259
Views
38
CrossRef citations to date
0
Altmetric
Review

Mass spectrometry-based peptide quantification: applications and limitations

, , &
Pages 381-392 | Published online: 09 Jan 2014

References

  • Pandey A, Mann M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).
  • Moseley MA. Current trends in differential expression proteomics: isotopically coded tags. Trends Biotechnol. 19, S10–S16 (2001).
  • Monteoliva L, Albar JP. Differential proteomics: an overview of gel and non-gel based approaches. Brief. Funct. Genomic Proteomic 3, 220–239 (2004).
  • Hegde PS, White IR, Debouck C. Interplay of transcriptomics and proteomics. Curr. Opin. Biotechnol. 14, 647–51 (2003).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021 (1975).
  • Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243 (1975).
  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077 (1997).
  • Von Eggeling F, Gawriljuk A, Fiedler W et al. Fluorescent dual colour 2D-protein gel electrophoresis for rapid detection of differences in protein pattern with standard image analysis software. Int. J. Mol. Med. 8, 373–377 (2001).
  • Tonge R, Shaw J, Middleton B et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1, 377–396 (2001).
  • Yan JX, Devenish AT, Wait R et al. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2, 1682–1698 (2002).
  • Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–3685 (2004).
  • Church S. Advances in two-dimensional gel matching technology. Biochem. Soc. Trans. 32, 511–5116 (2004).
  • Dowsey AW, Dunn MJ, Yang GZ. The role of bioinformatics in 2D gel electrophoresis. Proteomics 3, 1567–1596 (2003).
  • Hamdan M, Righetti PG. Modern strategies for protein quantification in proteome analysis: advantages and limitations. Mass Spectrom. Rev. 21, 287–302 (2002).
  • Goodlett DR, Keller A, Watts JD et al. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun. Mass Spectrom. 15, 1214–1221 (2001).
  • Wagner Y, Sickmann A, Meyer HE, Daum G. Multidimensional nano-HPLC for analysis of protein complexes. J. Am. Soc. Mass Spectrom. 14, 1003–1011 (2003).
  • Andersen JS, Wilkinson CJ, Mayor T et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).
  • Wiener MC, Sachs JR, Deyanova EG, Yates NA. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal. Chem. 76, 6085–6096 (2004).
  • Steen H, Jebanathirajah JA, Springer M, Kirschner MW. Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc. Natl Acad. Sci. USA 102, 3948–3953 (2005).
  • Cagney G, Emili A. De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nature Biotechnol. 20, 163–170 (2002).
  • Watt SA, Patschkowski T, Kalinowski J, Niehaus K. Qualitative and quantitative proteomics by two-dimensional gel electrophoresis, peptide mass fingerprint and a chemically-coded affinity tag (CCAT). J. Biotechnol. 106, 287–300 (2003).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).
  • Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chem. Rev. 101, 269–295 (2001).
  • Reinders J, Lewandrowski U, Moebius J, Wagner Y, Sickmann A. Challenges in mass spectrometry-based proteomics. Proteomics 4, 3686–3703 (2004).
  • Lee YH, Han H, Chang SB, Lee SW. Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability. Rapid Commun. Mass Spectrom. 18, 3019–3027 (2004).
  • Cargile BJ, Bundy LJ, Grunden AM, Stephenson JL Jr. Synthesis/degradation ratio mass spectrometry for measuring relative dynamic protein turnover. Anal. Chem. 76, 86–97 (2004).
  • Mitulovic G, Stingl C, Smoluch M et al. Automated, on-line two-dimensional nano liquid chromatography tandem mass spectrometry for rapid analysis of complex protein digests. Proteomics 4, 2545–2557 (2004).
  • Mitulovic G, Smoluch M, Chervet JP et al. An improved method for tracking and reducing the void volume in nano HPLC-MS with micro trapping columns. Anal. Bioanal. Chem. 376, 946–951 (2003).
  • Wolters DA, Washburn MP, Yates JR III. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690 (2001).
  • Hansen KC, Schmitt-Ulms G, Chalkley RJ et al. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol. Cell. Proteomics 2, 299–314 (2003).
  • Oda Y, Owa T, Sato T et al. Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem. 75, 2159–2165 (2003).
  • Moritz B, Meyer HE. Approaches for the quantification of protein concentration ratios. Proteomics 3, 2208–2220 (2003).
  • Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).
  • Andersen JS, Lam YW, Leung AKJ et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).
  • Ong S, Blagoev B, Kratchmarovat I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1.5, 376–386 (2002).
  • Ong S, Kratchmarova I, Mann M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181 (2003).
  • Blagoev B, Kratchmarova I, Ong S et al. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nature Biotechnol. 21, 315–318 (2003).
  • Everley PA, Krijgsveld J, Zetter BR, Gygi SP. Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell. Proteomics 3, 729–735 (2004).
  • Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnol. 22, 1139–1145 (2004).
  • Jiang H, English AM. Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine. J. Proteome Res. 1, 345–350 (2002).
  • Zhu H, Pan S, Gu S, Bradbury EM, Chen X. Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun. Mass Spectrom. 16, 2115–2123 (2002).
  • MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR III. A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal. Chem. 75, 6912–6921 (2003).
  • Li XJ, Zhang H, Ranish JA, Aebersold R. Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 75, 6648–6657 (2003).
  • Krijgsveld J, Ketting RF, Mahmoudi T et al. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nature Biotechnol. 21, 927–931 (2003).
  • Kohno T, Kusunoki H, Sato K, Wakamatsu K. A new general method for the biosynthesis of stable isotope-enriched peptides using a decahistidine-tagged ubiquitin fusion system: an application to the production of mastoparan-X uniformly enriched with 15N and 15N/13C. J. Biomol. NMR 12, 109–121 (1998).
  • Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR III. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 74, 1650–1657 (2002).
  • Pasa-Tolic L, Jensen PK, Anderson GA et al. High throughput proteome-wide precision measurements of protein expression using mass spectrometry. J. Am. Chem. Soc. 121, 7949–7950 (1999).
  • Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA 96, 6591–6596 (1999).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).
  • Smolka MB, Zhou H, Purkayastha S, Aebersold R. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis. Anal. Biochem. 297, 25–31 (2001).
  • Dunkley TP, Watson R, Griffin JL, Dupree P, Lilley KS. Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell. Proteomics 3, 1128–34 (2004).
  • Dunkley TP, Dupree P, Watson RB, Lilley KS. The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana. Biochem. Soc. Trans. 32, 520–523 (2004).
  • Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res. 1, 47–54 (2002).
  • Yi EC, Li XJ, Cooke K et al. Increased quantitative proteome coverage with 13C/12C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics 5(2), 380–387 (2005).
  • Stewart T II, Thomson, Figeys D. 18O labeling: a tool for proteomics. Rapid Commun. Mass Spectrom. 15, 2456–65 (2001).
  • Heller M, Mattou H, Menzel C, Yao X. Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. J. Am. Soc. Mass Spectrom. 14, 704–718 (2003).
  • Schnölzer M, Jedrzejewski P, Lehmann WD. Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 17, 945–953 (1996).
  • Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842 (2001).
  • Chakraborty A, Regnier FE. Global internal standard technology for comparative proteomics. J. Chromatogr. A. 949, 173–184 (2002).
  • Geng M, Ji J, Regnier FE. Signature-peptide approach to detecting proteins in complex mixtures. J. Chromatogr. A 870, 295–313 (2000).
  • Ji J, Chakraborty A, Geng M et al. Strategy for qualitative and quantitative analysis in proteomics based on signature peptides. J. Chromatogr. B Biomed. Sci. Appl. 745, 197–210 (2000).
  • Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5(1), 4–15 (2005).
  • Brönstrup M. Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev. Proteomics. 1, 503–512 (2004).
  • Hochleitner EO, Kastner B, Frohlich T et al. Protein stoichiometry of a multi-protein complex, the human spliceosomal U1 small nuclear ribonucleoprotein: absolute quantification using isotope-coded tags and mass spectrometry. J. Biol. Chem. 280, 2536–2542 (2005).
  • Hsu JL, Huang SY, Shiea JT, Huang WY, Chen SH. Beyond quantitative proteomics: signal enhancement of the a(1) ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 4, 101–108 (2005).
  • Potthast F, Ocenasek J, Rutishauser D, Pelikan M, Schlapbach R. Database independent detection of isotopically labeled MS/MS spectrum peptide pairs. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 817, 225–230 (2005).
  • Flensburg J, Haid D, Blomberg J, Bielawski J, Ivansson D. Applications and performance of a MALDI-ToF mass spectrometer with quadratic field reflectron technology. J. Biochem. Biophys. Methods 60, 319–334 (2004).
  • Keough T, Lacey MP, Youngquist RS. Derivatization procedures to facilitate de novo sequencing of lysine-terminated tryptic peptides using postsource decay matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14, 2348–56 (2000).
  • Conrads TP, Alving K, Veenstra TD et al. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal. Chem. 73, 2132–2139 (2001).
  • Heck AJR, Krijgsveld J. Mass spectrometry-based quantitative proteomics. Expert Rev. Proteomics 1, 317–326 (2004).
  • Qian W-J, Camp D, Smith R. High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry. Expert Rev. Proteomics 1, 87–95 (2004).
  • Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR III. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959 (2004).
  • van Rooijen N. Labelling of lymphocytes with various radiosotopes for in vivo tracer studies; a review. J. Immunol. Methods 15, 267–277 (1977).
  • Humphrey TJ, Davies DD. A new method for the measurement of protein turnover. Biochem. J. 148, 119–127 (1975).
  • Kolkman A, Dirksen EH, Slijper M, Heck AJ. Double standards in quantitative proteomics: direct comparative assessment of difference in gel electrophoresis (DiGE) and metabolic stable isotope labeling. Mol. Cell. Proteomics 4(3), 255–266 (2005).

Websites

  • MSQuant http://msquant.sourceforge.net (Viewed May 2005)
  • RelEx http://fields.scripps.edu/relex (Viewed May 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.