236
Views
6
CrossRef citations to date
0
Altmetric
Review

Cell cycle: proteomics gives it a spin

Pages 615-625 | Published online: 09 Jan 2014

References

  • Masui Y, Markert CL. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177(2), 129–145 (1971).
  • Hartwell LH, Culotti J, Reid B et al. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Natl Acad. Sci. USA 66(2), 352–359 (1970).
  • Hartwell LH, Culotti J, Pringle JR, Reid BJ. Genetic control of the cell division cycle in yeast. Science 183(120), 46–51 (1974).
  • Nurse P. Genetic control of cell size at cell division in yeast. Nature 256(5518), 547–551 (1975).
  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33(2), 389–396 (1983).
  • Gautier J, Norbury C, Lohka M, Nurse P, Maller J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54(3), 433–439 (1988).
  • Gautier J, Minshull J, Lohka M et al. Cyclin is a component of maturation-promoting factor from Xenopus. Cell 60(3), 487–494 (1990).
  • Reed SI. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nature Rev. Mol. Cell Biol. 4(11), 855–864 (2003).
  • Tyers M. Cell cycle goes global. Curr. Opin. Cell Biol. 16(6), 602–613 (2004).
  • Futcher B. Transcriptional regulatory networks and the yeast cell cycle. Curr. Opin. Cell Biol. 14(6), 676–683 (2002).
  • Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000).
  • Ito T, Chiba T, Ozawa R et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98(8), 4569–4574 (2001).
  • Giot L, Bader JS, Brouwer C et al. A protein interaction map of Drosophila melanogaster. Science 302(5651), 1727–1736 (2003).
  • Li S, Armstrong CM, Bertin N et al. A map of the interactome network of the metazoan C. elegans. Science 303(5657), 540–543 (2004).
  • Gavin AC, Bosche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002).
  • Ho Y, Gruhler A, Heilbut A et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002).
  • Deane CM, Salwinski L, Xenarios I, Eisenberg D. Protein interactions: two methods for assessment of the reliability of high-throughput observations. Mol. Cell. Proteomics1(5), 349–356 (2002).
  • von Mering C, Krause R, Snel B et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887), 399–403 (2002).
  • Zachariae W, Shevchenko A, Andrews PD et al. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279(5354), 1216–1219 (1998).
  • Yoon HJ, Feoktistova A, Wolfe BA et al. Proteomics analysis identifies new components of the fission and budding yeast anaphase-promoting complexes. Curr. Biol. 12(23), 2048–2054 (2002).
  • Hall MC, Torres MP, Schroeder GK, Borchers CH. Mnd2 and Swm1 are core subunits of the Saccharomyces cerevisiae anaphase-promoting complex. J. Biol. Chem. 278(19), 16698–16705 (2003).
  • Verma R, Chen S, Feldman R et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11(10), 3425–3439 (2000).
  • Zhu G, Liu Y, Shaw S. Protein kinase specificity: a strategic collaboration between kinase peptide specificity and substrate recruitment. Cell Cycle 4(1), 52–56 (2005).
  • Brown NR, Noble ME, Endicott JA, Johnson LN. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nature Cell Biol. 1(7), 438–443 (1999).
  • Cross FR, Yuste-Rojas M, Gray S, Jacobson MD. Specialization and targeting of B-type cyclins. Mol. Cell 4(1), 11–19 (1999).
  • Archambault V, Buchler NE, Wilmes GM, Jacobson MD, Cross FR. Two-faced cyclins with eyes on the targets. Cell Cycle 4(1), 125–130 (2005).
  • Archambault V, Chang EJ, Drapkin BJ et al. Targeted proteomic study of the cyclin–Cdk module. Mol. Cell 14(6), 699–711 (2004).
  • Rubio MP, Geraghty KM, Wong BH et al. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem. J. 379(Pt 2), 395–408 (2004).
  • Meek SE, Lane WS, Piwnica-Worms H. Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J. Biol. Chem. 279(31), 32046–32054 (2004).
  • Stanyon CA, Liu G, Mangiola BA et al. A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol. 5(12), R96 (2004).
  • Rout MP, Kilmartin JV. Components of the yeast spindle and spindle pole body. J. Cell Biol. 111(5 Pt 1), 1913–1927 (1990).
  • Wigge PA, Jensen ON, Holmes S et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141(4), 967–977 (1998).
  • Andersen JS, Wilkinson CJ, Mayor T et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966), 570–574 (2003).
  • Skop AR, Liu H, Yates JR III, Meyer BJ, Heald R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305(5680), 61–66 (2004).
  • Link AJ, Eng J, Schieltz DM et al. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol. 17(7), 676–682 (1999).
  • Cheeseman IM, Brew C, Wolyniak M et al. Implication of a novel multi-protein Dam1p complex in outer kinetochore function. J. Cell Biol. 155(7), 1137–1145 (2001).
  • Cheeseman IM, Anderson S, Jwa M et al. Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell 111(2), 163–172 (2002).
  • Westermann S, Cheeseman IM, Anderson S et al. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163(2), 215–222 (2003).
  • De Wulf P, McAinsh AD, Sorger PK. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17(23), 2902–2921 (2003).
  • Sauer G, Korner R, Hanisch A et al. Proteome analysis of the human mitotic spindle. Mol. Cell. Proteomics4(1), 35–43 (2005).
  • Mack GJ, Compton DA. Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein. Proc. Natl Acad. Sci. USA 98(25), 14434–14439 (2001).
  • Gruber J, Harborth J, Schnabel J, Weber K, Hatzfeld M. The mitotic-spindle-associated protein astrin is essential for progression through mitosis. J. Cell Sci. 115(Pt 21), 4053–4059 (2002).
  • Morrison C, Henzing AJ, Jensen ON et al. Proteomic analysis of human metaphase chromosomes reveals topoisomerase II α as an Aurora B substrate. Nucleic Acids Res. 30(23), 5318–5327 (2002).
  • Gassmann R, Henzing AJ, Earnshaw WC. Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction. Chromosoma 113(7), 385–397 (2005).
  • Andersen JS, Lam YW, Leung AK et al. Nucleolar proteome dynamics. Nature 433(7021), 77–83 (2005).
  • Zhu H, Klemic JF, Chang S et al. Analysis of yeast protein kinases using protein chips. Nature Genet. 26(3), 283–289 (2000).
  • Shah K, Liu Y, Deirmengian C, Shokat KM. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl Acad. Sci. USA 94(8), 3565–3570 (1997).
  • Bishop A, Buzko O, Heyeck-Dumas S et al. Unnatural ligands for engineered proteins: new tools for chemical genetics. Ann. Rev. Biophys. Biomol. Struct. 29, 577–606 (2000).
  • Ubersax JA, Woodbury EL, Quang PN et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960), 859–864 (2003).
  • Loog M, Morgan DO. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434(7029), 104–108 (2005).
  • Elia AE, Cantley LC, Yaffe MB. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299(5610), 1228–1231 (2003).
  • Loyet KM, Stults JT, Arnott D. Mass spectrometric contributions to the practice of phosphorylation site mapping through 2003: a literature review. 4(3), 235–245 Mol. Cell. Proteomics (2005).
  • Chang EJ. Perspectives on hypothesis-driven multiple-stage mass spectrometry as a method for analysis of protein phosphorylation. Front. Biosci. (2005) (In Press).
  • Ficarro SB, McCleland ML, Stukenberg PT et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnol. 20(3), 301–305 (2002).
  • Beausoleil SA, Jedrychowski M, Schwartz D et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl Acad. Sci. USA 101(33), 12130–12135 (2004).
  • Kalkum M, Lyon GJ, Chait BT. Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc. Natl Acad. Sci. USA 100(5), 2795–2800 (2003).
  • Chang EJ, Archambault V, McLachlin DT, Krutchinsky AN, Chait BT. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry. Anal. Chem. 76(15), 4472–4483 (2004).
  • Loughrey Chen S, Huddleston MJ, Shou W et al. Mass spectrometry-based methods for phosphorylation site mapping of hyperphosphorylated proteins applied to Net1, a regulator of exit from mitosis in yeast. Mol. Cell. Proteomics1(3), 186–196 (2002).
  • Kraft C, Herzog F, Gieffers C et al. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J. 22(24), 6598–6609 (2003).
  • Peng J, Schwartz D, Elias JE et al. A proteomics approach to understanding protein ubiquitination. Nature Biotechnol. 21(8), 921–926 (2003).
  • Mayor T, Lipford JR, Graumann J, Smith GT, Deshaies RJ. Analysis of poly-ubiquitin conjugates reveals that the Rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol. Cell. Proteomics (2005).
  • Dohmen RJ. SUMO protein modification. Biochim. Biophys. Acta 1695(1–3), 113–131 (2004).
  • Panse VG, Hardeland U, Werner T, Kuster B, Hurt E. A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 279(40), 41346–41351 (2004).
  • Zhou W, Ryan JJ, Zhou H. Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 279(31), 32262–32268 (2004).
  • Vertegaal AC, Ogg SC, Jaffray E et al. A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 279(32), 33791–33798 (2004).
  • Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics4(1), 56–72 (2005).
  • Echard A, Hickson GR, Foley E, O’Farrell PH. Terminal cytokinesis events uncovered after an RNAi screen. Curr. Biol. 14(18), 1685–1693 (2004).
  • Bettencourt-Dias M, Giet R, Sinka R et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature 432(7020), 980–987 (2004).
  • Dohmen RJ, Wu P, Varshavsky A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263(5151), 1273–1276 (1994).
  • Kanemaki M, Sanchez-Diaz A, Gambus A, Labib K. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423(6941), 720–724 (2003).
  • Takayama Y, Kamimura Y, Okawa M et al. GINS, a novel multi-protein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 17(9), 1153–1165 (2003).
  • Kubota Y, Takase Y, Komori Y et al. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev. 17(9), 1141–1152 (2003).
  • Kumar A, Agarwal S, Heyman JA et al. Subcellular localization of the yeast proteome. Genes Dev. 16(6), 707–719 (2002).
  • Huh WK, Falvo JV, Gerke LC et al. Global analysis of protein localization in budding yeast. Nature 425(6959), 686–691 (2003).
  • Ghaemmaghami S, Huh WK, Bower K et al. Global analysis of protein expression in yeast. Nature 425(6959), 737–741 (2003).
  • Cross FR, Archambault V, Miller M, Klovstad M. Testing a mathematical model of the yeast cell cycle. Mol. Biol. Cell 13(1), 52–70 (2002).
  • de Lichtenberg U, Jensen TS, Jensen LJ, Brunak S. Protein feature based identification of cell cycle regulated proteins in yeast. J. Mol. Biol. 329(4), 663–674 (2003).
  • de Lichtenberg U, Jensen LJ, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science 307(5710), 724–727 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.