79
Views
16
CrossRef citations to date
0
Altmetric
Review

Tissue proteomics using capillary isoelectric focusing-based multidimensional separations

, &
Pages 659-667 | Published online: 09 Jan 2014

References

  • Conti M, Gelfi C, Righetti PG. Screening of umbilical cord blood hemoglobins by isoelectric focusing in capillaries. Electrophoresis 16, 1485–1491 (1996).
  • Shen Y, Berger SJ, Anderson GA, Smith RD. High-efficiency capillary isoelectric focusing of peptides. Anal. Chem. 72, 2154–2159 (2000).
  • Mohan D, Lee CS. Extension of separation range in capillary isoelectric focusing for resolving highly basic biomolecules. J. Chromatogr. A 979, 271–276 (2002).
  • Giddings JC. United Separation Science. John Wiley & Sons, NY, USA (1991).
  • Chen J, Baehrecke EH, Shen Y, Smith RD, Lee CS. Integration of capillary isoelectric focusing with capillary reversed-phase liquid chromatography for two-dimensional proteomics separation. Electrophoresis 23, 3143–3148 (2002).
  • Chen J, Balgley BM, DeVoe DL, Lee CS. Capillary isoelectric focusing-based multidimensional concentration/separation platform for ultrasensitive proteome analysis. Anal. Chem. 75, 3145–3152 (2003).
  • Wolters DA, Washburn MP, Yates JR III. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690 (2001).
  • Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Prot. Res. 2, 43–50 (2003).
  • Essader AS, Cargile BJ, Bundy JL, Stephenson JL Jr. A comparison of immobilized pH gradient isoelectric focusing and strong-cation-exchange chromatography as a first dimension in shotgun proteomics. Proteomics 5, 24–34 (2005).
  • Cargile BJ, Stephenson JL Jr. An alternative to tandem mass spectrometry: isoelectric point and accurate mass for the identification of peptides. Anal. Chem. 76, 267–275 (2004).
  • Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Prot. Res. 1, 47–54 (2002).
  • VerBerkmoes NC, Bundy JL, Hauser L et al. Integrating ‘top-down’ and ‘bottom-up’ mass spectrometric approaches for proteomic analysis of Shewanella Oneidensis. J. Prot. Res. 1, 239–252 (2002).
  • Cargile BJ, Talley DL, Stephenson JL Jr. Immobilized pH gradients as a first dimension in shotgun proteomics and analysis of the accuracy of pI predictability of peptides. Electrophoresis 25, 936–945 (2004).
  • Emmert-Buck MR, Bonner RF, Smith PD et al. Laser capture microdissection. Science 274, 998–1001 (1996).
  • Bonner RF, Emmert-Buck MR, Cole K et al. Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483 (1997).
  • DeSouza AI, McGregor E, Dunn MJ, Rose ML. Preparation of human heart for laser microdissection and proteomics. Proteomics 4, 578–586 (2004).
  • Furuta M, Weil RJ, Vortmeyer AO et al. Protein patterns and proteins that identify subtype of glioblastoma multiforme. Oncogene 23, 6806–6814 (2004).
  • Zhuang Z, Lee YS, Zeng W et al. Molecular genetic and proteomic analysis of synchronous malignant gliomas. Neurology 62, 2316–2319 (2004).
  • Paweletz CP, Trock B, Pennanen M et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis. Markers 17, 301–307 (2001).
  • Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA. Clinical proteomics: translating benchside promise into bedside reality. Nature Rev. 1, 683–695 (2002).
  • Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nature Rev. 3, 267–275 (2003).
  • Cottingham K. Clinical proteomics: are we there yet? Anal. Chem. 75, 472A–476A (2003).
  • Craven RA, Totty N, Harnden P, Selby PJ, Banks RE. Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis: evaluation of tissue preparation and sample limitations. Am. J. Pathol. 160, 815–822 (2002).
  • Mouledous L, Hunt S, Harcourt R, Harry JL, Williams KL, Gutstein HB. Lack of compatibility of histological staining methods with proteomic analysis of laser-capture microdissected brain samples. J. Biomol. Tech. 13, 258–264 (2002).
  • Ahram M, Flaig MJ, Gillespie JW et al. Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3, 413–421 (2003).
  • Somiari RI, Sullivan A, Russell S et al. High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics 3, 1863–1873 (2003).
  • Wu SL, Hancock WS, Goodrich GG, Kunitake ST. An approach to the proteomic analysis of a breast cancer cell line (SKBR-3). Proteomics 3, 1037–1046 (2003).
  • Zang L, Toy DP, Hancock WS, Sgroi DC, Karger BL. Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and 16O/18O isotopic labeling. J. Prot. Res. 3, 604–612 (2004).
  • Wang Y, Serfass L, Roy MO, Wong J, Bonneau AM, Georges E. Annexin-I expression modulates drug resistance in tumor cells. Biochem. Biophys. Res. Commun. 314, 565–570 (2004).
  • Cicek M, Samant RS, Kinter M, Welch DR, Casery G. Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells. Clin. Exp. Metastasis 21, 149–157 (2004).
  • Wiese C, Rolletschek A, Kania G et al. Nestin expression – a property of multi-lineage progenitor cells? Cell. Mol. Life Sci. 61, 2510–2522 (2004).
  • Thomas SK, Messam CA, Spengler BA, Biedler JL, Ross RA. Nestin is a potential mediator of malignancy in human neuroblastoma cells. J. Biol. Chem. 279, 27994–27999 (2004).
  • Masselon C, Anderson GA, Harkewicz R, Bruce JE, Paša-Tolic L, Smith RD. Accurate mass multiplexed tandem mass spectrometry for high-throughput polypeptide identification from mixtures. Anal. Chem. 72, 1918–1924 (2000).
  • Purvine S, Eppel JT, Yi EC, Goodlett DR. Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3, 847–850 (2003).
  • Williams JD, Flanagan M, Lopez L, Fischer S, Miller LA. Using accurate mass electrospray ionization-time-of-flight mass spectrometer with in-source collision-induced dissociation to sequence peptide mixtures. J. Chromatogr. A 1020, 11–26 (2003).
  • Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR III. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nature Methods 1, 39–45 (2004).
  • Wilson J, Vachet RW. Multiplexed MS/MS in a quadrupole ion trap mass spectrometer. Anal. Chem. 76, 7346–7353 (2004).
  • Wang Y, Balgley BM, Rudnick PA, Evans EL, DeVoe DL, Lee CS. Integrated capillary isoelectric focusing/nano-reversed phase liquid chromatography coupled with ESI-MS for characterization of intact yeast proteins. J. Prot. Res. 4, 36–42 (2005).
  • Williams TL, Callahan JH, Monday SR, Feng PCH, Musser SM. Relative quantitation of intact proteins of bacterial cell extracts using coextracted proteins as internal standards. Anal. Chem. 76, 1002–1007 (2004).
  • Wall DB, Kachman MT, Gong S et al. Isoelectric focusing nonporous RP HPLC: a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Anal. Chem. 72, 1099–1111 (2000).
  • Kachman MT, Wang H, Schwartz DR, Cho KR, Lubman DM. A 2-D liquid separations/mass mapping methods for interlysate comparison of ovarian cancers. Anal. Chem. 74, 1779–1791 (2002).
  • Zhu K, Kim J, Yoo C, Miller FR, Lubman DM. High sequence coverage of proteins isolated from liquid separations of breast cancer cells using capillary electrophoresis-time-of-flight MS and MALDI-TOF MS mapping. Anal. Chem. 75, 6209–6217 (2003).
  • Zuo X, Echan L, Hembach P et al. Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins. Electrophoresis 22, 1603–1615 (2001).
  • Yan F, Subramanian B, Nakeff A, Barder TJ, Parus SJ, Lubman DM. A comparison of drug-treated and untreated HCT-116 human colon adenocarcinoma cells using a 2-D liquid separation mapping method based upon chromatofocusing pI fractionation. Anal. Chem. 75, 2299–2308 (2003).
  • Zhou F, Johnston MV. Protein characterization by on-line capillary isoelectric focusing, reversed-phase liquid chromatography, and mass spectrometry. Anal. Chem. 76, 2734–2740 (2004).
  • Meng F, Du Y, Miller LM, Patrie SM, Robinson DE, Kelleher NL. Molecular-level description of proteins from Saccharomyces cerevisiae using quadrupole FT hybrid mass spectrometry for top down proteomics. Anal. Chem. 76, 2852–2858 (2004).
  • Du Y, Meng F, Patrie SM, Miller LM, Kelleher NL. Improved molecular weight-based processing of intact proteins for interrogation by quadrupole-enhanced FT MS/MS. J. Prot. Res. 3, 801–806 (2004).
  • Moritz RL, Ji H, Schutz F et al. A proteome strategy for fractionating proteins and peptides using continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography. Anal. Chem. 76, 4811–4824 (2004).
  • Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR III. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 74, 1650–1657 (2002).
  • Paša-Tolic L, Jensen PK, Anderson GA et al. High throughput proteome-wide precision measurements of protein expression using mass spectrometry. J. Am. Chem. Soc. 121, 7949–7950 (1999).
  • Han DK, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nature Biotech. 19, 946–951 (2001).
  • Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842 (2001).
  • Münchbach M, Quadroni M, Miotto G, James P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem. 72, 4047–4057 (2000).
  • Regnier FE, Riggs L, Zhang R et al. Comparative proteomics based on stable isotope labeling and affinity selection. J. Mass Spectrom. 37, 133–145 (2002).
  • Bondarenko PV, Chelius D, Shaler TA. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal. Chem. 74, 4741–4749 (2002).
  • Wang W, Zhou H, Lin H et al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 75, 4818–4826 (2003).
  • Chelius D, Zhang T, Wang G, Shen RF. Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal. Chem. 75, 6658–6665 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.