234
Views
36
CrossRef citations to date
0
Altmetric
Review

Current progress in proteomic study of hepatitis C virus-related human hepatocellular carcinoma

&
Pages 589-601 | Published online: 09 Jan 2014

References

  • El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N. Engl. J. Med. 340, 745–750 (1999).
  • Tanaka E, Kiyosawa K. Natural history of acute hepatitis C. Gastroenterol. Hepatol. 15, E97–E104 (2000).
  • Niederau C, Lange S, Heintges T et al. Prognosis of chronic hepatitis C: results of a large, prospective cohort study. Hepatology 28, 1687–1695 (2003).
  • Okuda K. Hepatocellular carcinoma. J. Hepatol. 32, 225–237 (2000).
  • Yano K, Yatsuhashi H, Yano M. Hepatitis C. Nippon Rinsho 61(Suppl. 2), 241–244 (2003).
  • Yano K, Yatsuhashi H, Yano M. Epidemiology of hepatitis C in Japan. Nippon Rinsho 62(Suppl. 7,) 241–247 (2004).
  • Schena M, Shalon D, Davis RW et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).
  • DeRisi J, Penland L, Brown PO et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457–460 (1996).
  • Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).
  • Brazma A, Vilo J. Gene expression data analysis. FEBS Lett. 480, 17–24 (2000).
  • Eisen MB, Spellman PT, Brown PO et al. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).
  • Honda M, Kaneko S, Kawai H et al. Differential gene expression between chronic hepatitis B and C hepatic lesion. Gastroenterology 120, 955–966 (2000).
  • Tackels-Horne D, Goodman MD, Williams AJ et al. Identification of differentially expressed genes in hepatocellular carcinoma and metastatic liver tumors by oligonucleotide expression profiling. Cancer 92, 395–405 (2001).
  • Xu L, Hui L, Wang S et al. Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma. Cancer Res. 61, 3176–3681 (2001).
  • Lau WY, Lai PB, Leung MF et al. Differential gene expression of hepatocellular carcinoma using cDNA microarray analysis. Oncol. Res. 12, 59–69 (2000).
  • Xu XR, Huang J, Xu ZG et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl Acad. Sci. USA 98, 15089–15094 (2001).
  • Shirota Y, Kaneko S, Honda M et al. Identification of differentially expressed genes in hepatocellular carcinoma with cDNA microarrays. Hepatology 33, 832–840 (2001).
  • Delpuech O, Trabut JB, Carnot F et al. Identification, using cDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma. Oncogene 21, 2926–2937 (2002).
  • Goldenberg D, Ayesh S, Schneider T et al. Analysis of differentially expressed genes in hepatocellular carcinoma using cDNA arrays. Mol. Carcinog. 3, 113–124 (2002).
  • Okabe H, Satoh S, Kato T et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res. 61, 2129–2137 (2001).
  • Iizuka N, Oka M, Yamada-Okabe H et al. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res. 62, 3939–3944 (2002).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021 (1975).
  • Latner AL, Marshall T, Gambie M. A simplified technique of high resolution two-dimensional electrophoresis: serum immunoglobulins. Clin. Chim. Acta 103(1), 51–59 (1980).
  • Gorg A, Weiss W, Dunn MJ. Current two-demensional electrophoresis technology for proteomics. Proteomics 4(12), 3665–3685 (2004).
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1(11), 845–867 (2002).
  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11), 2071–2077 (1997).
  • Tonge R, Shaw J, Middleton B et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1(3), 377–396 (2001).
  • Shaw J, Rowlinson R, Nickson J et al. Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3(7), 1181–1195 (2003).
  • Kondo T, Seike M, Mori Y et al. Application of sensitive fluorescent dyes in linkage of laser microdissection and two-dimensional gel electrophoresis as a cancer proteomic study tool. Proteomics 3(9), 1758–1766 (2003).
  • Wang D, Jensen R, Gendeh G et al. Proteome and transcriptome analysis of retinoic acid-induced differentiation of human acute promyelocytic leukemia cells, NB4. J. Proteome Res. 3(3), 627–635 (2004).
  • Zhou G, Li H, DeCamp D et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol. Cell. Proteomics 1(2), 117–124 (2002).
  • Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17(10), 994–999 (1999).
  • Lin Z, Crockett DK, Jenson SD et al. Quantitative proteomic and transcriptional analysis of the response to the p38 mitogen-activated protein kinase inhibitor SB203580 in transformed follicular lymphoma cells. Mol. Cell. Proteomics 3(8), 820–833 (2004).
  • Li C, Hong Y, Tan YX et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol. Cell. Proteomics 3(4), 399–409 (2004).
  • Zang L, Palmer Toy D, Hancock WS et al. Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and 16O/18O isotopic labeling. J. Proteome Res. 3(3), 604–612 (2004).
  • Hutchens TW, Yip TT. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 7, 576–580 (1993).
  • Issaq HJ, Veenstra TD, Conrads TP et al. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem. Biophys. Res. Commun. 292(3), 587–592 (2002).
  • Liu W, Guan M, Wu D et al. Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients. Eur. Urol. 47(4), 456–462 (2005).
  • Woong-Shick A, Sung-Pil P, Su-Mi B et al. Identification of hemoglobin-α and -β subunits as potential serum biomarkers for the diagnosis and prognosis of ovarian cancer. Cancer Sci. 96(3), 197–201 (2005).
  • Malik G, Ward MD, Gupta SK et al. Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer. Clin. Cancer Res. 11(3), 1073–1085 (2005).
  • Schwegler EE, Cazares L, Steel LF et al. SELDI-TOF MS profiling of serum for detection of the progression of chronic hepatitis C to hepatocellular carcinoma. Hepatology 41(3), 634–642(2005).
  • Park KS, Kim H, Kim NG et al. Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma. Hepatology 35, 1459–1466 (2002).
  • Park KS, Cho SY, Kim H et al. Proteomic alterations of the variants of human aldehyde dehydrogenase isozymes correlate with hepatocellular carcinoma. Int. J. Cancer 97, 261–265 (2002).
  • Kim J, Kim SH, Lee SU et al. Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of disease-related proteins. Electrophoresis 23(24), 4142–4156 (2002).
  • Lim SO, Park SJ, Kim W et al. Proteome analysis of hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 291(4), 1031–1037 (2002).
  • Li C, Tan Y-X, Zhou H et al. Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma: Identification of potential tumor markers. Proteomics 5, 1125–1139 (2005).
  • Fujii K, Kondo T, Yokoo H et al. Proteomic study of human hepatocellular carcinoma using two-dimensional difference gel electrophoresis with saturation cysteine dye. Proteomics 5(5), 1411–1422 (2005).
  • Zeindl-Eberhart E, Haraida S, Liebmann S et al. Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas. Hepatology 39, 540–549 (2004).
  • Kim W, Lim SO, Kim J-S et al. Comparison of proteome between hepatitis B virus- and hepatitis C virus-associated hepatocellular carcinoma. Clin. Cancer Res. 9, 5493–5500 (2003).
  • Takashima M, Kuramitsu Y, Yokoyama Yet al. Proteomic profiling of heat shock protein 70 family members as biomarkers for hepatitis C virus-related hepatocellular carcinoma. Proteomics 3(12), 2487–2493 (2003).
  • Yokoyama Y, Kuramitsu Y, Takashima M et al. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics 4(7), 2111–2116 (2004).
  • Takashima M, Kuramitsu Y, Yokoyama Y et al. Overexpression of α enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. Proteomics 5, 1686–1692 (2005).
  • Paradis V, Degos F, Dargere D et al. Identification of a new marker of hepatocellular carcinoma by serum profiling of patients with chronic liver diseases. Hepatology 41, 40–47 (2005).
  • Poon TCW, Yip T-T, Chan ATC et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin. Chem. 49(5), 752–760 (2003).
  • Steel LF, Shumpert D, Trotter M et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hapatocellular carcinoma. Proteomics 3, 601–609 (2003).
  • Chignard N, Beretta L. Proteomics for hepatocellular carcinoma marker discovery. Gastroenterology 127(5 Suppl. 1), S120–S125 (2004).
  • Desiderio MA, Tacchini L, Anzon E et al. Effects of polyamine imbalance on the induction of stress genes in hepatocarcinoma cells exposed to heat shock. Hepatology 24, 150–156 (1996).
  • Ou K, Seow TK, Liang RC et al. Proteome analysis of a human heptocellular carcinoma cell line, HCC-M: an update. Electrophoresis 22, 2804–2811 (2001).
  • Seow TK, Ong SE, Liang RC et al. Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry. Electrophoresis 21, 1787–1813 (2000).
  • Seow TK, Liang RC, Leow CK et al. Hepatocellular carcinoma: from bedside to proteomics. Proteomics 1(11), 1249–1263 (2001).
  • Chuma M, Sakamoto M, Yamazaki K et al. Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology 37, 198–207 (2003).
  • Milner CM, Campbell RD. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32, 242–251 (1990).
  • Sargent CA, Dunham I, Trowsdale J et al. Human major histocompatibility complex contains genes for the major heat shock protein HSP70. Proc. Natl Acad. Sci. USA 86, 1968–1972 (1989).
  • Tsukahara F, Yoshioka T, Muraki T. Molecular and functional characterization of HSC54, a novel variant of human heat-shock cognate protein 70. Mol. Pharmacol. 58, 1257–1263 (2000).
  • Bhattacharyya T, Karnezis AN, Murphy SP et al. Cloning and subcellular localization of human mitochondrial HSP70. J. Biol. Chem. 270, 1705–1710 (1995).
  • Domanico SZ, Denagel DC, Dahlseid JN et al. Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol. Cell. Biol. 13, 3598–3610 (1993).
  • Shuda M, Kondoh N, Imazeki N et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J. Hepatol. 38, 605–614 (2003).
  • Ting J, Lee AS. Human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene: structure, conservation, and regulation. DNA 7, 275–286 (1988).
  • Dworniczak B, Mirault ME. Structure and expression of a human gene coding for a 71 kd heat shock ‘cognate’ protein. Nucleic Acids Res. 15, 5181–5197 (1987).
  • Egerton M, Moritz RL, Druker B et al. Identification of the 70kD heat shock cognate protein (Hsc70) and α-actinin-1 as novel phosphotyrosine-containing proteins in T-lymphocytes. Biochem. Biophys. Res. Commun. 224, 666–674 (1996).).
  • Townsend PA, Dublin E, Hart IR et al. BAG-i expression in human breast cancer: interrelationship between BAG-1 RNA, protein, HSC70 expression and clinico-pathological data. J. Pathol. 197, 51–59 (2002).
  • Bini L, Magi B, Marzocchi B et al. Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 18, 2832–2841 (1997).
  • Maehara Y, Oki E, Abe T et al. Overexpression of the heat shock protein HSP70 family and p53 protein and prognosis for patients with gastric cancer. Oncology 58, 144–151 (2000).
  • Shin BK, Wang H, Yim AM et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem. 278, 7607–7616 (2003).
  • Kuramitsu Y, Toda N, Oka M et al. Mass spectrometric study of protein molecular diversity – posttranslational modification of liver glutamine synyhetase in hepatoma. J. Mass Spectrom. Soc. Jpn 51(5), 504–508 (2003).
  • Miles LA, Dahlberg CM, Plescia J et al. Role of cell-surface lysines in plasminogen binding to cells: identification of α-enolase as a candidate plasminogen receptor. Biochemistry 30, 1682–1691 (1991).
  • Redlitz A, Fowler BJ, Plow EF et al. The role of an enolase-related molecule in plasminogen binding to cells. Eur. J. Biochem. 227, 407–415 (1995).
  • Moscato S, Pratesi F, Sabbatini A et al. Surface expression of a glycolytic enzyme, α-enolase, recognized by autoantibodies in connective tissue disorders. Eur. J. Immunol. 30, 3575–3584 (2000).
  • Pancholi V. Multifunctional α-enolase: its role in diseases. Cell Mol. Life Sci. 58, 902–920 (2001).
  • Taguchi K, Takagi Y. Aldolase. Rinsho Byori (Suppl. 116), 117–124 (2001).
  • Adelman RC, Morris HP, Weinhouse S. Fructokinase, triokinase, and aldolases in liver tumors of the rat. Cancer Res. 27, 2408–2413 (1967).
  • Kinoshita M, Miyata, M. Underexpression of mRNA in human hepatocellular carcinoma focusing on eight loci. Hepatology 36, 433–438 (2002).
  • Castaldo G, Calcagno G, Sibillo R et al. Quantitative analysis of aldolase A mRNA in liver discriminates between hepatocellular carcinoma and cirrhosis. Clin. Chem. 46, 901–906 (2000).
  • van der Loop FT, Schaart G, Timmer ED et al. Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J. Cell Biol. 134, 401–411 (1996).
  • van Eys GJ, Voller MC, Timmer ED et al. Smoothelin expression characteristics: development of a smooth muscle cell in vitro system and identification of a vascular variant. Cell Struct. Funct. 22, 65–72 (1997).
  • Wehrens XH, Mies B, Gimona M et al. Localization of smoothelin in avian smooth muscle and identification of a vascular-specific isoform. FEBS Lett. 405, 315–320 (1997).
  • Mahadev K, Raval G, Bharadwaj S et al. Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp. Cell Res. 279, 40–51 (2002).
  • Alaiya AA, Franzen B, Fujioka K et al. Phenotypic analysis of ovarian carcinoma: polypeptide expression in benign, borderline and malignant tumors. Int. J. Cancer 73, 678–683 (1997).
  • Ahram M, Best CJ, Flaig MJ et al. Proteomic analysis of human prostate cancer. Mol. Carcinog. 33, 9–15 (2002).
  • Jung MH, Kim SC, Jeon GA et al. Identification of differentially expressed genes in normal and tumor human gastric tissue. Genomics 69, 281–286 (2000).
  • Tada A, Kato H, Hasegawa S. Antagonistic effect of EGF against TGF β1 on transformed phenotype and tropomyosin expression of human lung carcinoma A549 cells. Oncol. Rep. 7, 1323–1326 (2000).
  • Thomas PJ, Kaur JS, Aitcheson CT et al. Antinucleoar and anticytoplasmic antibodies in patients with malignant melanoma. Cancer Res. 43(3), 1372–1380 (1983).
  • Wasserman J, Glas U, Blomgren H. Autoantibodies in patients with carcinoma of the breast: correlation with prognosis. Clin. Exp. Immunol. 19(3), 417–422 (1975).
  • Kanazawa S, Morikawa S, Harada T et al. Carcinoembryonic antigen-producing cultured cell lines enable detection of autoantibodies in sera from patients with gastrointestinal cancer. Cancer 50(9), 1775–1782 (1982).
  • Ueyama H, Kumamoto T, Araki S. Circulating autoantibody to muscle protein in a patient with paraneoplastic myositis and colon cancer. Eur. Neurol. 32(5), 281–284 (1992).
  • Lichtenfels R, Kellner R, Bukur J et al. Heat shock protein expression and antiheat shock protein reactivity in renal cell carcinoma. Proteomics 2(5), 561–570 (2002).
  • Kellner R, Lichtenfels R, Atkins D et al. Targeting of tumor associated antigens in renal cell carcinoma using proteome-based analysis and their clinical significance. Proteomics 2(12), 1743–1751 (2002).
  • Lichtenfels R, Kellner R, Atkins D et al. Identification of metabolic enzymes in renal cell carcinoma utilizing PROTEOMEX analyses. Biochim. Biophys. Acta 1646(1–2), 21–31 (2003).
  • Seliger B, Menig M, Lichtenfels R et al. Identification of markers for the selection of patients undergoing renal cell carcinoma-specific immunotherapy. Proteomics 3(6), 979–990 (2003).
  • Le Naour F, Brichory F, Misek DE et al. A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol. Cell. Proteomics (3), 197–203 (2002).
  • Shalhoub P, Kern S, Girard S et al. Proteomic-based approach for the identification of tumor markers associated with hepatocellular carcinoma. Dis. Markers 17(4), 217–223 (2001).
  • Brechot C. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology 127(5 Suppl. 1), S56–S61 (2004).
  • Girard S, Vossman E, Misek DE et al. Hepatitis C virus NS5A-regulated gene expression and signaling revealed via microarray and comparative promoter analyses. Hepatology 40(3), 708–718 (2004).

Website

  • ProteinProspector http://prospector.ucsf.edu (Viewed July 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.