57
Views
3
CrossRef citations to date
0
Altmetric
Review

Structural proteomics in drug discovery

, &
Pages 511-519 | Published online: 09 Jan 2014

References

  • Kim EE, Baker CT, Dwyer MD et al. Crystal structure of HIV-1 protease in complex with VX-478, a potent and orally bioavailable inhibitor of the enzyme. J. Am. Chem. Soc. 117, 1181–1182 (1995).
  • von Itzstein M, Wu WY, Kok GB et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363(6428), 418–423 (1993).
  • Kim CU, Lew W, Williams MA et al. Influenzae neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active sight: design, synthesis and structural analysis of carbocyclic sialic acid analogues with potent anti-influenzae activity. J. Am. Chem. Soc. 119, 681–690 (1997).
  • Ding HT, Ren H, Chen Q et al. Parallel cloning, expression, purification and crystallization of human proteins for structural genomics. Acta Crystallogr. D Biol. Crystallogr. 58(Pt 12), 2102–2108 (2002).
  • Edwards AM, Arrowsmith CH, Christendat D et al. Protein production: feeding the crystallographers and NMR spectroscopists. Nature Struct. Biol. 7(Suppl.), 970–972 (2000).
  • Claverie JM, Monchois V, Audic S, Poirot O, Abergel C. In search of new antibacterial target genes: a comparative/structural genomics approach. Comb. Chem. High Throughput Screen. 5(7), 511–522 (2002).
  • Brizuela L, Braun P, LaBaer J. FLEXGene repository: from sequenced genomes to gene repositories for high-throughput functional biology and proteomics. Mol. Biochem. Parasitol. 118(2), 155–165 (2001).
  • Holz C, Hesse O, Bolotina N, Stahl U, Lang C. A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr. Purif. 25(3), 372–378 (2002).
  • Lesley SA. High-throughput proteomics: protein expression and purification in the postgenomic world. Protein Expr. Purif. 22(2), 159–164 (2001).
  • Hendrickson WA, Horton JR, Murthy HM, Pahler A, Smith JL. Multiwavelength anomalous diffraction as a direct phasing vehicle in macromolecular crystallography. Basic Life Sci. 51, 317–324 (1989).
  • Hendrickson WA, Horton JR, LeMaster DM. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9(5), 1665–1672 (1990).
  • Garman E. Cool data: quantity AND quality. Acta Crystallogr. D Biol. Crystallogr. 55(Pt 10), 1641–1653 (1999).
  • Rupp B, Segelke BW, Krupka HI et al. The TB structural genomics consortium crystallization facility: towards automation from protein to electron density. Acta Crystallogr. D Biol. Crystallogr. 58(Pt 10 Pt 1), 1514–1518 (2002).
  • Karain WI, Bourenkov GP, Blume H, Bartunik HD. Automated mounting, centering and screening of crystals for high-throughput protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 58(Pt 10 Pt 1), 1519–1522 (2002).
  • Muchmore SW, Olson J, Jones R et al. Automated crystal mounting and data collection for protein crystallography. Structure Fold Des. 8(12), R243–R246 (2000).
  • Lamzin VS, Perrakis A. Current state of automated crystallographic data analysis. Nature Struct. Biol. 7(Suppl.), 978–981 (2000).
  • Diller DJ, Redinbo MR, Pohl E, Hol WG. A database method for automated map interpretation in protein crystallography. Proteins 36(4), 526–541 (1999).
  • Terwilliger TC, Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55(Pt 4), 849–861 (1999).
  • Yasutake Y, Yao M, Tanaka I. High-throughput protein crystallography. Tanpakushitsu Kakusan Koso 47(8 Suppl.), 1033–1037 (2002).
  • Sugahara M, Miyano M. Development of high-throughput automatic protein crystallization and observation system. Tanpakushitsu Kakusan Koso 47(8 Suppl.), 1026–1032 (2002).
  • Stewart L, Clark R, Behnke C. High-throughput crystallization and structure determination in drug discovery. Drug Discov. Today 7(3), 187–196 (2002).
  • Stevens RC, Wilson IA. Tech.Sight. Industrializing structural biology. Science 293(5529), 519–520 (2001).
  • Stevens RC. High-throughput protein crystallization. Curr. Opin. Struct. Biol. 10(5), 558–563 (2000).
  • Schmid MB. Structural proteomics: the potential of high-throughput structure determination. Trends Microbiol. 10(10 Suppl.), S27–S31 (2002).
  • Kuhn P, Wilson K, Patch MG, Stevens RC. The genesis of high-throughput structure-based drug discovery using protein crystallography. Curr. Opin. Chem. Biol. 6(5), 704–710 (2002).
  • Krupka HI, Rupp B, Segelke BW et al. The high-speed Hydra-Plus-One system for automated high-throughput protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 58(Pt 10 Pt 1), 1523–1526 (2002).
  • Buchanan SG. Structural genomics: bridging functional genomics and structure-based drug design. Curr. Opin. Drug Discov. Devel. 5(3), 367–381 (2002).
  • Burley SK, Bonanno JB. Structuring the universe of proteins. Ann. Rev. Genomics Hum. Genet. 3, 243–262 (2002).
  • Blundell TL, Jhoti H, Abell C. High-throughput crystallography for lead discovery in drug design. Nature Rev. Drug Discov. 1(1), 45–54 (2002).
  • Pusey ML, Liu ZJ, Tempel W et al. Life in the fast lane for protein crystallization and x-ray crystallography. Prog. Biophys. Mol. Biol. 88(3), 359–386 (2005).
  • Walhout AJ, Temple GF, Brasch MA et al. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 328, 575–592 (2000).
  • Heyman JA, Cornthwaite J, Foncerada L et al. Genome-scale cloning and expression of individual open reading frames using topoisomerase 1-mediated ligation. Genome Res. 9(4), 383–392 (1999).
  • Sasaki Y, Sone T, Yoshida S et al. Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J. Biotechnol. 107(3), 233–243 (2004).
  • Locher KP, Lee AT, Rees DC. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296(5570), 1091–1098 (2002).
  • Page R, Grzechnik SK, Canaves JM et al. Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermotoga maritima proteome. Acta Crystallogr. D Biol. Crystallogr. 59(Pt 6), 1028–1037 (2003).
  • Prinz B, Schultchen J, Rydzewski R et al. Establishing a versatile fermentation and purification procedure for human proteins expressed in the yeasts Saccharomyces cerevisiae and Pichia pastoris for structural genomics. J. Struct. Funct. Genomics 5(1–2), 29–44 (2004).
  • Possee RD. Baculoviruses as expression vectors. Curr. Opin. Biotechnol. 8(5), 569–572 (1997).
  • Laible PD, Scott HN, Henry L, Hanson DK. Towards higher-throughput membrane protein production for structural genomics initiatives. J. Struct. Funct. Genomics 5(1–2), 167–172 (2004).
  • Kolodka D, Hoang TT, Surette M, Schryvers AB. Genome wide analysis of the response to expression of a foreign outer membrane protein. Mol. Microbiol. (2005) (In Press).
  • D’Arcy A. Crystallizing proteins – a rational approach? Acta Crystallogr. D Biol. Crystallogr. 50(Pt 4), 469–471 (1994).
  • Yokoyama S. Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 7(1), 39–43 (2003).
  • Pedelacq JD, Piltch E, Liong EC et al. Engineering soluble proteins for structural genomics. Nature Biotechnol. 20(9), 927–932 (2002).
  • Cabantous S, Terwilliger TC, Waldo GS. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nature Biotechnol. 23(1), 102–107 (2005).
  • Stevens RC. The cost and value of three-dimensional protein structure. Drug Disc. World 4, 35–48 (2003).
  • Santarsiero BD, Yegian DT, Lee CC et al. An approach to rapid protein crystallization using nanodroplets. J. Applied Crystallog. 35, 278–281 (2002).
  • Hosfield D, Palan J, Hilgers M et al. A fully integrated protein crystallization platform for small-molecule drug discovery. J. Struct. Biol. 142(1), 207–217 (2003).
  • Goodwill KE, Tennant MG, Stevens RC. High-throughput Xrya crystallography for structure-based drug design. Drug Discov. Today 6, S113–S118 (2001).
  • Carter DC, Rhodes P, McRee DE et al. Reduction in diffuso-convective disturbances in nanovolume crystallization experiments. J. Applied Crystallog. 38, 87–90 (2005).
  • Hansen CL, Skordalakes E, Berger JM, Quake SR. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl Acad. Sci. USA 99(26), 16531–16536 (2002).
  • Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science 298(5593), 580–584 (2002).
  • Spraggon G, Lesley SA, Kreusch A, Priestle JP. Computational analysis of crystallization trials. Acta Crystallogr. D Biol. Crystallogr. 58(Pt 11), 1915–1923 (2002).
  • Abola E, Kuhn P, Earnest T, Stevens RC. Automation of x-ray crystallography. Nature Struct. Biol. 7(Suppl.), 973–977 (2000).
  • Snell G, Cork C, Nordmeyer R et al. Automated sample mounting and alignment system for biological crystallography at a synchrotron source. Structure (Camb.) 12(4), 537–545 (2004).
  • Pahler A, Smith JL, Hendrickson WA. A probability representation for phase information from multiwavelength anomalous dispersion. Acta Crystallogr. A. 46(Pt 7), 537–540 (1990).
  • Bushnell DA, Cramer P, Kornberg RD. Selenomethionine incorporation in Saccharomyces cerevisiae RNA polymerase II. Structure (Camb.) 9(1), R11–R14 (2001).
  • Morris RJ, Perrakis A, Lamzin VS. ARP/wARP’s model-building algorithms. I. The main chain. Acta Crystallogr. D Biol. Crystallogr. 58(Pt 6 Pt 2), 968–975 (2002).
  • Campbell SF. Science, art and drug discovery: a personal perspective. Clin. Sci. (Lond.) 99(4), 255–260 (2000).
  • Card GL, Blasdel L, England BP et al. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nature Biotechnol. 23(2), 201–207 (2005).
  • Nienaber VL, Richardson PL, Klighofer V et al. Discovering novel ligands for macromolecules using x-ray crystallographic screening. Nature Biotechnol. 18(10), 1105–1108 (2000).

Patent

  • An innovation incorporated into the GNF robotic crystallization system, now commercially available from Syrrx/RTS, is the use of submicroliter (or nanoliter) crystallization volumes. US Patent No. 6,296,673

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.