li ZW, Karin M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science297(5589), 2048–2051 (2002).
  • Wickliffe KE, Leppla SH, Moayeri M. Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome. Cell. Microbiol.10(2), 332–343 (2008).
  • Reig N, Jiang A, Couture R et al. Maturation modulates caspase-1-independent responses of dendritic cells to anthrax lethal toxin. Cell. Microbiol.10(5), 1190–1207 (2008).
  • Wickliffe KE, Leppla SH, Moayeri M. Killing of macrophages by anthrax lethal toxin: involvement of the N-end rule pathway. Cell. Microbiol.10(6), 1352–1362 (2008).
  • Ha SD, Ng D, Lamothe J et al. Mitochondrial proteins Bnip3 and Bnip3L are involved in anthrax lethal toxin-induced macrophage cell death. J. Biol. Chem.282(36), 26275–26283 (2007).
  • Hoover DL, Friedlander AM, Rogers LC et al. Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor α and interleukin-6 by increasing intracellular cyclic AMP. Infect. Immun.62(10), 4432–4439 (1994).
  • Watson LE, Kuo SR, Katki K et al. Anthrax toxins induce shock in rats by depressed cardiac ventricular function. PLoS ONE2(5), e466 (2007).
  • Gladstone GP. Immunity to anthrax: protective antigen present in cell-free culture filtrate. Br. J. Exp. Pathol.27, 394–418 (1946).
  • Wright GG, Hedberg MA, Slein JB. Studies on immunity in anthrax. III. Elaboration of protective antigen in a chemically defined, non-protein medium. J. Immunol.72(4), 263–269 (1954).
  • Auerbach S, Wright GG. Studies on immunity in anthrax. VI. Immunizing activity of protective antigen against various strains of Bacillus anthracis. J. Immunol.75(2), 129–133 (1955).
  • Wright GG, Green TW, Kanode RG Jr. Studies on immunity in anthrax. V. Immunizing activity of alum-precipitated protective antigen. J. Immunol.73(6), 387–391 (1954).
  • Puziss M, Wright GG. Studies on immunity in anthrax. X. Gel-adsorbed protective antigen for immunization of man. J. Bacteriol.85, 230–236 (1963).
  • Whiting GC, Rijpkema S, Adams T, Corbel MJ. Characterisation of adsorbed anthrax vaccine by two-dimensional gel electrophoresis. Vaccine22(31–32), 4245–4251 (2004).
  • Grunow R, Porsch-Ozcurumez M, Splettstoesser W et al. Monitoring of ELISA-reactive antibodies against anthrax protective antigen (PA), lethal factor (LF), and toxin-neutralising antibodies in serum of individuals vaccinated against anthrax with the PA-based UK anthrax vaccine. Vaccine25(18), 3679–3683 (2007).
  • Singh Y, Ivins BE, Leppla SH. Study of immunization against anthrax with the purified recombinant protective antigen of Bacillus anthracis. Infect. Immun.66(7), 3447–3448 (1998).
  • Little SF, Ivins BE, Webster WM, Norris SL, Andrews GP. Effect of aluminum hydroxide adjuvant and formaldehyde in the formulation of rPA anthrax vaccine. Vaccine25(15), 2771–2777 (2007).
  • Berthold I, Pombo ML, Wagner L, Arciniega JL. Immunogenicity in mice of anthrax recombinant protective antigen in the presence of aluminum adjuvants. Vaccine23(16), 1993–1999 (2005).
  • Flick-Smith HC, Eyles JE, Hebdon R et al. Mucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. Infect. Immun.70(4), 2022–2028 (2002).
  • Gorse GJ, Keitel W, Keyserling H et al. Immunogenicity and tolerance of ascending doses of a recombinant protective antigen (rPA102) anthrax vaccine: a randomized, double-blinded, controlled, multicenter trial. Vaccine24(33–34), 5950–5959 (2006).
  • Hannesschlager JR. Results of a safety and immunogenicity study of an early-stage investigational rPA102 vaccine as compared to the FDA licensed anthrax vaccine (anthrax vaccine adsorbed [AVA. BioThrax]). Vaccine25(17), 3247 (2007).
  • Zink TK. Gorse GJ et al. “Immunogenicity and tolerance of ascending doses of a recombinant protective antigen (rPA102) anthrax vaccine: a randomized, double-blinded, controlled, multicenter trial” [Vaccine 24 (2006) 5950–5959]. Vaccine25(15), 2766–2767 (2007).
  • Casadevall A, Pirofski LA. The potential of antibody-mediated immunity in the defence against biological weapons. Expert Opin. Biol. Ther.5(10), 1359–1372 (2005).
  • Welkos SL, Friedlander AM. Comparative safety and efficacy against Bacillus anthracis of protective antigen and live vaccines in mice. Microb. Pathog.5(2), 127–139 (1988).
  • Zarebski LM, Vaughan K, Sidney J et al. Analysis of epitope information related to Bacillus anthracis and Clostridium botulinum. Expert Rev. Vaccines7(1), 55–74 (2008).
  • Abboud N, Casadevall A. Immunogenicity of Bacillus anthracis protective antigen domains and efficacy of elicited antibody responses depend on host genetic background. Clin. Vaccine Immunol.15(7), 1115–1123 (2008).
  • Laughlin EM, Miller JD, James E et al. Antigen-specific CD4+ T cells recognize epitopes of protective antigen following vaccination with an anthrax vaccine. Infect. Immun.75(4), 1852–1860 (2007).
  • Flick-Smith HC, Walker NJ, Gibson P et al. A recombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infect. Immun.70(3), 1653–1656 (2002).
  • Zhou J, Ullal A, Liberato J et al. Paratope diversity in the human antibody response to Bacillus anthracis protective antigen. Mol. Immunol.45(2), 338–347 (2008).
  • Reason DC, Ullal A, Liberato J et al. Domain specificity of the human antibody response to Bacillus anthracis protective antigen. Vaccine26(32), 4041–4047 (2008).
  • Welkos S, Friedlander A, Weeks S, Little S, Mendelson I. In-vitrocharacterisation of the phagocytosis and fate of anthrax spores in macrophages and the effects of anti-PA antibody. J. Med. Microbiol.51(10), 821–831 (2002).
  • Cote CK, Rossi CA, Kang AS et al. The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb. Pathog.38(5–6), 209–225 (2005).
  • Peachman KK, Rao M, Alving CR et al. Correlation between lethal toxin-neutralizing antibody titers and protection from intranasal challenge with Bacillus anthracis Ames strain spores in mice after transcutaneous immunization with recombinant anthrax protective antigen. Infect. Immun.74(1), 794–797 (2006).
  • Reuveny S, White MD, Adar YY et al. Search for correlates of protective immunity conferred by anthrax vaccine. Infect. Immun.69(5), 2888–2893 (2001).
  • Pitt ML, Little SF, Ivins BE et al.In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine19(32), 4768–4773 (2001).
  • Little SF, Ivins BE, Fellows PF et al. Defining a serological correlate of protection in rabbits for a recombinant anthrax vaccine. Vaccine22(3–4), 422–430 (2004).
  • Kobiler D, Weiss S, Levy H et al. Protective antigen as a correlative marker for anthrax in animal models. Infect. Immun.74(10), 5871–5876 (2006).
  • Pittman PR, Leitman SF, Oro JG et al. Protective antigen and toxin neutralization antibody patterns in anthrax vaccinees undergoing serial plasmapheresis. Clin. Diagn. Lab. Immunol.12(6), 713–721 (2005).
  • Jones WI Jr, Klein F, Walker JS et al.In vivo growth and distribution of anthrax bacilli in resistant, susceptible, and immunized hosts. J. Bacteriol.94(3), 600–608 (1967).
  • Glomski IJ, Corre JP, Mock M, Goossens PL. Noncapsulated toxinogenic Bacillus anthracis presents a specific growth and dissemination pattern in naive and protective antigen-immune mice. Infect. Immun.75(10), 4754–4761 (2007).
  • Baillie L, Townend T, Walker N, Eriksson U, Williamson D. Characterization of the human immune response to the UK anthrax vaccine. FEMS Immunol. Med. Microbiol.42(2), 267–270 (2004).
  • Hepburn MJ, Hugh Dyson E, Simpson AJ et al. Immune response to two different dosing schedules of the anthrax vaccine precipitated (AVP) vaccine. Vaccine25(32), 6089–6097 (2007).
  • Pittman PR, Gibbs PH, Cannon TL, Friedlander AM. Anthrax vaccine: short-term safety experience in humans. Vaccine20(5–6), 972–978 (2001).
  • Marano N, Plikaytis BD, Martin SW, Rose C et al. Effects of a reduced dose schedule and intramuscular administration of anthrax vaccine adsorbed on immunogenicity and safety at 7 months: a randomized trial. JAMA300(13), 1532–1543 (2008).
  • Pittman PR, Norris SL, Barrera Oro JG et al. Patterns of antibody response in humans to the anthrax vaccine adsorbed (AVA) primary (six-dose) series. Vaccine24(17), 3654–3660 (2006).
  • Little SF, Ivins BE, Webster WM et al. Duration of protection of rabbits after vaccination with Bacillus anthracis recombinant protective antigen vaccine. Vaccine24(14), 2530–2536 (2006).
  • Laffly E, Danjou L, Condemine F et al. Selection of a macaque Fab with framework regions like those in humans, high affinity, and ability to neutralize the protective antigen (PA) of Bacillus anthracis by binding to the segment of PA between residues 686 and 694. Antimicrob. Agents Chemother.49(8), 3414–3420 (2005).
  • Wild MA, Xin H, Maruyama T et al. Human antibodies from immunized donors are protective against anthrax toxin in vivo. Nat. Biotechnol.21(11), 1305–1306 (2003).
  • Sellman BR, Mourez M, Collier RJ. Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science292(5517), 695–697 (2001).
  • Aulinger BA, Roehrl MH, Mekalanos JJ, Collier RJ, Wang JY. Combining anthrax vaccine and therapy: a dominant-negative inhibitor of anthrax toxin is also a potent and safe immunogen for vaccines. Infect. Immun.73(6), 3408–3414 (2005).
  • Little SF, Knudson GB. Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig. Infect. Immun.52(2), 509–512 (1986).
  • Gauthier YP, Tournier J-N, Paucod J-C et al. Efficacy of a vaccine based on protective antigen and killed spores against experimental inhalational anthrax. Infect. Immun. (2008) (Epub ahead of print).
  • Glomski IJ, Corre JP, Mock M, Goossens PL. Cutting edge: IFN-γ-producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis. J. Immunol.178(5), 2646–2650 (2007).
  • Brahmbhatt TN, Darnell SC, Carvalho HM et al. Recombinant exosporium protein BclA of Bacillus anthracis is effective as a booster for mice primed with suboptimal amounts of protective antigen. Infect. Immun.75(11), 5240–5247 (2007).
  • Sloat BR, Cui Z. Nasal immunization with a dual antigen anthrax vaccine induced strong mucosal and systemic immune responses against toxins and bacilli. Vaccine24, 6405–6413 (2006)
  • Joyce J, Cook J, Chabot D et al. Immunogenicity and protective efficacy of Bacillus anthracis poly-γ-D-glutamic acid capsule covalently coupled to a protein carrier using a novel triazine-based conjugation strategy. J. Biol. Chem.281(8), 4831–4843 (2006).
  • Guy B. The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol.5(7), 505–517 (2007).
  • Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med.11(4 Suppl.), S63–S68 (2005).
  • Ivins BE, Welkos SL, Little SF, Crumrine MH, Nelson GO. Immunization against anthrax with Bacillus anthracis protective antigen combined with adjuvants. Infect. Immun.60(2), 662–668 (1992).
  • Klinman DM. CpG oligonucleotides accelerate and boost the immune response elicited by AVA, the licensed anthrax vaccine. Expert Rev. Vaccines5(3), 365–369 (2006).
  • Gu M, Hine PM, James-Jackson W, Giri L, Nabors GS. Increased potency of BioThrax anthrax vaccine with the addition of the C-class CpG oligonucleotide adjuvant CPG 10109. Vaccine25(3), 526–534 (2007).
  • Klinman DM, Currie D, Lee G, Grippe V, Merkel T. Systemic but not mucosal immunity induced by AVA prevents inhalational anthrax. Microbes Infect.9(12–13), 1478–1483 (2007).
  • Heikenwalder M, Polymenidou M, Junt T et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med.10(2), 187–192 (2004).
  • Boyaka PN, Tafaro A, Fischer R et al. Effective mucosal immunity to anthrax: neutralizing antibodies and Th cell responses following nasal immunization with protective antigen. J. Immunol.170(11), 5636–5643 (2003).
  • Rijpkema SG, Adams T, Rigsby P, Xing DK, Corbel MJ. Investigation in a model system of the effects of combinations of anthrax and pertussis vaccines administered to service personnel in the 1991 Gulf War. Hum. Vaccin.1(4), 165–169 (2005).
  • Duverger A, Jackson RJ, van Ginkel FW et al.Bacillus anthracis edema toxin acts as an adjuvant for mucosal immune responses to nasally administered vaccine antigens. J. Immunol.176(3), 1776–1783 (2006).
  • Quesnel-Hellmann A, Cleret A, Vidal DR, Tournier JN. Evidence for adjuvanticity of anthrax edema toxin. Vaccine24(6), 699–702 (2006).
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat. Med.11(4 Suppl.), S45–S53 (2005).
  • Tournier JN, Mohamadzadeh M. Microenvironmental impact on lung cell homeostasis and immunity during infection. Expert Rev. Vaccines7(4), 457–466 (2008).
  • Aujla SJ, Chan YR, Zheng M et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med.14(3), 275–281 (2008).
  • Bielinska AU, Janczak KW, Landers JJ et al. Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect. Immun.75(8), 4020–4029 (2007).
  • Huang J, Mikszta JA, Ferriter MS et al. Intranasal administration of dry powder anthrax vaccine provides protection against lethal aerosol spore challenge. Hum. Vaccin.3(3), 64–67 (2007).
  • Mikszta JA, Sullivan VJ, Dean C et al. Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J. Infect. Dis.191(2), 278–288 (2005).
  • Aloni-Grinstein R, Gat O, Altboum Z et al. Oral spore vaccine based on live attenuated nontoxinogenic Bacillus anthracis expressing recombinant mutant protective antigen. Infect. Immun.73(7), 4043–4053 (2005).
  • Duc le H, Hong HA, Atkins HS et al. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine25(2), 346–355 (2007).
  • Stokes MG, Titball RW, Neeson BN et al. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect. Immun.75(4), 1827–1834 (2007).
  • Mohamadzadeh M, Duong T, Hoover T, Klaenhammer TR. Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria. Expert Rev. Vaccines7(2), 163–174 (2008).
  • Chen J, Anderson JB, DeWeese-Scott C et al. MMDB: Entrez’s 3D-structure database. Nucleic Acids Res.31(1), 474–477 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.