129
Views
20
CrossRef citations to date
0
Altmetric
Review

Protein microarrays as a discovery tool for studying protein–protein interactions

&
Pages 13-26 | Published online: 09 Jan 2014

References

  • Pawson T, Saxton TM. Signaling networks – do all roads lead to the same genes? Cell97, 675–678 (1999).
  • Pawson T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell116, 191–203 (2004).
  • Xenarios I, Salwinski L, Duan XQJ et al. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res.30, 303–305 (2002).
  • Pawson T, Nash P. Protein–protein interactions define specificity in signal transduction. Genes Dev.14, 1027–1047 (2000).
  • Nordborg M, Tavare S. Linkage disequilibrium: what history has to tell us. Trends Genet.18, 83–90 (2002).
  • Emahazion T, Feuk L, Jobs M et al. SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends Genet.17, 407–413 (2001).
  • Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004).
  • Tyers M, Mann M. From genomics to proteomics. Nature422, 193–197 (2003).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422, 198–207 (2003).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250, 4007–4021 (1975).
  • Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik26, 231–243 (1975).
  • Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis16, 1034–1059 (1995).
  • Klose J. Genotypes and phenotypes. Electrophoresis20, 643–652 (1999).
  • Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol.17, 994–999 (1999).
  • Ito T, Chiba T, Ozawa R et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA98, 4569–4574 (2001).
  • Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature403, 623–627 (2000).
  • Rain JC, Selig L, de Reuse H et al. The protein–protein interaction map of Helicobacter pylori. Nature409, 211–215 (2001).
  • Giot L, Bader JS, Brouwer C et al. A protein interaction map of Drosophila melanogaster. Science302, 1727–1736 (2003).
  • Li SM, Armstrong CM, Bertin N et al. A map of the interactome network of the metazoan C-elegans. Science303, 540–543 (2004).
  • Gavin AC, Bosche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002).
  • Ho Y, Gruhler A, Heilbut A et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002).
  • Ekins R, Edwards P. On the meaning of ‘sensitivity’. Clin. Chem.43, 1824–1831 (1997).
  • Templin MF, Stoll D, Schwenk JM et al. Protein microarrays: promising tools for proteomic research. Proteomics3, 2155–2166 (2003).
  • Vogel V, Sohnlein P, Jager C, Schade C, Steinert K. LiquiChip bead-based arrays: a flexible and efficient alternative to planar protein arrays. Shock21, 2–2 (2004).
  • Stillman BA, Parker BO, Tonkinson J, Harvey MA. Applying multiplexed microspot immunoassays. Genet. Eng. News24, 38 (2004).
  • Huang RP, Huang RC, Fan Y, Lin Y. Simultaneous detection of multiple cytokines from conditioned media and patient’s sera by an antibody-based protein array system. Anal. Biochem.294, 55–62 (2001).
  • Fetchko M, Studer I, Hort J, Stagljar I. Elucidation of the interaction network between yeast DNA processing proteins using endogenously tagged ORFs and the LiquiChip technology. Yeast20, S285–S285 (2003).
  • Wulfkuhle JD, Aquino JA, Calvert VS et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics3, 2085–2090 (2003).
  • Paweletz CP, Charboneau L, Bichsel VE et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene20, 1981–1989 (2001).
  • Grubb RL, Calvert VS, Wulkuhle JD et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics3, 2142–2146 (2003).
  • Kodadek T. Development of protein-detecting microarrays and related devices. Trends Biochem. Sci.27, 295–300 (2002).
  • Lueking A, Possling A, Huber O et al. A nonredundant human protein chip for antibody screening and serum profiling. Mol. Cell. Proteomics2, 1342–1349 (2003).
  • Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel JD. Antibody microarrays: an evaluation of production parameters. Proteomics3, 254–264 (2003).
  • Angenendt P, Glokler J, Murphy D, Lehrach H, Cahill DJ. Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal. Biochem.309, 253–260 (2002).
  • Ge H. UPA, a universal protein array system for quantitative detection of protein–protein, protein–DNA, protein–RNA and protein–ligand interactions. Nucleic Acids Res.28, E3 (I–VII) (2000).
  • de Graaf K, Hekerman P, Spelten O et al. Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich domain: phosphorylation by DYRK1A and colocalization with splicing factors. J. Biol. Chem.279(6), 4612–4624 (2004).
  • Zhu H, Bilgin M, Bangham R et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001).
  • Korf U, Kohl T, van der Zandt H et al. Large scale protein expression for proteome research. Proteomics (2005) (In Press).
  • Braun P, Hu YH, Shen BH et al. Proteome-scale purification of human proteins from bacteria. Proc. Natl Acad. Sci. USA99, 2654–2659 (2002).
  • Hammarstrom M, Hellgren N, van den Berg S, Berglund H, Hard T. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci.11, 313–321 (2002).
  • Wiemann S, Weil B, Wellenreuther R et al. Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Res.11, 422–435 (2001).
  • Strausberg RL, Feingold EA, Grouse LH et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl Acad. Sci. USA99, 16899–16903 (2002).
  • Chua J. Protometrix readies whole-proteome array. Scientist17, 42–42 (2003).
  • LaBaer J. Harnessing the proteome. Biopolymers71, 282–282 (2003).
  • Martinsky T. Protein microarray manufacturing. PharmaGenomics42 (2004).
  • Boutell JM, Hart DJ, Godber BLJ, Kozlowski RZ, Blackburn JM. Functional protein microarrays for parallel characterisation of p53 mutants. Proteomics4, 1950–1958 (2004).
  • Ramachandran N, Hainsworth E, Bhullar B et al. Self-assembling protein microarrays. Science305, 86–90 (2004).
  • Heetebrij RJ. Universal linkage system (ULS): a versatile target labeling tool in genomics and proteomics. Clin. Chem.48, 2091–2091 (2002).
  • Liotta LA, Espina V, Mehta AI et al. Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell3, 317–325 (2003).
  • Fang Y, Frutos AG, Lahiri J. G-protein-coupled receptor microarrays. Chembiochem.3, 987–991 (2002).
  • Coleman MA, Miller KA, Beernink PT, Yoshikawa DM, Albala JS. Identification of chromatin-related protein interactions using protein microarrays. Proteomics3, 2101–2107 (2003).
  • Newman JRS, Keating AE. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science300, 2097–2101 (2003).
  • Espejo A, Cote J, Bednarek A, Richard S, Bedford MT. A protein-domain microarray identifies novel protein–protein interactions. Biochem. J.367, 697–702 (2002).
  • Lesaicherre ML, Uttamchandani M, Chen GYJ, Yao SQ. Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg. Med. Chem. Lett.12, 2085–2088 (2002).
  • Houseman BT, Huh JH, Kron SJ, Mrksich M. Peptide chips for the quantitative evaluation of protein kinase activity. Nature Biotechnol.20, 270–274 (2002).
  • Zhu H, Klemic JF, Chang S et al. Analysis of yeast protein kinases using protein chips. Nature Genet.26, 283–289 (2000).
  • MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science289, 1760–1763 (2000).
  • Wang YJ, Wu TR, Cai SY, Welte T, Chin YE. Stat1 as a component of tumor necrosis factor alpha receptor 1-TRADD signaling complex to inhibit NF-kappa B activation. Mol. Cell. Biol.20, 4505–4512 (2000).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.